Theory RG_Examples

section ‹Examples›

theory RG_Examples
imports RG_Syntax
begin

lemmas definitions [simp]= stable_def Pre_def Rely_def Guar_def Post_def Com_def

subsection ‹Set Elements of an Array to Zero›

lemma le_less_trans2: "(j::nat)<k; i j  i<k"
by simp

lemma add_le_less_mono: " (a::nat) < c; bd   a + b < c + d"
by simp

record Example1 =
  A :: "nat list"

lemma Example1:
 " COBEGIN
      SCHEME [0  i < n]
     (´A := ´A [i := 0],
      n < length ´A ,
      length ºA = length ªA  ºA ! i = ªA ! i ,
      length ºA = length ªA  (j<n. i  j  ºA ! j = ªA ! j) ,
      ´A ! i = 0 )
    COEND
 SAT [ n < length ´A ,  ºA = ªA ,  True ,  i < n. ´A ! i = 0 ]"
apply(rule Parallel)
apply (auto intro!: Basic)
done

lemma Example1_parameterized:
"k < t 
   COBEGIN
    SCHEME [k*ni<(Suc k)*n] (´A:=´A[i:=0],
   t*n < length ´A,
   t*n < length ºA  length ºA=length ªA  ºA!i = ªA!i,
   t*n < length ºA  length ºA=length ªA  (j<length ºA . ij  ºA!j = ªA!j),
   ´A!i=0)
   COEND
 SAT [t*n < length ´A,
      t*n < length ºA  length ºA=length ªA  (i<n. ºA!(k*n+i)=ªA!(k*n+i)),
      t*n < length ºA  length ºA=length ªA 
      (i<length ºA . (i<k*n  ºA!i = ªA!i)  ((Suc k)*n  i ºA!i = ªA!i)),
      i<n. ´A!(k*n+i) = 0]"
apply(rule Parallel)
    apply auto
  apply(erule_tac x="k*n +i" in allE)
  apply(subgoal_tac "k*n+i <length (A b)")
   apply force
  apply(erule le_less_trans2)
  apply(case_tac t,simp+)
  apply (simp add:add.commute)
  apply(simp add: add_le_mono)
apply(rule Basic)
   apply simp
   apply clarify
   apply (subgoal_tac "k*n+i< length (A x)")
    apply simp
   apply(erule le_less_trans2)
   apply(case_tac t,simp+)
   apply (simp add:add.commute)
   apply(rule add_le_mono, auto)
done


subsection ‹Increment a Variable in Parallel›

subsubsection ‹Two components›

record Example2 =
  x  :: nat
  c_0 :: nat
  c_1 :: nat

lemma Example2:
 "  COBEGIN
    ( ´x:=´x+1;; ´c_0:=´c_0 + 1 ,
     ´x=´c_0 + ´c_1   ´c_0=0,
     ºc_0 = ªc_0 
        (ºx=ºc_0 + ºc_1
         ªx = ªc_0 + ªc_1),
     ºc_1 = ªc_1 
         (ºx=ºc_0 + ºc_1
          ªx =ªc_0 + ªc_1),
     ´x=´c_0 + ´c_1  ´c_0=1 )
  
      ( ´x:=´x+1;; ´c_1:=´c_1+1 ,
     ´x=´c_0 + ´c_1  ´c_1=0 ,
     ºc_1 = ªc_1 
        (ºx=ºc_0 + ºc_1
         ªx = ªc_0 + ªc_1),
     ºc_0 = ªc_0 
         (ºx=ºc_0 + ºc_1
         ªx =ªc_0 + ªc_1),
     ´x=´c_0 + ´c_1  ´c_1=1)
 COEND
 SAT [´x=0  ´c_0=0  ´c_1=0,
      ºx=ªx   ºc_0= ªc_0  ºc_1=ªc_1,
      True,
      ´x=2]"
apply(rule Parallel)
   apply simp_all
   apply clarify
   apply(case_tac i)
    apply simp
    apply(rule conjI)
     apply clarify
     apply simp
    apply clarify
    apply simp
   apply simp
   apply(rule conjI)
    apply clarify
    apply simp
   apply clarify
   apply simp
   apply(subgoal_tac "xa=0")
    apply simp
   apply arith
  apply clarify
  apply(case_tac xaa, simp, simp)
 apply clarify
 apply simp
 apply(erule_tac x=0 in all_dupE)
 apply(erule_tac x=1 in allE,simp)
apply clarify
apply(case_tac i,simp)
 apply(rule Await)
  apply simp_all
 apply(clarify)
 apply(rule Seq)
  prefer 2
  apply(rule Basic)
   apply simp_all
  apply(rule subset_refl)
 apply(rule Basic)
 apply simp_all
 apply clarify
 apply simp
apply(rule Await)
 apply simp_all
apply(clarify)
apply(rule Seq)
 prefer 2
 apply(rule Basic)
  apply simp_all
 apply(rule subset_refl)
apply(auto intro!: Basic)
done

subsubsection ‹Parameterized›

lemma Example2_lemma2_aux: "j<n 
 (i=0..<n. (b i::nat)) =
 (i=0..<j. b i) + b j + (i=0..<n-(Suc j) . b (Suc j + i))"
apply(induct n)
 apply simp_all
apply(simp add:less_Suc_eq)
 apply(auto)
apply(subgoal_tac "n - j = Suc(n- Suc j)")
  apply simp
apply arith
done

lemma Example2_lemma2_aux2:
  "j s  (i::nat=0..<j. (b (s:=t)) i) = (i=0..<j. b i)"
  by (induct j) simp_all

lemma Example2_lemma2:
 "j<n; b j=0  Suc (i::nat=0..<n. b i)=(i=0..<n. (b (j := Suc 0)) i)"
apply(frule_tac b="(b (j:=(Suc 0)))" in Example2_lemma2_aux)
apply(erule_tac  t="sum (b(j := (Suc 0))) {0..<n}" in ssubst)
apply(frule_tac b=b in Example2_lemma2_aux)
apply(erule_tac  t="sum b {0..<n}" in ssubst)
apply(subgoal_tac "Suc (sum b {0..<j} + b j + (i=0..<n - Suc j. b (Suc j + i)))=(sum b {0..<j} + Suc (b j) + (i=0..<n - Suc j. b (Suc j + i)))")
apply(rotate_tac -1)
apply(erule ssubst)
apply(subgoal_tac "jj")
 apply(drule_tac b="b" and t="(Suc 0)" in Example2_lemma2_aux2)
apply(rotate_tac -1)
apply(erule ssubst)
apply simp_all
done

lemma Example2_lemma2_Suc0: "j<n; b j=0 
 Suc (i::nat=0..< n. b i)=(i=0..< n. (b (j:=Suc 0)) i)"
by(simp add:Example2_lemma2)

record Example2_parameterized =
  C :: "nat  nat"
  y  :: nat

lemma Example2_parameterized: "0<n 
   COBEGIN SCHEME  [0i<n]
     ( ´y:=´y+1;; ´C:=´C (i:=1) ,
     ´y=(i=0..<n. ´C i)  ´C i=0,
     ºC i = ªC i 
      (ºy=(i=0..<n. ºC i)  ªy =(i=0..<n. ªC i)),
     (j<n. ij  ºC j = ªC j) 
       (ºy=(i=0..<n. ºC i)  ªy =(i=0..<n. ªC i)),
     ´y=(i=0..<n. ´C i)  ´C i=1)
    COEND
 SAT [´y=0  (i=0..<n. ´C i)=0 , ºC=ªC  ºy=ªy, True, ´y=n]"
apply(rule Parallel)
apply force
apply force
apply(force)
apply clarify
apply simp
apply simp
apply clarify
apply simp
apply(rule Await)
apply simp_all
apply clarify
apply(rule Seq)
prefer 2
apply(rule Basic)
apply(rule subset_refl)
apply simp+
apply(rule Basic)
apply simp
apply clarify
apply simp
apply(simp add:Example2_lemma2_Suc0 cong:if_cong)
apply simp_all
done

subsection ‹Find Least Element›

text ‹A previous lemma:›

lemma mod_aux :"i < (n::nat); a mod n = i;  j < a + n; j mod n = i; a < j  False"
apply(subgoal_tac "a=a div n*n + a mod n" )
 prefer 2 apply (simp (no_asm_use))
apply(subgoal_tac "j=j div n*n + j mod n")
 prefer 2 apply (simp (no_asm_use))
apply simp
apply(subgoal_tac "a div n*n < j div n*n")
prefer 2 apply arith
apply(subgoal_tac "j div n*n < (a div n + 1)*n")
prefer 2 apply simp
apply (simp only:mult_less_cancel2)
apply arith
done

record Example3 =
  X :: "nat  nat"
  Y :: "nat  nat"

lemma Example3: "m mod n=0 
  COBEGIN
 SCHEME [0i<n]
 (WHILE (j<n. ´X i < ´Y j)  DO
   IF P(B!(´X i)) THEN ´Y:=´Y (i:=´X i)
   ELSE ´X:= ´X (i:=(´X i)+ n) FI
  OD,
 (´X i) mod n=i  (j<´X i. j mod n=i  ¬P(B!j))  (´Y i<m  P(B!(´Y i))  ´Y i m+i),
 (j<n. ij  ªY j  ºY j)  ºX i = ªX i 
   ºY i = ªY i,
 (j<n. ij  ºX j = ªX j  ºY j = ªY j) 
   ªY i  ºY i,
 (´X i) mod n=i  (j<´X i. j mod n=i  ¬P(B!j))  (´Y i<m  P(B!(´Y i))  ´Y i m+i)  (j<n. ´Y j  ´X i) )
 COEND
 SAT [ i<n. ´X i=i  ´Y i=m+i ,ºX=ªX  ºY=ªY,True,
  i<n. (´X i) mod n=i  (j<´X i. j mod n=i  ¬P(B!j)) 
    (´Y i<m  P(B!(´Y i))  ´Y i m+i)  (j<n. ´Y j  ´X i)]"
apply(rule Parallel)
― ‹5 subgoals left›
apply force+
apply clarify
apply simp
apply(rule While)
    apply force
   apply force
    apply force
  apply (erule dvdE)
 apply(rule_tac pre'=" ´X i mod n = i  (j. j<´X i  j mod n = i  ¬P(B!j))  (´Y i < n * k  P (B!(´Y i)))  ´X i<´Y i" in Conseq)
     apply force
    apply(rule subset_refl)+
 apply(rule Cond)
    apply force
   apply(rule Basic)
      apply force
     apply fastforce
    apply force
   apply force
  apply(rule Basic)
     apply simp
     apply clarify
     apply simp
     apply (case_tac "X x (j mod n)  j")
     apply (drule le_imp_less_or_eq)
     apply (erule disjE)
     apply (drule_tac j=j and n=n and i="j mod n" and a="X x (j mod n)" in mod_aux)
     apply auto
done

text ‹Same but with a list as auxiliary variable:›

record Example3_list =
  X :: "nat list"
  Y :: "nat list"

lemma Example3_list: "m mod n=0   (COBEGIN SCHEME [0i<n]
 (WHILE (j<n. ´X!i < ´Y!j)  DO
     IF P(B!(´X!i)) THEN ´Y:=´Y[i:=´X!i] ELSE ´X:= ´X[i:=(´X!i)+ n] FI
  OD,
 n<length ´X  n<length ´Y  (´X!i) mod n=i  (j<´X!i. j mod n=i  ¬P(B!j))  (´Y!i<m  P(B!(´Y!i))  ´Y!i m+i),
 (j<n. ij  ªY!j  ºY!j)  ºX!i = ªX!i 
   ºY!i = ªY!i  length ºX = length ªX  length ºY = length ªY,
 (j<n. ij  ºX!j = ªX!j  ºY!j = ªY!j) 
   ªY!i  ºY!i  length ºX = length ªX  length ºY = length ªY,
 (´X!i) mod n=i  (j<´X!i. j mod n=i  ¬P(B!j))  (´Y!i<m  P(B!(´Y!i))  ´Y!i m+i)  (j<n. ´Y!j  ´X!i) ) COEND)
 SAT [n<length ´X  n<length ´Y  (i<n. ´X!i=i  ´Y!i=m+i) ,
      ºX=ªX  ºY=ªY,
      True,
      i<n. (´X!i) mod n=i  (j<´X!i. j mod n=i  ¬P(B!j)) 
        (´Y!i<m  P(B!(´Y!i))  ´Y!i m+i)  (j<n. ´Y!j  ´X!i)]"
  apply (rule Parallel)
apply (auto cong del: image_cong_simp)
apply force
apply (rule While)
    apply force
   apply force
  apply force
  apply (erule dvdE)
 apply(rule_tac pre'="n<length ´X  n<length ´Y  ´X ! i mod n = i  (j. j < ´X ! i  j mod n = i  ¬ P (B ! j))  (´Y ! i < n * k  P (B ! (´Y ! i)))  ´X!i<´Y!i" in Conseq)
     apply force
    apply(rule subset_refl)+
 apply(rule Cond)
    apply force
   apply(rule Basic)
      apply force
     apply force
    apply force
   apply force
  apply(rule Basic)
     apply simp
     apply clarify
     apply simp
     apply(rule allI)
     apply(rule impI)+
     apply(case_tac "X x ! i j")
      apply(drule le_imp_less_or_eq)
      apply(erule disjE)
       apply(drule_tac j=j and n=n and i=i and a="X x ! i" in mod_aux)
     apply auto
done

end