Theory OG_Com

theory OG_Com
imports Main
header {* \chapter{The Owicki-Gries Method} 

\section{Abstract Syntax} *} 

theory OG_Com imports Main begin

text {* Type abbreviations for boolean expressions and assertions: *}

type_synonym 'a bexp = "'a set"
type_synonym 'a assn = "'a set"

text {* The syntax of commands is defined by two mutually recursive
datatypes: @{text "'a ann_com"} for annotated commands and @{text "'a
com"} for non-annotated commands. *}

datatype 'a ann_com = 
     AnnBasic "('a assn)"  "('a => 'a)"         
   | AnnSeq "('a ann_com)"  "('a ann_com)"   
   | AnnCond1 "('a assn)"  "('a bexp)"  "('a ann_com)"  "('a ann_com)" 
   | AnnCond2 "('a assn)"  "('a bexp)"  "('a ann_com)" 
   | AnnWhile "('a assn)"  "('a bexp)"  "('a assn)"  "('a ann_com)" 
   | AnnAwait "('a assn)"  "('a bexp)"  "('a com)" 
and 'a com = 
     Parallel "('a ann_com option × 'a assn) list"
   | Basic "('a => 'a)" 
   | Seq "('a com)"  "('a com)" 
   | Cond "('a bexp)"  "('a com)"  "('a com)" 
   | While "('a bexp)"  "('a assn)"  "('a com)"

text {* The function @{text pre} extracts the precondition of an
annotated command: *}

primrec pre ::"'a ann_com => 'a assn"  where
  "pre (AnnBasic r f) = r"
| "pre (AnnSeq c1 c2) = pre c1"
| "pre (AnnCond1 r b c1 c2) = r"
| "pre (AnnCond2 r b c) = r"
| "pre (AnnWhile r b i c) = r"
| "pre (AnnAwait r b c) = r"

text {* Well-formedness predicate for atomic programs: *}

primrec atom_com :: "'a com => bool" where
  "atom_com (Parallel Ts) = False"
| "atom_com (Basic f) = True"
| "atom_com (Seq c1 c2) = (atom_com c1 ∧ atom_com c2)"
| "atom_com (Cond b c1 c2) = (atom_com c1 ∧ atom_com c2)"
| "atom_com (While b i c) = atom_com c"