Theory Tries_Binary

(* Author: Tobias Nipkow *)

section "Binary Tries and Patricia Tries"

theory Tries_Binary
imports Set_Specs
begin

hide_const (open) insert

declare Let_def[simp]

fun sel2 :: "bool  'a * 'a  'a" where
"sel2 b (a1,a2) = (if b then a2 else a1)"

fun mod2 :: "('a  'a)  bool  'a * 'a  'a * 'a" where
"mod2 f b (a1,a2) = (if b then (a1,f a2) else (f a1,a2))"


subsection "Trie"

datatype trie = Lf | Nd bool "trie * trie"

definition empty :: trie where
[simp]: "empty = Lf"

fun isin :: "trie  bool list  bool" where
"isin Lf ks = False" |
"isin (Nd b lr) ks =
   (case ks of
      []  b |
      k#ks  isin (sel2 k lr) ks)"

fun insert :: "bool list  trie  trie" where
"insert [] Lf = Nd True (Lf,Lf)" |
"insert [] (Nd b lr) = Nd True lr" |
"insert (k#ks) Lf = Nd False (mod2 (insert ks) k (Lf,Lf))" |
"insert (k#ks) (Nd b lr) = Nd b (mod2 (insert ks) k lr)"

lemma isin_insert: "isin (insert xs t) ys = (xs = ys  isin t ys)"
apply(induction xs t arbitrary: ys rule: insert.induct)
apply (auto split: list.splits if_splits)
done

text ‹A simple implementation of delete; does not shrink the trie!›

fun delete0 :: "bool list  trie  trie" where
"delete0 ks Lf = Lf" |
"delete0 ks (Nd b lr) =
   (case ks of
      []  Nd False lr |
      k#ks'  Nd b (mod2 (delete0 ks') k lr))"

lemma isin_delete0: "isin (delete0 as t) bs = (as  bs  isin t bs)"
apply(induction as t arbitrary: bs rule: delete0.induct)
apply (auto split: list.splits if_splits)
done

text ‹Now deletion with shrinking:›

fun node :: "bool  trie * trie  trie" where
"node b lr = (if ¬ b  lr = (Lf,Lf) then Lf else Nd b lr)"

fun delete :: "bool list  trie  trie" where
"delete ks Lf = Lf" |
"delete ks (Nd b lr) =
   (case ks of
      []  node False lr |
      k#ks'  node b (mod2 (delete ks') k lr))"

lemma isin_delete: "isin (delete xs t) ys = (xs  ys  isin t ys)"
apply(induction xs t arbitrary: ys rule: delete.induct)
 apply simp
apply (auto split: list.splits if_splits)
  apply (metis isin.simps(1))
 apply (metis isin.simps(1))
  done

definition set_trie :: "trie  bool list set" where
"set_trie t = {xs. isin t xs}"

lemma set_trie_empty: "set_trie empty = {}"
by(simp add: set_trie_def)

lemma set_trie_isin: "isin t xs = (xs  set_trie t)"
by(simp add: set_trie_def)

lemma set_trie_insert: "set_trie(insert xs t) = set_trie t  {xs}"
by(auto simp add: isin_insert set_trie_def)

lemma set_trie_delete: "set_trie(delete xs t) = set_trie t - {xs}"
by(auto simp add: isin_delete set_trie_def)

text ‹Invariant: tries are fully shrunk:›
fun invar where
"invar Lf = True" |
"invar (Nd b (l,r)) = (invar l  invar r  (l = Lf  r = Lf  b))"

lemma insert_Lf: "insert xs t  Lf"
using insert.elims by blast

lemma invar_insert: "invar t  invar(insert xs t)"
proof(induction xs t rule: insert.induct)
  case 1 thus ?case by simp
next
  case (2 b lr)
  thus ?case by(cases lr; simp)
next
  case (3 k ks)
  thus ?case by(simp; cases ks; auto)
next
  case (4 k ks b lr)
  then show ?case by(cases lr; auto simp: insert_Lf)
qed

lemma invar_delete: "invar t  invar(delete xs t)"
proof(induction t arbitrary: xs)
  case Lf thus ?case by simp
next
  case (Nd b lr)
  thus ?case by(cases lr)(auto split: list.split)
qed

interpretation S: Set
where empty = empty and isin = isin and insert = insert and delete = delete
and set = set_trie and invar = invar
proof (standard, goal_cases)
  case 1 show ?case by (rule set_trie_empty)
next
  case 2 show ?case by(rule set_trie_isin)
next
  case 3 thus ?case by(auto simp: set_trie_insert)
next
  case 4 show ?case by(rule set_trie_delete)
next
  case 5 show ?case by(simp)
next
  case 6 thus ?case by(rule invar_insert)
next
  case 7 thus ?case by(rule invar_delete)
qed


subsection "Patricia Trie"

datatype trieP = LfP | NdP "bool list" bool "trieP * trieP"

text ‹Fully shrunk:›
fun invarP where
"invarP LfP = True" |
"invarP (NdP ps b (l,r)) = (invarP l  invarP r  (l = LfP  r = LfP  b))"

fun isinP :: "trieP  bool list  bool" where
"isinP LfP ks = False" |
"isinP (NdP ps b lr) ks =
  (let n = length ps in
   if ps = take n ks
   then case drop n ks of []  b | k#ks'  isinP (sel2 k lr) ks'
   else False)"

definition emptyP :: trieP where
[simp]: "emptyP = LfP"

fun lcp :: "'a list  'a list  'a list × 'a list × 'a list" where
"lcp [] ys = ([],[],ys)" |
"lcp xs [] = ([],xs,[])" |
"lcp (x#xs) (y#ys) =
  (if xy then ([],x#xs,y#ys)
   else let (ps,xs',ys') = lcp xs ys in (x#ps,xs',ys'))"


lemma mod2_cong[fundef_cong]:
  " lr = lr'; k = k'; a b. lr'=(a,b)  f (a) = f' (a) ; a b. lr'=(a,b)  f (b) = f' (b) 
   mod2 f k lr= mod2 f' k' lr'"
by(cases lr, cases lr', auto)


fun insertP :: "bool list  trieP  trieP" where
"insertP ks LfP  = NdP ks True (LfP,LfP)" |
"insertP ks (NdP ps b lr) =
  (case lcp ks ps of
     (qs, k#ks', p#ps') 
       let tp = NdP ps' b lr; tk = NdP ks' True (LfP,LfP) in
       NdP qs False (if k then (tp,tk) else (tk,tp)) |
     (qs, k#ks', []) 
       NdP ps b (mod2 (insertP ks') k lr) |
     (qs, [], p#ps') 
       let t = NdP ps' b lr in
       NdP qs True (if p then (LfP,t) else (t,LfP)) |
     (qs,[],[])  NdP ps True lr)"


text ‹Smart constructor that shrinks:›
definition nodeP :: "bool list  bool  trieP * trieP  trieP" where
"nodeP ps b lr =
 (if b then  NdP ps b lr
  else case lr of
   (LfP,LfP)  LfP |
   (LfP, NdP ks b lr)  NdP (ps @ True # ks) b lr |
   (NdP ks b lr, LfP)  NdP (ps @ False # ks) b lr |
   _  NdP ps b lr)"

fun deleteP :: "bool list  trieP  trieP" where
"deleteP ks LfP  = LfP" |
"deleteP ks (NdP ps b lr) =
  (case lcp ks ps of
     (_, _, _#_)  NdP ps b lr |
     (_, k#ks', [])  nodeP ps b (mod2 (deleteP ks') k lr) |
     (_, [], [])  nodeP ps False lr)"



subsubsection ‹Functional Correctness›

text ‹First step: @{typ trieP} implements @{typ trie} via the abstraction function abs_trieP›:›

fun prefix_trie :: "bool list  trie  trie" where
"prefix_trie [] t = t" |
"prefix_trie (k#ks) t =
  (let t' = prefix_trie ks t in Nd False (if k then (Lf,t') else (t',Lf)))"

fun abs_trieP :: "trieP  trie" where
"abs_trieP LfP = Lf" |
"abs_trieP (NdP ps b (l,r)) = prefix_trie ps (Nd b (abs_trieP l, abs_trieP r))"


text ‹Correctness of @{const isinP}:›

lemma isin_prefix_trie:
  "isin (prefix_trie ps t) ks
   = (ps = take (length ps) ks  isin t (drop (length ps) ks))"
apply(induction ps arbitrary: ks)
apply(auto split: list.split)
done

lemma abs_trieP_isinP:
  "isinP t ks = isin (abs_trieP t) ks"
apply(induction t arbitrary: ks rule: abs_trieP.induct)
 apply(auto simp: isin_prefix_trie split: list.split)
done


text ‹Correctness of @{const insertP}:›

lemma prefix_trie_Lfs: "prefix_trie ks (Nd True (Lf,Lf)) = insert ks Lf"
apply(induction ks)
apply auto
done

lemma insert_prefix_trie_same:
  "insert ps (prefix_trie ps (Nd b lr)) = prefix_trie ps (Nd True lr)"
apply(induction ps)
apply auto
done

lemma insert_append: "insert (ks @ ks') (prefix_trie ks t) = prefix_trie ks (insert ks' t)"
apply(induction ks)
apply auto
done

lemma prefix_trie_append: "prefix_trie (ps @ qs) t = prefix_trie ps (prefix_trie qs t)"
apply(induction ps)
apply auto
done

lemma lcp_if: "lcp ks ps = (qs, ks', ps') 
  ks = qs @ ks'  ps = qs @ ps'  (ks'  []  ps'  []  hd ks'  hd ps')"
apply(induction ks ps arbitrary: qs ks' ps' rule: lcp.induct)
apply(auto split: prod.splits if_splits)
done

lemma abs_trieP_insertP:
  "abs_trieP (insertP ks t) = insert ks (abs_trieP t)"
apply(induction t arbitrary: ks)
apply(auto simp: prefix_trie_Lfs insert_prefix_trie_same insert_append prefix_trie_append
           dest!: lcp_if split: list.split prod.split if_splits)
done


text ‹Correctness of @{const deleteP}:›

lemma prefix_trie_Lf: "prefix_trie xs t = Lf  xs = []  t = Lf"
by(cases xs)(auto)

lemma abs_trieP_Lf: "abs_trieP t = Lf  t = LfP"
by(cases t) (auto simp: prefix_trie_Lf)

lemma delete_prefix_trie:
  "delete xs (prefix_trie xs (Nd b (l,r)))
   = (if (l,r) = (Lf,Lf) then Lf else prefix_trie xs (Nd False (l,r)))"
by(induction xs)(auto simp: prefix_trie_Lf)

lemma delete_append_prefix_trie:
  "delete (xs @ ys) (prefix_trie xs t)
   = (if delete ys t = Lf then Lf else prefix_trie xs (delete ys t))"
by(induction xs)(auto simp: prefix_trie_Lf)

lemma nodeP_LfP2: "nodeP xs False (LfP, LfP) = LfP"
by(simp add: nodeP_def)

text ‹Some non-inductive aux. lemmas:›

lemma abs_trieP_nodeP: "aLfP  b  LfP 
  abs_trieP (nodeP xs f (a, b)) = prefix_trie xs (Nd f (abs_trieP a, abs_trieP b))"
by(auto simp add: nodeP_def prefix_trie_append split: trieP.split)

lemma nodeP_True: "nodeP ps True lr = NdP ps True lr"
by(simp add: nodeP_def)

lemma delete_abs_trieP:
  "delete ks (abs_trieP t) = abs_trieP (deleteP ks t)"
apply(induction t arbitrary: ks)
apply(auto simp: delete_prefix_trie delete_append_prefix_trie
        prefix_trie_append prefix_trie_Lf abs_trieP_Lf nodeP_LfP2 abs_trieP_nodeP nodeP_True
        dest!: lcp_if split: if_splits list.split prod.split)
done

text ‹Invariant preservation:›

lemma insertP_LfP: "insertP xs t  LfP"
by(cases t)(auto split: prod.split list.split)

lemma invarP_insertP: "invarP t  invarP(insertP xs t)"
proof(induction t arbitrary: xs)
  case LfP thus ?case by simp
next
  case (NdP bs b lr)
  then show ?case
    by(cases lr)(auto simp: insertP_LfP split: prod.split list.split)
qed

(* Inlining this proof leads to nontermination *)
lemma invarP_nodeP: " invarP t1; invarP t2  invarP (nodeP xs b (t1, t2))"
by (auto simp add: nodeP_def split: trieP.split)

lemma invarP_deleteP: "invarP t  invarP(deleteP xs t)"
proof(induction t arbitrary: xs)
  case LfP thus ?case by simp
next
  case (NdP ks b lr)
  thus ?case by(cases lr)(auto simp: invarP_nodeP split: prod.split list.split)
qed


text ‹The overall correctness proof. Simply composes correctness lemmas.›

definition set_trieP :: "trieP  bool list set" where
"set_trieP = set_trie o abs_trieP"

lemma isinP_set_trieP: "isinP t xs = (xs  set_trieP t)"
by(simp add: abs_trieP_isinP set_trie_isin set_trieP_def)

lemma set_trieP_insertP: "set_trieP (insertP xs t) = set_trieP t  {xs}"
by(simp add: abs_trieP_insertP set_trie_insert set_trieP_def)

lemma set_trieP_deleteP: "set_trieP (deleteP xs t) = set_trieP t - {xs}"
by(auto simp: set_trie_delete set_trieP_def simp flip: delete_abs_trieP)

interpretation SP: Set
where empty = emptyP and isin = isinP and insert = insertP and delete = deleteP
and set = set_trieP and invar = invarP
proof (standard, goal_cases)
  case 1 show ?case by (simp add: set_trieP_def set_trie_def)
next
  case 2 show ?case by(rule isinP_set_trieP)
next
  case 3 thus ?case by (auto simp: set_trieP_insertP)
next
  case 4 thus ?case by(auto simp: set_trieP_deleteP)
next
  case 5 thus ?case by(simp)
next
  case 6 thus ?case by(rule invarP_insertP)
next
  case 7 thus ?case by(rule invarP_deleteP)
qed

end