Theory Event

theory Event
imports Message
(*  Title:      HOL/Auth/Event.thy
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1996  University of Cambridge

Datatype of events; function "spies"; freshness

"bad" agents have been broken by the Spy; their private keys and internal
    stores are visible to him
*)

header{*Theory of Events for Security Protocols*}

theory Event imports Message begin

consts  (*Initial states of agents -- parameter of the construction*)
  initState :: "agent => msg set"

datatype
  event = Says  agent agent msg
        | Gets  agent       msg
        | Notes agent       msg
       
consts 
  bad    :: "agent set"                         -- {* compromised agents *}

text{*Spy has access to his own key for spoof messages, but Server is secure*}
specification (bad)
  Spy_in_bad     [iff]: "Spy ∈ bad"
  Server_not_bad [iff]: "Server ∉ bad"
    by (rule exI [of _ "{Spy}"], simp)

primrec knows :: "agent => event list => msg set"
where
  knows_Nil:   "knows A [] = initState A"
| knows_Cons:
    "knows A (ev # evs) =
       (if A = Spy then 
        (case ev of
           Says A' B X => insert X (knows Spy evs)
         | Gets A' X => knows Spy evs
         | Notes A' X  => 
             if A' ∈ bad then insert X (knows Spy evs) else knows Spy evs)
        else
        (case ev of
           Says A' B X => 
             if A'=A then insert X (knows A evs) else knows A evs
         | Gets A' X    => 
             if A'=A then insert X (knows A evs) else knows A evs
         | Notes A' X    => 
             if A'=A then insert X (knows A evs) else knows A evs))"
(*
  Case A=Spy on the Gets event
  enforces the fact that if a message is received then it must have been sent,
  therefore the oops case must use Notes
*)

text{*The constant "spies" is retained for compatibility's sake*}

abbreviation (input)
  spies  :: "event list => msg set" where
  "spies == knows Spy"


(*Set of items that might be visible to somebody:
    complement of the set of fresh items*)

primrec used :: "event list => msg set"
where
  used_Nil:   "used []         = (UN B. parts (initState B))"
| used_Cons:  "used (ev # evs) =
                     (case ev of
                        Says A B X => parts {X} ∪ used evs
                      | Gets A X   => used evs
                      | Notes A X  => parts {X} ∪ used evs)"
    --{*The case for @{term Gets} seems anomalous, but @{term Gets} always
        follows @{term Says} in real protocols.  Seems difficult to change.
        See @{text Gets_correct} in theory @{text "Guard/Extensions.thy"}. *}

lemma Notes_imp_used [rule_format]: "Notes A X ∈ set evs --> X ∈ used evs"
apply (induct_tac evs)
apply (auto split: event.split) 
done

lemma Says_imp_used [rule_format]: "Says A B X ∈ set evs --> X ∈ used evs"
apply (induct_tac evs)
apply (auto split: event.split) 
done


subsection{*Function @{term knows}*}

(*Simplifying   
 parts(insert X (knows Spy evs)) = parts{X} ∪ parts(knows Spy evs).
  This version won't loop with the simplifier.*)
lemmas parts_insert_knows_A = parts_insert [of _ "knows A evs"] for A evs

lemma knows_Spy_Says [simp]:
     "knows Spy (Says A B X # evs) = insert X (knows Spy evs)"
by simp

text{*Letting the Spy see "bad" agents' notes avoids redundant case-splits
      on whether @{term "A=Spy"} and whether @{term "A∈bad"}*}
lemma knows_Spy_Notes [simp]:
     "knows Spy (Notes A X # evs) =  
          (if A:bad then insert X (knows Spy evs) else knows Spy evs)"
by simp

lemma knows_Spy_Gets [simp]: "knows Spy (Gets A X # evs) = knows Spy evs"
by simp

lemma knows_Spy_subset_knows_Spy_Says:
     "knows Spy evs ⊆ knows Spy (Says A B X # evs)"
by (simp add: subset_insertI)

lemma knows_Spy_subset_knows_Spy_Notes:
     "knows Spy evs ⊆ knows Spy (Notes A X # evs)"
by force

lemma knows_Spy_subset_knows_Spy_Gets:
     "knows Spy evs ⊆ knows Spy (Gets A X # evs)"
by (simp add: subset_insertI)

text{*Spy sees what is sent on the traffic*}
lemma Says_imp_knows_Spy [rule_format]:
     "Says A B X ∈ set evs --> X ∈ knows Spy evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
done

lemma Notes_imp_knows_Spy [rule_format]:
     "Notes A X ∈ set evs --> A: bad --> X ∈ knows Spy evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
done


text{*Elimination rules: derive contradictions from old Says events containing
  items known to be fresh*}
lemmas Says_imp_parts_knows_Spy = 
       Says_imp_knows_Spy [THEN parts.Inj, elim_format] 

lemmas knows_Spy_partsEs =
     Says_imp_parts_knows_Spy parts.Body [elim_format]

lemmas Says_imp_analz_Spy = Says_imp_knows_Spy [THEN analz.Inj]

text{*Compatibility for the old "spies" function*}
lemmas spies_partsEs = knows_Spy_partsEs
lemmas Says_imp_spies = Says_imp_knows_Spy
lemmas parts_insert_spies = parts_insert_knows_A [of _ Spy]


subsection{*Knowledge of Agents*}

lemma knows_subset_knows_Says: "knows A evs ⊆ knows A (Says A' B X # evs)"
by (simp add: subset_insertI)

lemma knows_subset_knows_Notes: "knows A evs ⊆ knows A (Notes A' X # evs)"
by (simp add: subset_insertI)

lemma knows_subset_knows_Gets: "knows A evs ⊆ knows A (Gets A' X # evs)"
by (simp add: subset_insertI)

text{*Agents know what they say*}
lemma Says_imp_knows [rule_format]: "Says A B X ∈ set evs --> X ∈ knows A evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
apply blast
done

text{*Agents know what they note*}
lemma Notes_imp_knows [rule_format]: "Notes A X ∈ set evs --> X ∈ knows A evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
apply blast
done

text{*Agents know what they receive*}
lemma Gets_imp_knows_agents [rule_format]:
     "A ≠ Spy --> Gets A X ∈ set evs --> X ∈ knows A evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
done


text{*What agents DIFFERENT FROM Spy know 
  was either said, or noted, or got, or known initially*}
lemma knows_imp_Says_Gets_Notes_initState [rule_format]:
     "[| X ∈ knows A evs; A ≠ Spy |] ==> EX B.  
  Says A B X ∈ set evs | Gets A X ∈ set evs | Notes A X ∈ set evs | X ∈ initState A"
apply (erule rev_mp)
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
apply blast
done

text{*What the Spy knows -- for the time being --
  was either said or noted, or known initially*}
lemma knows_Spy_imp_Says_Notes_initState [rule_format]:
     "[| X ∈ knows Spy evs |] ==> EX A B.  
  Says A B X ∈ set evs | Notes A X ∈ set evs | X ∈ initState Spy"
apply (erule rev_mp)
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) split add: event.split)
apply blast
done

lemma parts_knows_Spy_subset_used: "parts (knows Spy evs) ⊆ used evs"
apply (induct_tac "evs", force)  
apply (simp add: parts_insert_knows_A knows_Cons add: event.split, blast) 
done

lemmas usedI = parts_knows_Spy_subset_used [THEN subsetD, intro]

lemma initState_into_used: "X ∈ parts (initState B) ==> X ∈ used evs"
apply (induct_tac "evs")
apply (simp_all add: parts_insert_knows_A split add: event.split, blast)
done

lemma used_Says [simp]: "used (Says A B X # evs) = parts{X} ∪ used evs"
by simp

lemma used_Notes [simp]: "used (Notes A X # evs) = parts{X} ∪ used evs"
by simp

lemma used_Gets [simp]: "used (Gets A X # evs) = used evs"
by simp

lemma used_nil_subset: "used [] ⊆ used evs"
apply simp
apply (blast intro: initState_into_used)
done

text{*NOTE REMOVAL--laws above are cleaner, as they don't involve "case"*}
declare knows_Cons [simp del]
        used_Nil [simp del] used_Cons [simp del]


text{*For proving theorems of the form @{term "X ∉ analz (knows Spy evs) --> P"}
  New events added by induction to "evs" are discarded.  Provided 
  this information isn't needed, the proof will be much shorter, since
  it will omit complicated reasoning about @{term analz}.*}

lemmas analz_mono_contra =
       knows_Spy_subset_knows_Spy_Says [THEN analz_mono, THEN contra_subsetD]
       knows_Spy_subset_knows_Spy_Notes [THEN analz_mono, THEN contra_subsetD]
       knows_Spy_subset_knows_Spy_Gets [THEN analz_mono, THEN contra_subsetD]


lemma knows_subset_knows_Cons: "knows A evs ⊆ knows A (e # evs)"
by (cases e, auto simp: knows_Cons)

lemma initState_subset_knows: "initState A ⊆ knows A evs"
apply (induct_tac evs, simp) 
apply (blast intro: knows_subset_knows_Cons [THEN subsetD])
done


text{*For proving @{text new_keys_not_used}*}
lemma keysFor_parts_insert:
     "[| K ∈ keysFor (parts (insert X G));  X ∈ synth (analz H) |] 
      ==> K ∈ keysFor (parts (G ∪ H)) | Key (invKey K) ∈ parts H"
by (force 
    dest!: parts_insert_subset_Un [THEN keysFor_mono, THEN [2] rev_subsetD]
           analz_subset_parts [THEN keysFor_mono, THEN [2] rev_subsetD]
    intro: analz_subset_parts [THEN subsetD] parts_mono [THEN [2] rev_subsetD])


lemmas analz_impI = impI [where P = "Y ∉ analz (knows Spy evs)"] for Y evs

ML
{*
val analz_mono_contra_tac = 
  rtac @{thm analz_impI} THEN' 
  REPEAT1 o (dresolve_tac @{thms analz_mono_contra})
  THEN' mp_tac
*}

method_setup analz_mono_contra = {*
    Scan.succeed (K (SIMPLE_METHOD (REPEAT_FIRST analz_mono_contra_tac))) *}
    "for proving theorems of the form X ∉ analz (knows Spy evs) --> P"

subsubsection{*Useful for case analysis on whether a hash is a spoof or not*}

lemmas syan_impI = impI [where P = "Y ∉ synth (analz (knows Spy evs))"] for Y evs

ML
{*
val synth_analz_mono_contra_tac = 
  rtac @{thm syan_impI} THEN'
  REPEAT1 o 
    (dresolve_tac 
     [@{thm knows_Spy_subset_knows_Spy_Says} RS @{thm synth_analz_mono} RS @{thm contra_subsetD},
      @{thm knows_Spy_subset_knows_Spy_Notes} RS @{thm synth_analz_mono} RS @{thm contra_subsetD},
      @{thm knows_Spy_subset_knows_Spy_Gets} RS @{thm synth_analz_mono} RS @{thm contra_subsetD}])
  THEN'
  mp_tac
*}

method_setup synth_analz_mono_contra = {*
    Scan.succeed (K (SIMPLE_METHOD (REPEAT_FIRST synth_analz_mono_contra_tac))) *}
    "for proving theorems of the form X ∉ synth (analz (knows Spy evs)) --> P"

end