Theory Complex_Analysis_Basics

(*  Author: John Harrison, Marco Maggesi, Graziano Gentili, Gianni Ciolli, Valentina Bruno
    Ported from "hol_light/Multivariate/canal.ml" by L C Paulson (2014)
*)

section ‹Complex Analysis Basics›
text ‹Definitions of analytic and holomorphic functions, limit theorems, complex differentiation›

theory Complex_Analysis_Basics
  imports Derivative "HOL-Library.Nonpos_Ints" Uncountable_Sets
begin

subsectiontag unimportant›‹General lemmas›

lemma nonneg_Reals_cmod_eq_Re: "z  0  norm z = Re z"
  by (simp add: complex_nonneg_Reals_iff cmod_eq_Re)

lemma fact_cancel:
  fixes c :: "'a::real_field"
  shows "of_nat (Suc n) * c / (fact (Suc n)) = c / (fact n)"
  using of_nat_neq_0 by force

lemma vector_derivative_cnj_within:
  assumes "at x within A  bot" and "f differentiable at x within A"
  shows   "vector_derivative (λz. cnj (f z)) (at x within A) = 
             cnj (vector_derivative f (at x within A))" (is "_ = cnj ?D")
proof -
  let ?D = "vector_derivative f (at x within A)"
  from assms have "(f has_vector_derivative ?D) (at x within A)"
    by (subst (asm) vector_derivative_works)
  hence "((λx. cnj (f x)) has_vector_derivative cnj ?D) (at x within A)"
    by (rule has_vector_derivative_cnj)
  thus ?thesis using assms by (auto dest: vector_derivative_within)
qed

lemma vector_derivative_cnj:
  assumes "f differentiable at x"
  shows   "vector_derivative (λz. cnj (f z)) (at x) = cnj (vector_derivative f (at x))"
  using assms by (intro vector_derivative_cnj_within) auto

lemma
  shows open_halfspace_Re_lt: "open {z. Re(z) < b}"
    and open_halfspace_Re_gt: "open {z. Re(z) > b}"
    and closed_halfspace_Re_ge: "closed {z. Re(z)  b}"
    and closed_halfspace_Re_le: "closed {z. Re(z)  b}"
    and closed_halfspace_Re_eq: "closed {z. Re(z) = b}"
    and open_halfspace_Im_lt: "open {z. Im(z) < b}"
    and open_halfspace_Im_gt: "open {z. Im(z) > b}"
    and closed_halfspace_Im_ge: "closed {z. Im(z)  b}"
    and closed_halfspace_Im_le: "closed {z. Im(z)  b}"
    and closed_halfspace_Im_eq: "closed {z. Im(z) = b}"
  by (intro open_Collect_less closed_Collect_le closed_Collect_eq continuous_on_Re
            continuous_on_Im continuous_on_id continuous_on_const)+

lemma uncountable_halfspace_Im_gt: "uncountable {z. Im z > c}"
proof -
  obtain r where r: "r > 0" "ball ((c + 1) *R 𝗂) r  {z. Im z > c}"
    using open_halfspace_Im_gt[of c] unfolding open_contains_ball by force
  then show ?thesis
    using countable_subset uncountable_ball by blast
qed

lemma uncountable_halfspace_Im_lt: "uncountable {z. Im z < c}"
proof -
  obtain r where r: "r > 0" "ball ((c - 1) *R 𝗂) r  {z. Im z < c}"
    using open_halfspace_Im_lt[of c] unfolding open_contains_ball by force
  then show ?thesis
    using countable_subset uncountable_ball by blast
qed

lemma uncountable_halfspace_Re_gt: "uncountable {z. Re z > c}"
proof -
  obtain r where r: "r > 0" "ball (of_real(c + 1)) r  {z. Re z > c}"
    using open_halfspace_Re_gt[of c] unfolding open_contains_ball by force
  then show ?thesis
    using countable_subset uncountable_ball by blast
qed

lemma uncountable_halfspace_Re_lt: "uncountable {z. Re z < c}"
proof -
  obtain r where r: "r > 0" "ball (of_real(c - 1)) r  {z. Re z < c}"
    using open_halfspace_Re_lt[of c] unfolding open_contains_ball by force
  then show ?thesis
    using countable_subset uncountable_ball by blast
qed

lemma connected_halfspace_Im_gt [intro]: "connected {z. c < Im z}"
  by (intro convex_connected convex_halfspace_Im_gt)

lemma connected_halfspace_Im_lt [intro]: "connected {z. c > Im z}"
  by (intro convex_connected convex_halfspace_Im_lt)

lemma connected_halfspace_Re_gt [intro]: "connected {z. c < Re z}"
  by (intro convex_connected convex_halfspace_Re_gt)

lemma connected_halfspace_Re_lt [intro]: "connected {z. c > Re z}"
  by (intro convex_connected convex_halfspace_Re_lt)
  
lemma closed_complex_Reals: "closed ( :: complex set)"
proof -
  have "( :: complex set) = {z. Im z = 0}"
    by (auto simp: complex_is_Real_iff)
  then show ?thesis
    by (metis closed_halfspace_Im_eq)
qed

lemma closed_Real_halfspace_Re_le: "closed (  {w. Re w  x})"
  by (simp add: closed_Int closed_complex_Reals closed_halfspace_Re_le)

lemma closed_nonpos_Reals_complex [simp]: "closed (0 :: complex set)"
proof -
  have "0 =   {z. Re(z)  0}"
    using complex_nonpos_Reals_iff complex_is_Real_iff by auto
  then show ?thesis
    by (metis closed_Real_halfspace_Re_le)
qed

lemma closed_Real_halfspace_Re_ge: "closed (  {w. x  Re(w)})"
  using closed_halfspace_Re_ge
  by (simp add: closed_Int closed_complex_Reals)

lemma closed_nonneg_Reals_complex [simp]: "closed (0 :: complex set)"
proof -
  have "0 =   {z. Re(z)  0}"
    using complex_nonneg_Reals_iff complex_is_Real_iff by auto
  then show ?thesis
    by (metis closed_Real_halfspace_Re_ge)
qed

lemma closed_real_abs_le: "closed {w  . ¦Re w¦  r}"
proof -
  have "{w  . ¦Re w¦  r} = (  {w. Re w  r})  (  {w. Re w  -r})"
    by auto
  then show "closed {w  . ¦Re w¦  r}"
    by (simp add: closed_Int closed_Real_halfspace_Re_ge closed_Real_halfspace_Re_le)
qed

lemma real_lim:
  fixes l::complex
  assumes "(f  l) F" and "¬ trivial_limit F" and "eventually P F" and "a. P a  f a  "
  shows  "l  "
proof (rule Lim_in_closed_set[OF closed_complex_Reals _ assms(2,1)])
  show "eventually (λx. f x  ) F"
    using assms(3, 4) by (auto intro: eventually_mono)
qed

lemma real_lim_sequentially:
  fixes l::complex
  shows "(f  l) sequentially  (N. nN. f n  )  l  "
by (rule real_lim [where F=sequentially]) (auto simp: eventually_sequentially)

lemma real_series:
  fixes l::complex
  shows "f sums l  (n. f n  )  l  "
unfolding sums_def
by (metis real_lim_sequentially sum_in_Reals)

lemma Lim_null_comparison_Re:
  assumes "eventually (λx. norm(f x)  Re(g x)) F" "(g  0) F" shows "(f  0) F"
  by (rule Lim_null_comparison[OF assms(1)] tendsto_eq_intros assms(2))+ simp

subsection‹Holomorphic functions›

definitiontag important› holomorphic_on :: "[complex  complex, complex set]  bool"
           (infixl "(holomorphic'_on)" 50)
  where "f holomorphic_on s  xs. f field_differentiable (at x within s)"

named_theoremstag important› holomorphic_intros "structural introduction rules for holomorphic_on"

lemma holomorphic_onI [intro?]: "(x. x  s  f field_differentiable (at x within s))  f holomorphic_on s"
  by (simp add: holomorphic_on_def)

lemma holomorphic_onD [dest?]: "f holomorphic_on s; x  s  f field_differentiable (at x within s)"
  by (simp add: holomorphic_on_def)

lemma holomorphic_on_imp_differentiable_on:
    "f holomorphic_on s  f differentiable_on s"
  unfolding holomorphic_on_def differentiable_on_def
  by (simp add: field_differentiable_imp_differentiable)

lemma holomorphic_on_imp_differentiable_at:
   "f holomorphic_on s; open s; x  s  f field_differentiable (at x)"
using at_within_open holomorphic_on_def by fastforce

lemma holomorphic_on_empty [holomorphic_intros]: "f holomorphic_on {}"
  by (simp add: holomorphic_on_def)

lemma holomorphic_on_open:
    "open s  f holomorphic_on s  (x  s. f'. DERIV f x :> f')"
  by (auto simp: holomorphic_on_def field_differentiable_def has_field_derivative_def at_within_open [of _ s])

lemma holomorphic_on_UN_open:
  assumes "n. n  I  f holomorphic_on A n" "n. n  I  open (A n)"
  shows   "f holomorphic_on (nI. A n)"
proof -
  have "f field_differentiable at z within (nI. A n)" if "z  (nI. A n)" for z
  proof -
    from that obtain n where "n  I" "z  A n"
      by blast
    hence "f holomorphic_on A n" "open (A n)"
      by (simp add: assms)+
    with z  A n have "f field_differentiable at z"
      by (auto simp: holomorphic_on_open field_differentiable_def)
    thus ?thesis
      by (meson field_differentiable_at_within)
  qed
  thus ?thesis
    by (auto simp: holomorphic_on_def)
qed

lemma holomorphic_on_imp_continuous_on:
    "f holomorphic_on s  continuous_on s f"
  by (metis field_differentiable_imp_continuous_at continuous_on_eq_continuous_within holomorphic_on_def)

lemma holomorphic_closedin_preimage_constant:
  assumes "f holomorphic_on D" 
  shows "closedin (top_of_set D) {zD. f z = a}"
  by (simp add: assms continuous_closedin_preimage_constant holomorphic_on_imp_continuous_on)

lemma holomorphic_closed_preimage_constant:
  assumes "f holomorphic_on UNIV" 
  shows "closed {z. f z = a}"
  using holomorphic_closedin_preimage_constant [OF assms] by simp

lemma holomorphic_on_subset [elim]:
    "f holomorphic_on s  t  s  f holomorphic_on t"
  unfolding holomorphic_on_def
  by (metis field_differentiable_within_subset subsetD)

lemma holomorphic_transform: "f holomorphic_on s; x. x  s  f x = g x  g holomorphic_on s"
  by (metis field_differentiable_transform_within linordered_field_no_ub holomorphic_on_def)

lemma holomorphic_cong: "s = t ==> (x. x  s  f x = g x)  f holomorphic_on s  g holomorphic_on t"
  by (metis holomorphic_transform)

lemma holomorphic_on_linear [simp, holomorphic_intros]: "((*) c) holomorphic_on s"
  unfolding holomorphic_on_def by (metis field_differentiable_linear)

lemma holomorphic_on_const [simp, holomorphic_intros]: "(λz. c) holomorphic_on s"
  unfolding holomorphic_on_def by (metis field_differentiable_const)

lemma holomorphic_on_ident [simp, holomorphic_intros]: "(λx. x) holomorphic_on s"
  unfolding holomorphic_on_def by (metis field_differentiable_ident)

lemma holomorphic_on_id [simp, holomorphic_intros]: "id holomorphic_on s"
  unfolding id_def by (rule holomorphic_on_ident)

lemma constant_on_imp_holomorphic_on:
  assumes "f constant_on A"
  shows   "f holomorphic_on A"
proof -
  from assms obtain c where c: "xA. f x = c"
    unfolding constant_on_def by blast
  have "f holomorphic_on A  (λ_. c) holomorphic_on A"
    by (intro holomorphic_cong) (use c in auto)
  thus ?thesis
    by simp
qed

lemma holomorphic_on_compose:
  "f holomorphic_on s  g holomorphic_on (f ` s)  (g o f) holomorphic_on s"
  using field_differentiable_compose_within[of f _ s g]
  by (auto simp: holomorphic_on_def)

lemma holomorphic_on_compose_gen:
  "f holomorphic_on s  g holomorphic_on t  f ` s  t  (g o f) holomorphic_on s"
  by (metis holomorphic_on_compose holomorphic_on_subset)

lemma holomorphic_on_balls_imp_entire:
  assumes "¬bdd_above A" "r. r  A  f holomorphic_on ball c r"
  shows   "f holomorphic_on B"
proof (rule holomorphic_on_subset)
  show "f holomorphic_on UNIV" unfolding holomorphic_on_def
  proof
    fix z :: complex
    from ¬bdd_above A obtain r where r: "r  A" "r > norm (z - c)"
      by (meson bdd_aboveI not_le)
    with assms(2) have "f holomorphic_on ball c r" by blast
    moreover from r have "z  ball c r" by (auto simp: dist_norm norm_minus_commute)
    ultimately show "f field_differentiable at z"
      by (auto simp: holomorphic_on_def at_within_open[of _ "ball c r"])
  qed
qed auto

lemma holomorphic_on_balls_imp_entire':
  assumes "r. r > 0  f holomorphic_on ball c r"
  shows   "f holomorphic_on B"
proof (rule holomorphic_on_balls_imp_entire)
  {
    fix M :: real
    have "x. x > max M 0" by (intro gt_ex)
    hence "x>0. x > M" by auto
  }
  thus "¬bdd_above {(0::real)<..}" unfolding bdd_above_def
    by (auto simp: not_le)
qed (insert assms, auto)

lemma holomorphic_on_minus [holomorphic_intros]: "f holomorphic_on A  (λz. -(f z)) holomorphic_on A"
  by (metis field_differentiable_minus holomorphic_on_def)

lemma holomorphic_on_add [holomorphic_intros]:
  "f holomorphic_on A; g holomorphic_on A  (λz. f z + g z) holomorphic_on A"
  unfolding holomorphic_on_def by (metis field_differentiable_add)

lemma holomorphic_on_diff [holomorphic_intros]:
  "f holomorphic_on A; g holomorphic_on A  (λz. f z - g z) holomorphic_on A"
  unfolding holomorphic_on_def by (metis field_differentiable_diff)

lemma holomorphic_on_mult [holomorphic_intros]:
  "f holomorphic_on A; g holomorphic_on A  (λz. f z * g z) holomorphic_on A"
  unfolding holomorphic_on_def by (metis field_differentiable_mult)

lemma holomorphic_on_inverse [holomorphic_intros]:
  "f holomorphic_on A; z. z  A  f z  0  (λz. inverse (f z)) holomorphic_on A"
  unfolding holomorphic_on_def by (metis field_differentiable_inverse)

lemma holomorphic_on_divide [holomorphic_intros]:
  "f holomorphic_on A; g holomorphic_on A; z. z  A  g z  0  (λz. f z / g z) holomorphic_on A"
  unfolding holomorphic_on_def by (metis field_differentiable_divide)

lemma holomorphic_on_power [holomorphic_intros]:
  "f holomorphic_on A  (λz. (f z)^n) holomorphic_on A"
  unfolding holomorphic_on_def by (metis field_differentiable_power)

lemma holomorphic_on_power_int [holomorphic_intros]:
  assumes nz: "n  0  (xA. f x  0)" and f: "f holomorphic_on A"
  shows   "(λx. f x powi n) holomorphic_on A"
proof (cases "n  0")
  case True
  have "(λx. f x ^ nat n) holomorphic_on A"
    by (simp add: f holomorphic_on_power)
  with True show ?thesis
    by (simp add: power_int_def)
next
  case False
  hence "(λx. inverse (f x ^ nat (-n))) holomorphic_on A"
    using nz by (auto intro!: holomorphic_intros f)
  with False show ?thesis
    by (simp add: power_int_def power_inverse)
qed

lemma holomorphic_on_sum [holomorphic_intros]:
  "(i. i  I  (f i) holomorphic_on A)  (λx. sum (λi. f i x) I) holomorphic_on A"
  unfolding holomorphic_on_def by (metis field_differentiable_sum)

lemma holomorphic_on_prod [holomorphic_intros]:
  "(i. i  I  (f i) holomorphic_on A)  (λx. prod (λi. f i x) I) holomorphic_on A"
  by (induction I rule: infinite_finite_induct) (auto intro: holomorphic_intros)

lemma holomorphic_pochhammer [holomorphic_intros]:
  "f holomorphic_on A  (λs. pochhammer (f s) n) holomorphic_on A"
  by (induction n) (auto intro!: holomorphic_intros simp: pochhammer_Suc)

lemma holomorphic_on_scaleR [holomorphic_intros]:
  "f holomorphic_on A  (λx. c *R f x) holomorphic_on A"
  by (auto simp: scaleR_conv_of_real intro!: holomorphic_intros)

lemma holomorphic_on_Un [holomorphic_intros]:
  assumes "f holomorphic_on A" "f holomorphic_on B" "open A" "open B"
  shows   "f holomorphic_on (A  B)"
  using assms by (auto simp: holomorphic_on_def  at_within_open[of _ A]
                             at_within_open[of _ B]  at_within_open[of _ "A  B"] open_Un)

lemma holomorphic_on_If_Un [holomorphic_intros]:
  assumes "f holomorphic_on A" "g holomorphic_on B" "open A" "open B"
  assumes "z. z  A  z  B  f z = g z"
  shows   "(λz. if z  A then f z else g z) holomorphic_on (A  B)" (is "?h holomorphic_on _")
proof (intro holomorphic_on_Un)
  note f holomorphic_on A
  also have "f holomorphic_on A  ?h holomorphic_on A"
    by (intro holomorphic_cong) auto
  finally show  .
next
  note g holomorphic_on B
  also have "g holomorphic_on B  ?h holomorphic_on B"
    using assms by (intro holomorphic_cong) auto
  finally show  .
qed (insert assms, auto)

lemma holomorphic_derivI:
     "f holomorphic_on S; open S; x  S
       (f has_field_derivative deriv f x) (at x within T)"
by (metis DERIV_deriv_iff_field_differentiable at_within_open  holomorphic_on_def has_field_derivative_at_within)

lemma complex_derivative_transform_within_open:
  "f holomorphic_on s; g holomorphic_on s; open s; z  s; w. w  s  f w = g w
    deriv f z = deriv g z"
  unfolding holomorphic_on_def
  by (rule DERIV_imp_deriv)
     (metis DERIV_deriv_iff_field_differentiable has_field_derivative_transform_within_open at_within_open)

lemma holomorphic_on_compose_cnj_cnj:
  assumes "f holomorphic_on cnj ` A" "open A"
  shows   "cnj  f  cnj holomorphic_on A"
proof -
  have [simp]: "open (cnj ` A)"
    unfolding image_cnj_conv_vimage_cnj using assms by (intro open_vimage) auto
  show ?thesis
    using assms unfolding holomorphic_on_def
    by (auto intro!: field_differentiable_cnj_cnj simp: at_within_open_NO_MATCH)
qed
  
lemma holomorphic_nonconstant:
  assumes holf: "f holomorphic_on S" and "open S" "ξ  S" "deriv f ξ  0"
    shows "¬ f constant_on S"
  by (rule nonzero_deriv_nonconstant [of f "deriv f ξ" ξ S])
    (use assms in auto simp: holomorphic_derivI)

subsection‹Analyticity on a set›

definitiontag important› analytic_on (infixl "(analytic'_on)" 50)
  where "f analytic_on S  x  S. e. 0 < e  f holomorphic_on (ball x e)"

named_theoremstag important› analytic_intros "introduction rules for proving analyticity"

lemma analytic_imp_holomorphic: "f analytic_on S  f holomorphic_on S"
  by (simp add: at_within_open [OF _ open_ball] analytic_on_def holomorphic_on_def)
     (metis centre_in_ball field_differentiable_at_within)

lemma analytic_on_open: "open S  f analytic_on S  f holomorphic_on S"
  by (meson analytic_imp_holomorphic analytic_on_def holomorphic_on_subset openE)

lemma analytic_on_imp_differentiable_at:
  "f analytic_on S  x  S  f field_differentiable (at x)"
  using analytic_on_def holomorphic_on_imp_differentiable_at by auto

lemma analytic_at_imp_isCont:
  assumes "f analytic_on {z}"
  shows   "isCont f z"
  using assms by (meson analytic_on_imp_differentiable_at field_differentiable_imp_continuous_at insertI1)

lemma analytic_at_neq_imp_eventually_neq:
  assumes "f analytic_on {x}" "f x  c"
  shows   "eventually (λy. f y  c) (at x)"
proof (intro tendsto_imp_eventually_ne)
  show "f x f x"
    using assms by (simp add: analytic_at_imp_isCont isContD)
qed (use assms in auto)

lemma analytic_on_subset: "f analytic_on S  T  S  f analytic_on T"
  by (auto simp: analytic_on_def)

lemma analytic_on_Un: "f analytic_on (S  T)  f analytic_on S  f analytic_on T"
  by (auto simp: analytic_on_def)

lemma analytic_on_Union: "f analytic_on (𝒯)  (T  𝒯. f analytic_on T)"
  by (auto simp: analytic_on_def)

lemma analytic_on_UN: "f analytic_on (iI. S i)  (iI. f analytic_on (S i))"
  by (auto simp: analytic_on_def)

lemma analytic_on_holomorphic:
  "f analytic_on S  (T. open T  S  T  f holomorphic_on T)"
  (is "?lhs = ?rhs")
proof -
  have "?lhs  (T. open T  S  T  f analytic_on T)"
  proof safe
    assume "f analytic_on S"
    then show "T. open T  S  T  f analytic_on T"
      apply (simp add: analytic_on_def)
      apply (rule exI [where x="{U. open U  f analytic_on U}"], auto)
      apply (metis open_ball analytic_on_open centre_in_ball)
      by (metis analytic_on_def)
  next
    fix T
    assume "open T" "S  T" "f analytic_on T"
    then show "f analytic_on S"
        by (metis analytic_on_subset)
  qed
  also have "...  ?rhs"
    by (auto simp: analytic_on_open)
  finally show ?thesis .
qed

lemma analytic_on_linear [analytic_intros,simp]: "((*) c) analytic_on S"
  by (auto simp add: analytic_on_holomorphic)

lemma analytic_on_const [analytic_intros,simp]: "(λz. c) analytic_on S"
  by (metis analytic_on_def holomorphic_on_const zero_less_one)

lemma analytic_on_ident [analytic_intros,simp]: "(λx. x) analytic_on S"
  by (simp add: analytic_on_def gt_ex)

lemma analytic_on_id [analytic_intros]: "id analytic_on S"
  unfolding id_def by (rule analytic_on_ident)

lemma analytic_on_compose:
  assumes f: "f analytic_on S"
      and g: "g analytic_on (f ` S)"
    shows "(g o f) analytic_on S"
unfolding analytic_on_def
proof (intro ballI)
  fix x
  assume x: "x  S"
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball x e" using f
    by (metis analytic_on_def)
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball (f x) e'" using g
    by (metis analytic_on_def g image_eqI x)
  have "isCont f x"
    by (metis analytic_on_imp_differentiable_at field_differentiable_imp_continuous_at f x)
  with e' obtain d where d: "0 < d" and fd: "f ` ball x d  ball (f x) e'"
     by (auto simp: continuous_at_ball)
  have "g  f holomorphic_on ball x (min d e)"
    apply (rule holomorphic_on_compose)
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
    by (metis fd gh holomorphic_on_subset image_mono min.cobounded1 subset_ball)
  then show "e>0. g  f holomorphic_on ball x e"
    by (metis d e min_less_iff_conj)
qed

lemma analytic_on_compose_gen:
  "f analytic_on S  g analytic_on T  (z. z  S  f z  T)
              g o f analytic_on S"
by (metis analytic_on_compose analytic_on_subset image_subset_iff)

lemma analytic_on_neg [analytic_intros]:
  "f analytic_on S  (λz. -(f z)) analytic_on S"
by (metis analytic_on_holomorphic holomorphic_on_minus)

lemma analytic_on_add [analytic_intros]:
  assumes f: "f analytic_on S"
      and g: "g analytic_on S"
    shows "(λz. f z + g z) analytic_on S"
unfolding analytic_on_def
proof (intro ballI)
  fix z
  assume z: "z  S"
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
    by (metis analytic_on_def)
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g
    by (metis analytic_on_def g z)
  have "(λz. f z + g z) holomorphic_on ball z (min e e')"
    apply (rule holomorphic_on_add)
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
    by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
  then show "e>0. (λz. f z + g z) holomorphic_on ball z e"
    by (metis e e' min_less_iff_conj)
qed

lemma analytic_on_diff [analytic_intros]:
  assumes f: "f analytic_on S"
      and g: "g analytic_on S"
    shows "(λz. f z - g z) analytic_on S"
unfolding analytic_on_def
proof (intro ballI)
  fix z
  assume z: "z  S"
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
    by (metis analytic_on_def)
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g
    by (metis analytic_on_def g z)
  have "(λz. f z - g z) holomorphic_on ball z (min e e')"
    apply (rule holomorphic_on_diff)
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
    by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
  then show "e>0. (λz. f z - g z) holomorphic_on ball z e"
    by (metis e e' min_less_iff_conj)
qed

lemma analytic_on_mult [analytic_intros]:
  assumes f: "f analytic_on S"
      and g: "g analytic_on S"
    shows "(λz. f z * g z) analytic_on S"
unfolding analytic_on_def
proof (intro ballI)
  fix z
  assume z: "z  S"
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
    by (metis analytic_on_def)
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g
    by (metis analytic_on_def g z)
  have "(λz. f z * g z) holomorphic_on ball z (min e e')"
    apply (rule holomorphic_on_mult)
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
    by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
  then show "e>0. (λz. f z * g z) holomorphic_on ball z e"
    by (metis e e' min_less_iff_conj)
qed

lemma analytic_on_inverse [analytic_intros]:
  assumes f: "f analytic_on S"
      and nz: "(z. z  S  f z  0)"
    shows "(λz. inverse (f z)) analytic_on S"
unfolding analytic_on_def
proof (intro ballI)
  fix z
  assume z: "z  S"
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
    by (metis analytic_on_def)
  have "continuous_on (ball z e) f"
    by (metis fh holomorphic_on_imp_continuous_on)
  then obtain e' where e': "0 < e'" and nz': "y. dist z y < e'  f y  0"
    by (metis open_ball centre_in_ball continuous_on_open_avoid e z nz)
  have "(λz. inverse (f z)) holomorphic_on ball z (min e e')"
    apply (rule holomorphic_on_inverse)
    apply (metis fh holomorphic_on_subset min.cobounded2 min.commute subset_ball)
    by (metis nz' mem_ball min_less_iff_conj)
  then show "e>0. (λz. inverse (f z)) holomorphic_on ball z e"
    by (metis e e' min_less_iff_conj)
qed

lemma analytic_on_divide [analytic_intros]:
  assumes f: "f analytic_on S"
      and g: "g analytic_on S"
      and nz: "(z. z  S  g z  0)"
    shows "(λz. f z / g z) analytic_on S"
unfolding divide_inverse
by (metis analytic_on_inverse analytic_on_mult f g nz)

lemma analytic_on_power [analytic_intros]:
  "f analytic_on S  (λz. (f z) ^ n) analytic_on S"
by (induct n) (auto simp: analytic_on_mult)

lemma analytic_on_power_int [analytic_intros]:
  assumes nz: "n  0  (xA. f x  0)" and f: "f analytic_on A"
  shows   "(λx. f x powi n) analytic_on A"
proof (cases "n  0")
  case True
  have "(λx. f x ^ nat n) analytic_on A"
    using analytic_on_power f by blast
  with True show ?thesis
    by (simp add: power_int_def)
next
  case False
  hence "(λx. inverse (f x ^ nat (-n))) analytic_on A"
    using nz by (auto intro!: analytic_intros f)
  with False show ?thesis
    by (simp add: power_int_def power_inverse)
qed

lemma analytic_on_sum [analytic_intros]:
  "(i. i  I  (f i) analytic_on S)  (λx. sum (λi. f i x) I) analytic_on S"
  by (induct I rule: infinite_finite_induct) (auto simp: analytic_on_add)

lemma analytic_on_prod [analytic_intros]:
  "(i. i  I  (f i) analytic_on S)  (λx. prod (λi. f i x) I) analytic_on S"
  by (induct I rule: infinite_finite_induct) (auto simp: analytic_on_mult)

lemma deriv_left_inverse:
  assumes "f holomorphic_on S" and "g holomorphic_on T"
      and "open S" and "open T"
      and "f ` S  T"
      and [simp]: "z. z  S  g (f z) = z"
      and "w  S"
    shows "deriv f w * deriv g (f w) = 1"
proof -
  have "deriv f w * deriv g (f w) = deriv g (f w) * deriv f w"
    by (simp add: algebra_simps)
  also have "... = deriv (g o f) w"
    using assms
    by (metis analytic_on_imp_differentiable_at analytic_on_open deriv_chain image_subset_iff)
  also have "... = deriv id w"
  proof (rule complex_derivative_transform_within_open [where s=S])
    show "g  f holomorphic_on S"
      by (rule assms holomorphic_on_compose_gen holomorphic_intros)+
  qed (use assms in auto)
  also have "... = 1"
    by simp
  finally show ?thesis .
qed

subsectiontag unimportant›‹Analyticity at a point›

lemma analytic_at_ball:
  "f analytic_on {z}  (e. 0<e  f holomorphic_on ball z e)"
  by (metis analytic_on_def singleton_iff)

lemma analytic_at:
  "f analytic_on {z}  (s. open s  z  s  f holomorphic_on s)"
  by (metis analytic_on_holomorphic empty_subsetI insert_subset)

lemma holomorphic_on_imp_analytic_at:
  assumes "f holomorphic_on A" "open A" "z  A"
  shows   "f analytic_on {z}"
  using assms by (meson analytic_at)

lemma analytic_on_analytic_at:
  "f analytic_on s  (z  s. f analytic_on {z})"
  by (metis analytic_at_ball analytic_on_def)

lemma analytic_at_two:
  "f analytic_on {z}  g analytic_on {z} 
   (s. open s  z  s  f holomorphic_on s  g holomorphic_on s)"
  (is "?lhs = ?rhs")
proof
  assume ?lhs
  then obtain s t
    where st: "open s" "z  s" "f holomorphic_on s"
              "open t" "z  t" "g holomorphic_on t"
    by (auto simp: analytic_at)
  show ?rhs
    apply (rule_tac x="s  t" in exI)
    using st
    apply (auto simp: holomorphic_on_subset)
    done
next
  assume ?rhs
  then show ?lhs
    by (force simp add: analytic_at)
qed

subsectiontag unimportant›‹Combining theorems for derivative with ``analytic at'' hypotheses›

lemma
  assumes "f analytic_on {z}" "g analytic_on {z}"
  shows complex_derivative_add_at: "deriv (λw. f w + g w) z = deriv f z + deriv g z"
    and complex_derivative_diff_at: "deriv (λw. f w - g w) z = deriv f z - deriv g z"
    and complex_derivative_mult_at: "deriv (λw. f w * g w) z =
           f z * deriv g z + deriv f z * g z"
proof -
  obtain s where s: "open s" "z  s" "f holomorphic_on s" "g holomorphic_on s"
    using assms by (metis analytic_at_two)
  show "deriv (λw. f w + g w) z = deriv f z + deriv g z"
    apply (rule DERIV_imp_deriv [OF DERIV_add])
    using s
    apply (auto simp: holomorphic_on_open field_differentiable_def DERIV_deriv_iff_field_differentiable)
    done
  show "deriv (λw. f w - g w) z = deriv f z - deriv g z"
    apply (rule DERIV_imp_deriv [OF DERIV_diff])
    using s
    apply (auto simp: holomorphic_on_open field_differentiable_def DERIV_deriv_iff_field_differentiable)
    done
  show "deriv (λw. f w * g w) z = f z * deriv g z + deriv f z * g z"
    apply (rule DERIV_imp_deriv [OF DERIV_mult'])
    using s
    apply (auto simp: holomorphic_on_open field_differentiable_def DERIV_deriv_iff_field_differentiable)
    done
qed

lemma deriv_cmult_at:
  "f analytic_on {z}   deriv (λw. c * f w) z = c * deriv f z"
by (auto simp: complex_derivative_mult_at)

lemma deriv_cmult_right_at:
  "f analytic_on {z}   deriv (λw. f w * c) z = deriv f z * c"
by (auto simp: complex_derivative_mult_at)

subsectiontag unimportant›‹Complex differentiation of sequences and series›

(* TODO: Could probably be simplified using Uniform_Limit *)
lemma has_complex_derivative_sequence:
  fixes S :: "complex set"
  assumes cvs: "convex S"
      and df:  "n x. x  S  (f n has_field_derivative f' n x) (at x within S)"
      and conv: "e. 0 < e  N. n x. n  N  x  S  norm (f' n x - g' x)  e"
      and "x l. x  S  ((λn. f n x)  l) sequentially"
    shows "g. x  S. ((λn. f n x)  g x) sequentially 
                       (g has_field_derivative (g' x)) (at x within S)"
proof -
  from assms obtain x l where x: "x  S" and tf: "((λn. f n x)  l) sequentially"
    by blast
  { fix e::real assume e: "e > 0"
    then obtain N where N: "nN. x. x  S  cmod (f' n x - g' x)  e"
      by (metis conv)
    have "N. nN. xS. h. cmod (f' n x * h - g' x * h)  e * cmod h"
    proof (rule exI [of _ N], clarify)
      fix n y h
      assume "N  n" "y  S"
      then have "cmod (f' n y - g' y)  e"
        by (metis N)
      then have "cmod h * cmod (f' n y - g' y)  cmod h * e"
        by (auto simp: antisym_conv2 mult_le_cancel_left norm_triangle_ineq2)
      then show "cmod (f' n y * h - g' y * h)  e * cmod h"
        by (simp add: norm_mult [symmetric] field_simps)
    qed
  } note ** = this
  show ?thesis
    unfolding has_field_derivative_def
  proof (rule has_derivative_sequence [OF cvs _ _ x])
    show "(λn. f n x)  l"
      by (rule tf)
  next show "e. e > 0  F n in sequentially. xS. h. cmod (f' n x * h - g' x * h)  e * cmod h"
      unfolding eventually_sequentially by (blast intro: **)
  qed (metis has_field_derivative_def df)
qed

lemma has_complex_derivative_series:
  fixes S :: "complex set"
  assumes cvs: "convex S"
      and df:  "n x. x  S  (f n has_field_derivative f' n x) (at x within S)"
      and conv: "e. 0 < e  N. n x. n  N  x  S
                 cmod ((i<n. f' i x) - g' x)  e"
      and "x l. x  S  ((λn. f n x) sums l)"
    shows "g. x  S. ((λn. f n x) sums g x)  ((g has_field_derivative g' x) (at x within S))"
proof -
  from assms obtain x l where x: "x  S" and sf: "((λn. f n x) sums l)"
    by blast
  { fix e::real assume e: "e > 0"
    then obtain N where N: "n x. n  N  x  S
             cmod ((i<n. f' i x) - g' x)  e"
      by (metis conv)
    have "N. nN. xS. h. cmod ((i<n. h * f' i x) - g' x * h)  e * cmod h"
    proof (rule exI [of _ N], clarify)
      fix n y h
      assume "N  n" "y  S"
      then have "cmod ((i<n. f' i y) - g' y)  e"
        by (metis N)
      then have "cmod h * cmod ((i<n. f' i y) - g' y)  cmod h * e"
        by (auto simp: antisym_conv2 mult_le_cancel_left norm_triangle_ineq2)
      then show "cmod ((i<n. h * f' i y) - g' y * h)  e * cmod h"
        by (simp add: norm_mult [symmetric] field_simps sum_distrib_left)
    qed
  } note ** = this
  show ?thesis
  unfolding has_field_derivative_def
  proof (rule has_derivative_series [OF cvs _ _ x])
    fix n x
    assume "x  S"
    then show "((f n) has_derivative (λz. z * f' n x)) (at x within S)"
      by (metis df has_field_derivative_def mult_commute_abs)
  next show " ((λn. f n x) sums l)"
    by (rule sf)
  next show "e. e>0  F n in sequentially. xS. h. cmod ((i<n. h * f' i x) - g' x * h)  e * cmod h"
      unfolding eventually_sequentially by (blast intro: **)
  qed
qed

subsectiontag unimportant› ‹Taylor on Complex Numbers›

lemma sum_Suc_reindex:
  fixes f :: "nat  'a::ab_group_add"
    shows  "sum f {0..n} = f 0 - f (Suc n) + sum (λi. f (Suc i)) {0..n}"
by (induct n) auto

lemma field_Taylor:
  assumes S: "convex S"
      and f: "i x. x  S  i  n  (f i has_field_derivative f (Suc i) x) (at x within S)"
      and B: "x. x  S  norm (f (Suc n) x)  B"
      and w: "w  S"
      and z: "z  S"
    shows "norm(f 0 z - (in. f i w * (z-w) ^ i / (fact i)))
           B * norm(z - w)^(Suc n) / fact n"
proof -
  have wzs: "closed_segment w z  S" using assms
    by (metis convex_contains_segment)
  { fix u
    assume "u  closed_segment w z"
    then have "u  S"
      by (metis wzs subsetD)
    have "(in. f i u * (- of_nat i * (z-u)^(i - 1)) / (fact i) +
                      f (Suc i) u * (z-u)^i / (fact i)) =
              f (Suc n) u * (z-u) ^ n / (fact n)"
    proof (induction n)
      case 0 show ?case by simp
    next
      case (Suc n)
      have "(iSuc n. f i u * (- of_nat i * (z-u) ^ (i - 1)) / (fact i) +
                             f (Suc i) u * (z-u) ^ i / (fact i)) =
           f (Suc n) u * (z-u) ^ n / (fact n) +
           f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n) / (fact (Suc n)) -
           f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n) / (fact (Suc n))"
        using Suc by simp
      also have "... = f (Suc (Suc n)) u * (z-u) ^ Suc n / (fact (Suc n))"
      proof -
        have "(fact(Suc n)) *
             (f(Suc n) u *(z-u) ^ n / (fact n) +
               f(Suc(Suc n)) u *((z-u) *(z-u) ^ n) / (fact(Suc n)) -
               f(Suc n) u *((1 + of_nat n) *(z-u) ^ n) / (fact(Suc n))) =
            ((fact(Suc n)) *(f(Suc n) u *(z-u) ^ n)) / (fact n) +
            ((fact(Suc n)) *(f(Suc(Suc n)) u *((z-u) *(z-u) ^ n)) / (fact(Suc n))) -
            ((fact(Suc n)) *(f(Suc n) u *(of_nat(Suc n) *(z-u) ^ n))) / (fact(Suc n))"
          by (simp add: algebra_simps del: fact_Suc)
        also have "... = ((fact (Suc n)) * (f (Suc n) u * (z-u) ^ n)) / (fact n) +
                         (f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) -
                         (f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))"
          by (simp del: fact_Suc)
        also have "... = (of_nat (Suc n) * (f (Suc n) u * (z-u) ^ n)) +
                         (f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) -
                         (f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))"
          by (simp only: fact_Suc of_nat_mult ac_simps) simp
        also have "... = f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)"
          by (simp add: algebra_simps)
        finally show ?thesis
        by (simp add: mult_left_cancel [where c = "(fact (Suc n))", THEN iffD1] del: fact_Suc)
      qed
      finally show ?case .
    qed
    then have "((λv. (in. f i v * (z - v)^i / (fact i)))
                has_field_derivative f (Suc n) u * (z-u) ^ n / (fact n))
               (at u within S)"
      apply (intro derivative_eq_intros)
      apply (blast intro: assms u  S)
      apply (rule refl)+
      apply (auto simp: field_simps)
      done
  } note sum_deriv = this
  { fix u
    assume u: "u  closed_segment w z"
    then have us: "u  S"
      by (metis wzs subsetD)
    have "norm (f (Suc n) u) * norm (z - u) ^ n  norm (f (Suc n) u) * norm (u - z) ^ n"
      by (metis norm_minus_commute order_refl)
    also have "...  norm (f (Suc n) u) * norm (z - w) ^ n"
      by (metis mult_left_mono norm_ge_zero power_mono segment_bound [OF u])
    also have "...  B * norm (z - w) ^ n"
      by (metis norm_ge_zero zero_le_power mult_right_mono  B [OF us])
    finally have "norm (f (Suc n) u) * norm (z - u) ^ n  B * norm (z - w) ^ n" .
  } note cmod_bound = this
  have "(in. f i z * (z - z) ^ i / (fact i)) = (in. (f i z / (fact i)) * 0 ^ i)"
    by simp
  also have " = f 0 z / (fact 0)"
    by (subst sum_zero_power) simp
  finally have "norm (f 0 z - (in. f i w * (z - w) ^ i / (fact i)))
                 norm ((in. f i w * (z - w) ^ i / (fact i)) -
                        (in. f i z * (z - z) ^ i / (fact i)))"
    by (simp add: norm_minus_commute)
  also have "...  B * norm (z - w) ^ n / (fact n) * norm (w - z)"
    apply (rule field_differentiable_bound
      [where f' = "λw. f (Suc n) w * (z - w)^n / (fact n)"
         and S = "closed_segment w z", OF convex_closed_segment])
    apply (auto simp: DERIV_subset [OF sum_deriv wzs]
                  norm_divide norm_mult norm_power divide_le_cancel cmod_bound)
    done
  also have "...   B * norm (z - w) ^ Suc n / (fact n)"
    by (simp add: algebra_simps norm_minus_commute)
  finally show ?thesis .
qed

lemma complex_Taylor:
  assumes S: "convex S"
      and f: "i x. x  S  i  n  (f i has_field_derivative f (Suc i) x) (at x within S)"
      and B: "x. x  S  cmod (f (Suc n) x)  B"
      and w: "w  S"
      and z: "z  S"
    shows "cmod(f 0 z - (in. f i w * (z-w) ^ i / (fact i)))
           B * cmod(z - w)^(Suc n) / fact n"
  using assms by (rule field_Taylor)


text‹Something more like the traditional MVT for real components›

lemma complex_mvt_line:
  assumes "u. u  closed_segment w z  (f has_field_derivative f'(u)) (at u)"
    shows "u. u  closed_segment w z  Re(f z) - Re(f w) = Re(f'(u) * (z - w))"
proof -
  have twz: "t. (1 - t) *R w + t *R z = w + t *R (z - w)"
    by (simp add: real_vector.scale_left_diff_distrib real_vector.scale_right_diff_distrib)
  note assms[unfolded has_field_derivative_def, derivative_intros]
  show ?thesis
    apply (cut_tac mvt_simple
                     [of 0 1 "Re o f o (λt. (1 - t) *R w +  t *R z)"
                      "λu. Re o (λh. f'((1 - u) *R w + u *R z) * h) o (λt. t *R (z - w))"])
    apply auto
    apply (rule_tac x="(1 - x) *R w + x *R z" in exI)
    apply (auto simp: closed_segment_def twz) []
    apply (intro derivative_eq_intros has_derivative_at_withinI, simp_all)
    apply (simp add: fun_eq_iff real_vector.scale_right_diff_distrib)
    apply (force simp: twz closed_segment_def)
    done
qed

lemma complex_Taylor_mvt:
  assumes "i x. x  closed_segment w z; i  n  ((f i) has_field_derivative f (Suc i) x) (at x)"
    shows "u. u  closed_segment w z 
            Re (f 0 z) =
            Re ((i = 0..n. f i w * (z - w) ^ i / (fact i)) +
                (f (Suc n) u * (z-u)^n / (fact n)) * (z - w))"
proof -
  { fix u
    assume u: "u  closed_segment w z"
    have "(i = 0..n.
               (f (Suc i) u * (z-u) ^ i - of_nat i * (f i u * (z-u) ^ (i - Suc 0))) /
               (fact i)) =
          f (Suc 0) u -
             (f (Suc (Suc n)) u * ((z-u) ^ Suc n) - (of_nat (Suc n)) * (z-u) ^ n * f (Suc n) u) /
             (fact (Suc n)) +
             (i = 0..n.
                 (f (Suc (Suc i)) u * ((z-u) ^ Suc i) - of_nat (Suc i) * (f (Suc i) u * (z-u) ^ i)) /
                 (fact (Suc i)))"
       by (subst sum_Suc_reindex) simp
    also have "... = f (Suc 0) u -
             (f (Suc (Suc n)) u * ((z-u) ^ Suc n) - (of_nat (Suc n)) * (z-u) ^ n * f (Suc n) u) /
             (fact (Suc n)) +
             (i = 0..n.
                 f (Suc (Suc i)) u * ((z-u) ^ Suc i) / (fact (Suc i))  -
                 f (Suc i) u * (z-u) ^ i / (fact i))"
      by (simp only: diff_divide_distrib fact_cancel ac_simps)
    also have "... = f (Suc 0) u -
             (f (Suc (Suc n)) u * (z-u) ^ Suc n - of_nat (Suc n) * (z-u) ^ n * f (Suc n) u) /
             (fact (Suc n)) +
             f (Suc (Suc n)) u * (z-u) ^ Suc n / (fact (Suc n)) - f (Suc 0) u"
      by (subst sum_Suc_diff) auto
    also have "... = f (Suc n) u * (z-u) ^ n / (fact n)"
      by (simp only: algebra_simps diff_divide_distrib fact_cancel)
    finally have "(i = 0..n. (f (Suc i) u * (z - u) ^ i
                             - of_nat i * (f i u * (z-u) ^ (i - Suc 0))) / (fact i)) =
                  f (Suc n) u * (z - u) ^ n / (fact n)" .
    then have "((λu. i = 0..n. f i u * (z - u) ^ i / (fact i)) has_field_derivative
                f (Suc n) u * (z - u) ^ n / (fact n))  (at u)"
      apply (intro derivative_eq_intros)+
      apply (force intro: u assms)
      apply (rule refl)+
      apply (auto simp: ac_simps)
      done
  }
  then show ?thesis
    apply (cut_tac complex_mvt_line [of w z "λu. i = 0..n. f i u * (z-u) ^ i / (fact i)"
               "λu. (f (Suc n) u * (z-u)^n / (fact n))"])
    apply (auto simp add: intro: open_closed_segment)
    done
qed


end