Theory Nat

(*  Title:      FOL/ex/Nat.thy
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1992  University of Cambridge
*)

section ‹Theory of the natural numbers: Peano's axioms, primitive recursion›

theory Nat
  imports FOL
begin

typedecl nat
instance nat :: term ..

axiomatization
  Zero :: nat  (0) and
  Suc :: nat  nat and
  rec :: [nat, 'a, [nat, 'a]  'a]  'a
where
  induct: P(0); x. P(x)  P(Suc(x))  P(n) and
  Suc_inject: Suc(m)=Suc(n)  m=n and
  Suc_neq_0: Suc(m)=0  R and
  rec_0: rec(0,a,f) = a and
  rec_Suc: rec(Suc(m), a, f) = f(m, rec(m,a,f))

definition add :: [nat, nat]  nat  (infixl + 60)
  where m + n  rec(m, n, λx y. Suc(y))


subsection ‹Proofs about the natural numbers›

lemma Suc_n_not_n: Suc(k)  k
apply (rule_tac n = k in induct)
apply (rule notI)
apply (erule Suc_neq_0)
apply (rule notI)
apply (erule notE)
apply (erule Suc_inject)
done

lemma (k+m)+n = k+(m+n)
apply (rule induct)
back
back
back
back
back
back
oops

lemma add_0 [simp]: 0+n = n
apply (unfold add_def)
apply (rule rec_0)
done

lemma add_Suc [simp]: Suc(m)+n = Suc(m+n)
apply (unfold add_def)
apply (rule rec_Suc)
done

lemma add_assoc: (k+m)+n = k+(m+n)
apply (rule_tac n = k in induct)
apply simp
apply simp
done

lemma add_0_right: m+0 = m
apply (rule_tac n = m in induct)
apply simp
apply simp
done

lemma add_Suc_right: m+Suc(n) = Suc(m+n)
apply (rule_tac n = m in induct)
apply simp_all
done

lemma
  assumes prem: n. f(Suc(n)) = Suc(f(n))
  shows f(i+j) = i+f(j)
apply (rule_tac n = i in induct)
apply simp
apply (simp add: prem)
done

end