Theory Intro

(*  Title:      FOL/ex/Intro.thy
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1992  University of Cambridge

Derives some inference rules, illustrating the use of definitions.
*)

section ‹Examples for the manual ``Introduction to Isabelle''›

theory Intro
imports FOL
begin

subsubsection ‹Some simple backward proofs›

lemma mythm: P  P  P
apply (rule impI)
apply (rule disjE)
prefer 3 apply (assumption)
prefer 2 apply (assumption)
apply assumption
done

lemma (P  Q)  R  (P  R)
apply (rule impI)
apply (erule disjE)
apply (drule conjunct1)
apply (rule disjI1)
apply (rule_tac [2] disjI2)
apply assumption+
done

text ‹Correct version, delaying use of spec› until last.›
lemma (x y. P(x,y))  (z w. P(w,z))
apply (rule impI)
apply (rule allI)
apply (rule allI)
apply (drule spec)
apply (drule spec)
apply assumption
done


subsubsection ‹Demonstration of fast›

lemma (y. x. J(y,x)  ¬ J(x,x))  ¬ (x. y. z. J(z,y)  ¬ J(z,x))
apply fast
done


lemma x. P(x,f(x))  (y. (z. P(z,y)  P(z,f(x)))  P(x,y))
apply fast
done


subsubsection ‹Derivation of conjunction elimination rule›

lemma
  assumes major: P  Q
    and minor: P; Q  R
  shows R
apply (rule minor)
apply (rule major [THEN conjunct1])
apply (rule major [THEN conjunct2])
done


subsection ‹Derived rules involving definitions›

text ‹Derivation of negation introduction›

lemma
  assumes P  False
  shows ¬ P
apply (unfold not_def)
apply (rule impI)
apply (rule assms)
apply assumption
done

lemma
  assumes major: ¬ P
    and minor: P
  shows R
apply (rule FalseE)
apply (rule mp)
apply (rule major [unfolded not_def])
apply (rule minor)
done

text ‹Alternative proof of the result above›
lemma
  assumes major: ¬ P
    and minor: P
  shows R
apply (rule minor [THEN major [unfolded not_def, THEN mp, THEN FalseE]])
done

end