
Grammar Engineering

Weiwei Sun

Institute of Computer Science and Technology
Peking University

May 22, 2019

Outline

1 Grammar Engineering for Linguistic Hypothesis Testing

2 DELPH-IN Resources

3 Typed Description Language

2/22

Scientific theory

Wikipedia [https://en.wikipedia.org/wiki/Scientific_theory]

A scientific theory is a well-substantiated expla-
nation of some aspect of the natural world that
is acquired through the scientific method and
repeatedly tested and confirmed through obser-
vation and experimentation.

A good scientific theory

• testable and make falsifiable predictions

• predictive power

• explanatory capability

• elegance and simplicity

• systematic

2/22

https://en.wikipedia.org/wiki/Scientific_theory

Scientific method

Linguistics is an empirical science

What we try to do is

look at data and find the best theory that fits them,

until we find data that do not fit, at which point

we have to revise some of our conclusions, and so on.

As a theory about the natural world, our theory is, and should be,
always under scrutiny and always developing.

3/22

Scientific method

Linguistics is an empirical science

What we try to do is

look at data and find the best theory that fits them,

until we find data that do not fit, at which point

we have to revise some of our conclusions, and so on.

As a theory about the natural world, our theory is, and should be,
always under scrutiny and always developing.

3/22

Scientific method

Linguistics is an empirical science

What we try to do is

look at data and find the best theory that fits them,

until we find data that do not fit, at which point

we have to revise some of our conclusions, and so on.

As a theory about the natural world, our theory is, and should be,
always under scrutiny and always developing.

3/22

Pen and Paper Syntax Work-flow

Identify key examples

Develop analysis

Syntactic Theory

Identify cases of
interesting predictions

Test acceptability of
new key examples

Refine analysis

Identify phenomena
to analyze

4/22

Grammar Engineering Work-flow

Identify phenomena
to analyze

Develop analysis

Compile grammar

Implement analysis

Parse sentences

Initialize test suite

Debug implementation

5/22

Grammar engineering

What we are going to do

• Develop understanding of (natural) language as a system of
rules, i.e. a grammar fragment.

• Learn how to formalize grammars guided by HPSG and
through typed feature structures.

Why computational grammars

Research Formalize linguistic theories with complex
interactions of language phenomena; advance theory
building and implementation through synergy

Application Embed grammar-based natural language analysis or
generation in research prototypes and commercial
applications.

6/22

The importance of developing a grammar
fragment

otherwise it is extremely easy to think that you have
a solution to a problem when in fact you don’t.

B. Partee

7/22

Outline

1 Grammar Engineering for Linguistic Hypothesis Testing

2 DELPH-IN Resources

3 Typed Description Language

8/22

Reference

The Linguistic Knowledge Builder

Copestake, Ann: Implementing Typed Feature Structure
Grammars.

Deep Linguistic Processing with HPSG: delph-in

http://moin.delph-in.net/FrontPage

• Loosely organized group of institutions and interested
individuals;

• rooted in ‘linguistic’ NLP but geared towards practical
applications;

• delph-in resources are widely used: research, education,
applications.

8/22

http://moin.delph-in.net/FrontPage

The LinGO English Resource Grammar

Development Background (1993–today)

• General-purpose, computational English grammar;

• mainly D. Flickinger, with R. Malouf, E. Bender, Jeff Smith;

• supported in multiple HPSG processing environments (LKB &
PET);

Design

• HPSG: constraint-based, strongly lexicalized;

• MRS: flat, Davidsonian, underspecified;

• type hierarchies defining principles, lexical classes,
constructions;

• strict grammaticality assumption: generator using same
grammar.

9/22

The LinGO English Resource Grammar

• Demo

• On-line parser: http://erg.delph-in.net

• 7000 types in multiple-inheritance monotonic hierarchy

• 975 leaf lexical types

• 39,000 manually constructed lexemes

• 225 syntactic rules

• 70 morphological rules (inflection and derivation)

• Statistical parse selection model trained on 1.5 million word
corpus

10/22

http://erg.delph-in.net

Practice

Add a new lexical entry

Open file lexicon.tdl. Try to add a lexical entry for verb sleeps.
After saving your modifications, try to reload your grammar check
for errors. When the grammar is loaded successfully, try to parse
sentences like: the cat sleeps.

11/22

Outline

1 Grammar Engineering for Linguistic Hypothesis Testing

2 DELPH-IN Resources

3 Typed Description Language

12/22

TDL

A Type Description Language for Constraint-Based Grammars

• [Krieger and Schäfer, 1994]

• Originally used in PAGE system

• Simplification and extensions in LKB

⇒ delph-in reference formalism

• Fully compatible implementation in PET

12/22

TDL Syntax – Examples

Type inheritance:

feat -struc := *top*.

or

feat -struc :< *top*.

Type inheritance with attribute-value constraints:

agr -cat := gen -agr -cat &

[PER per ,

NUM num ,

GEND gend].

Multiple inheritance and coreference:

head -feat -principle := grule & head -dtr -type &

[SYNSEM [HEAD #head],

H-DTR [SYNSEM [HEAD #head]]].

13/22

Lists

list :< *top*.

e-list :< list.

ne-list := list &

[FIRST *top*,

REST list].

Difference Lists

Allows more flexible list operation: concatenation, append, remove
from end, ..., simply using unification.

diff -list := *top &

[LIST *list*,

LAST *list*].

• LIST points to the beginning position

• LAST points to the end position

14/22

Abbreviations

<a,b,c>

[FIRST a,

REST [FIRST b,

REST [FIRST c,

REST e-list]]]

<a,b,c,...>

[FIRST a,

REST [FIRST b,

REST [FIRST c,

REST list]]]

<a.b>

[FIRST a,

REST b]

15/22

Abbreviations

<!a,b,c!>

[LIST [FIRST a,

REST [FIRST b,

REST [FIRST c,

REST #last]]],

LAST #last]

Difference lists allow concatenation by unification.

16/22

TFS Example (as AVM)



phrase

head verb

args



ne-list

first

word

orth ”chased”

head verb



rest


ne-list

first

[
expression

head noun

]
rest *null*







17/22

TFS Example (in TDL)

vp := p h r a s e &
[HEAD verb ,

ARGS ∗ne− l i s t ∗ &
[FIRST word &

[ORTH ” chased ” ,
HEAD v e r b] ,

REST ∗ne− l i s t ∗ &
[FIRST e x p r e s s i o n &

[HEAD noun] ,
REST ∗ n u l l ∗]]] .

18/22

TFS Example (as AVM)



phrase

head 1 verb

args



ne-list

first

word

orth ”chased”

head 1



rest


ne-list

first

[
expression

head noun

]
rest *null*







19/22

TFS Example (in TDL)

vp := p h r a s e &
[HEAD #head \& verb ,

ARGS ∗ne− l i s t ∗ &
[FIRST word &

[ORTH ” chased ” ,
HEAD #head] ,

REST ∗ne− l i s t ∗ &
[FIRST e x p r e s s i o n &

[HEAD noun] ,
REST ∗ n u l l ∗]]] .

20/22

Homework IV

Exercise I: Extending the grammar rules

You should have noticed that the grammar comes with only two
rules that simulate the following CFG grammar:

• S → NP VP

• NP → DET N

Add a rule for verb phrases so that transitive verbs can be covered
by the grammar. You are free to introduce extra features or make
changes to types or lexicon if necessary.

Exercise II: Adding agreements

Introduce an agr attribute to the type cat and modify the rules to
garantee determiner-noun and subject-verb agreements.

21/22

Readings

• http://moin.delph-in.net/HpsgTutorial

22/22

http://moin.delph-in.net/HpsgTutorial

	Grammar Engineering for Linguistic Hypothesis Testing
	DELPH-IN Resources
	Typed Description Language

