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Labeling Words



Fish fish fish.
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Part-of-speech tagging is useful

Fish/noun fish/verb fish/noun

from FINDING NEMO MOVIE (2013)

photo: www.avforums.com/reviews/finding-nemo-movie-review.6237
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Ambiguity

They can fish

modal verb

verb noun

they are able to fish

they put fish into cans

Ambiguity

• can: modal verb, verb, singular noun

• fish: verb, singular noun, plural noun

application-independent tags;
linguistic knowledge involved
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Why POS tag?

Coarse-grained syntax / word sense disambiguation: fast, so applicable to
very large corpora.

• Some linguistic research and lexicography: e.g., how often is tango used
as a verb? dog?

• Named entity recognition and similar tasks (finite state patterns over
POS tagged data).

• Features for machine learning e.g., sentiment classification. (e.g.,
stink/verb vs stink/noun).

• Fast preliminary processing for full parsing: provide guesses at unknown
words, cut down search space.

4 of 29



Information extraction (1)

Book a flight

• Leave London on 1st Dec 2020

• Arrive at London on 1st Dec 2020

from

London

to

London

time

1st Dec 2020 1st Dec 2020

Chunking

b begin of X
i inside X
e end of X
o outside X

application-dependent tags;
contextual information matters
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Information extraction (2)

Entity linking from BBC news

Time is running out for Brussels and London to reach a post-Brexit trade
deal.
Downing Street said Johnson, 55, is in extremely good spirits at the St

Thomas’ Hospital ward as his father, Stanley Johnson, called on his son to
rest up.

application-dependent tags; world knowledge involved
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Information extraction (2)

Entity linking from BBC news

Time is running out for Brussels/European Council and
London/Government of the United Kingdom to reach a post-Brexit trade
deal.
Downing Street/Goverment of the United Kingdom said

Johnson/Boris Johnson, 55, is in extremely good spirits at the St Thomas’
Hospital ward as his father, Stanley Johnson, called on his son to rest up.

application-dependent tags; world knowledge involved
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The Statistical Perspective



The actual science of logic is conversant
at present only with things either certain, im-
possible, or entirely doubtful, none of which
(fortunately) we have to reason on. Therefore
the true logic for this world is the calculus of
probabilities, which takes account of the mag-
nitude of the probability which is, or ought to
be, in a reasonable man’s mind.

James C Maxwell
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Corpora



Data in NLP

• Corpus: text that has been collected for some purpose.

• balanced corpus: texts representing different genres
genre is a type of text (vs domain)

• Tagged corpus: a corpus annotated with POS tags

• Treebank: a corpus annotated with parse trees

• Specialist corpora—e.g., collected to train or evaluate particular
applications

Movie reviews for sentiment classification
Data collected from simulation of a dialogue system
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Be careful
Data may be very difficult to acquire
• first language acquisition � takes years to collect
• historical linguistics � no longer exist
• brain activities � wonderful machines, e.g. fMRI
• dolphin language � . . .

Data may be extremely big
• e.g. data from twitter

Data may be private
• the Cambridge Analytica/Facebook scandal

Data may be biased Prates et al. (2019) https://arxiv.org/pdf/1809.02208.pdf
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Annotations in NLP

annotate train

test

evaluaterevise

model

MATTER: the annotation development cycle

Model Structural descriptions provide theoretically informed attributes
derived from empirical observations over the data.

Annotate An annotation scheme assumes a feature set that encodes
specific structural descriptions and properties of the input data.

Pustejovsky and Stubbs (2012)
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Annotations in NLP

annotate train

test

evaluaterevise

model

MATTER: the annotation development cycle

Train The algorithm is trained over a corpus annotated with the target
feature set.

Test The algorithm is tested against held-out data.
Pustejovsky and Stubbs (2012)
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Annotations in NLP

annotate train

test

evaluaterevise

model

MATTER: the annotation development cycle

Evaluate A standardized evaluation of results is conducted.

Revise The model and the annotation specification are revisited in order to
make the annotation more robust and reliable with use in the algorithm.

Pustejovsky and Stubbs (2012)
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Tagset (CLAWS 5)

tagset: standardized codes for fine-grained parts of speech.

CLAWS 5 : over 60 tags, including:

nn1 singular noun nn2 plural noun
pnp personal pronoun vm0 modal auxiliary verb
vvb base form of verb vvi infinitive form of verb

• They/pnp can/vm0 fish/vvi ./pun

• They/pnp can/vvb fish/nn2 ./pun

• They/pnp can/vm0 fish/nn2 ./pun no full parse

• etc
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Log-Linear Models

annotate train

test

evaluaterevise

model



POS tagging and prediction

some yinkish dripners blorked quastofically into nindin with the pidibs

verb adv prep noun prep det noundet

classify

adj

classify

noun

classify classify classify classify classify classify classify classify
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Aspects of POS tagging

Some yinkish dripners blorked quastofically into the nindin with . . .

word=dripners

suf−3,−2=er
suf−1=s

wordi−2=some
wordi−1=yinkish

wordi+2=quastofically
wordi+1=blorked

tagi−2=adj

tagi−2=det

tagi−1=verb

The task: model the distribution

p(ti|w1, . . . , wn)

Many features may be relevant. Usually we only consider local features.
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Feature vector representations

Some yinkish dripners blorked quastofically

word=dripners

suf−3,−2=er
suf−1=s

wordi−2=some
wordi−1=yinkish

wordi+2=quastofically
wordi+1=blorked

. . . 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 . . .

f101: if word=dripners

f102: if word=some

f11: if suf−1=s

f12: if suf−2,−1=ly

f1001: if word−2=some

sparse vector: most are 0’s

f (x, y)
x = 〈w1, . . . , wn, i〉

y = ti
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Log-linear models

Assume we have a parameter vector θ ∈ Rm.

We define

p(y|x; θ) =
exp(θ>f(x, y))∑

y′∈Y exp(θ>f(x, y′))

Why the name

log p(y|x; θ) = θ>f(x, y)︸ ︷︷ ︸
linear term

− log
∑
y′∈Y

exp(θ>f(x, y′))

︸ ︷︷ ︸
normalization term

Prediction

arg max
y∗∈Y

p(y|x; θ) = arg max
y∗∈Y

log p(y|x; θ) = arg max
y∗∈Y

θ>f(x, y∗)︸ ︷︷ ︸
linear function
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POS tagging and prediction

some yinkish dripners blorked quastofically into nindin with the pidibs

det adj noun verb adv prep noun prep det noun

log-linear log-linear log-linear log-linear log-linear log-linear log-linear log-linear log-linear log-linear

f(x) −→ f(x, y)

f(x)

noun

copy

verb

copy

prep adj adv

f (x, y)
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About weights

p(y|x; θ) =
exp(θ>f(x, y))∑

y′∈Y exp(θ>f(x, y′))

. . . 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 . . .

f101: if word=dripners and tag=n

f102: if word=some and tag=n

f11: if suf−1=s and tag=n

f12: if suf−2,−1=ly and tag=n

f1001: if word−2=some and tag=n

is θ1001 positive large?
vote for yes
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About exp()

p(y|x; θ) =
exp(θ>f(x, y))∑
y′∈Y exp(θ>f(x, y′))

=
1

1 +
∑

y′∈Y∧y′ 6=y exp(θ>f(x,y′))

exp(θ>f(x,y))

∑
y′∈Y∧y′ 6=y exp(θ>f(x, y′))

exp(θ>f(x, y))

vs
∑

y′∈Y∧y′ 6=y θ
>f(x, y′)

θ>f(x, y)
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Supervised learning
Assume there is a good annotated corpus{

(x(1), y(1)), (x(2), y(2)), . . . , (x(l), y(l))
}

How can we get a good parameter vector?

Maximum-Likelihood Estimation

θ̂ = arg maxL(θ)

where

L(θ) =
l∑

i=1

log p(y(i)|x(i); θ)

=
l∑

i=1

θ>f(x(i), y(i))− log
∑
y′∈Y

exp(θ>f(x(i), y′))


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Parameter estimation

arg maxL(θ) = arg max

l∑
i=1

θ>f(x(i), y(i))− log
∑
y′∈Y

exp(θ>f(x(i), y′))


Calculating gradients

dL(θ)

dθk
=

m∑
i=1

fk(x
(i), y(i))−

m∑
i=1

∑
y′∈Y

(
exp(θ>f(x(i), y′))fk(x

(i), y′)
)∑

y′∈Y exp(θ>f(x(i), y′))

=

m∑
i=1

fk(x
(i), y(i))−

m∑
i=1

∑
y′∈Y

fk(x
(i), y′)

exp(θ>f(x(i), y′))∑
y′∈Y exp(θ>f(x(i), y′))

dL(θ)

dθk
=

m∑
i=1

fk(x
(i), y(i))︸ ︷︷ ︸

empirical counts

−
m∑
i=1

∑
y′∈Y

fk(x
(i), y′)p(y′|x(i); θ)

︸ ︷︷ ︸
expected counts
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)∑

y′∈Y exp(θ>f(x(i), y′))

=

m∑
i=1

fk(x
(i), y(i))−

m∑
i=1

∑
y′∈Y

fk(x
(i), y′)

exp(θ>f(x(i), y′))∑
y′∈Y exp(θ>f(x(i), y′))

dL(θ)

dθk
=

m∑
i=1

fk(x
(i), y(i))︸ ︷︷ ︸

empirical counts

−
m∑
i=1

∑
y′∈Y

fk(x
(i), y′)p(y′|x(i); θ)

︸ ︷︷ ︸
expected counts
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Gradient Ascent Methods

Maximize L(θ) where

dL(θ)

dθk
=

m∑
i=1

fk(x
(i), y(i))︸ ︷︷ ︸

empirical counts

−
m∑
i=1

∑
y′∈Y

fk(x
(i), y′)p(y′|x(i); θ)

︸ ︷︷ ︸
expected counts

1 Initialize θ[0] ← 0

2 for t = 1, . . .

3 calculate ∆ = dL(θ[t−1])
dθ

4 calculate β∗ = arg maxβ L(θ + β∆) � line search

5 update θ[t] ← θ[t−1] + β∗∆
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Evaluation

annotate train

test

evaluaterevise

model
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Intrinsic evaluation

• Creating a test set that contains a sample of test sentences for input,
along with the ground truth.

• Quantifying the system’s agreement with the ground truth.

• Training data and test data Test data must be kept unseen, often 90%
training and 10% test data.

• Baseline

• Ceiling Human performance on the task, where the ceiling is the
percentage agreement found between two annotators (inter annotator
agreement)

• Error analysis Error rates are nearly always unevenly distributed.

• Replicability and reproducibility
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Inter-annotator agreement

• It is common practice to compare the performance of multiple human
annotators.

• If human beings cannot reach substantial agreement about what
annotations are correct, it is likely either that the task is too difficult or
that it is poorly defined.

• It is generally agreed that human inter-annotator agreement defines the
upper limit on our ability to measure automated performance.

Gale et al. (1992) observed that

our ability to measure performance is largely limited by our
ability [to] obtain reliable judgments fromhuman informants
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Extrinsic evaluation

• Measuring the quality of the system by looking at its impact on the
effectiveness of downstream applications.

• Can be applied to compare heterogeneous resources.

POS tagger Parser QA systeminput text

good parses?
good answers?
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Evaluation of POS tagging

• Tested against held-out data: percentage of correct tags

• One tag per word (some systems give multiple tags when uncertain)

• Over 95% for English on normal corpora (but note punctuation is
unambiguous)

• Performance plateau about 97% on most commonly used test set for
English

• Baseline of taking the most common tag gives 90% accuracy

• Different tagsets give slightly different results: utility of tag to end
users vs predictive power
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Benchmarking and “fair” comparisons – fast science

• Test corpora have to be representative of the actual application

• POS tagging and similar techniques are not always very robust to
differences in domain

• Balanced corpora may be better, but still don’t cover all text types

• Communication aids: extreme difficulty in obtaining data, text corpora
don’t give good prediction for real data

data-driven � vs data set-driven �
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Readings

• Ann’s note

• M Collins’ note
www.cs.columbia.edu/~mcollins/loglinear.pdf
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