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Abstract

In this report, I explain the content of my internship with Igor Dotsenko and Pierre Rouchon at the
Laboratoire Kastler Brossel in the Collège de France. I studied quantum electrodynamics in cavities,
and in particular an experiment conducted by another intern, Luis Najera. He developed a way to
transfer energy from a colder atom to a hotter cavity by using quantum manipulation with resonant Rabi
oscillations. In order to extract main results from this experiment, we use quantum state tomography,
in particular maximum log-likelihood estimation. In their original state of the art, when I arrived, the
results of such estimations were only proven when observing usual quantum observable. However, Luis
was studying quantum thermodynamics and thus needed to use among other the von-Neumann entropy
of the reconstructed quantum states. I thus extended the proofs of such estimation to handle that case.
Additionally, I also experimented with a method to solve a problem of insufficient measurement on a
quantum system.

Notations

• λ, µ, x, w, n: scalar, generic vector and function are normal letters. Usually, I try to use greek letters
for scalars, but this is not always the case.

• A,B,H: quantum operator or more generally matrices are capital letters
• u,E, 3D vectors or 3D quantum operator are in bold, capital letter for operators.
• E : curved letter are generally for sets.
• H,E: Apart from usual sets (R,C,N,Z) doubled letters represent super-operator i.e operators from

matrices to matrices.
• x∗: complex conjugate of x.
• At: transposed matrix of A.
• A†: transpose conjugate of A: A† = (At)

∗.
• x · y: The real scalar product

∑
i xiyi. On complex vectors it will still be the same formula and

thus x∗ · y = ⟨x|y⟩.
• ⟨x|y⟩: complex scalar product, semi-linear to left i.e. physicist convention.
• |x⟩, ⟨x|: I use Dirac bra-ket notation. In addition, if A is a matrix, |A⟩ will be a column vector

representing the matrix.
• x > y: for two vector of Rn, x > y means component wise inequality
• A > B: A−B is Hermitian positive definite. (semidefinite for A ⩾ B)
• H: A Hilbert space
• L(H): The set of operator on H
• L(H,H′): The set of operator from H to H′.
• U(H): The set of unitary matrice on H (orthogonal if H is a real vector space)
• O(H): The set of observable i.e of Hermitian matrice on H
• S(H): The set of real symmetric matrices.
• D(H): The set of density matrices.
• R+, O+(H): The set of non-negative real, of positive semi-definite hermitian matrices.
• ∇f : gradient on mono-result function, but also jacobian matrix on multi-result function
• ∇2f : Hessian matrix
• ∂f

∂x , ∂xf : Partial derivative. If x is a vector, it is a partial gradient or a partial jacobian matrix.
• ∂2f

∂x2 : 2nd partial derivative, but may be a partial Hessian if x is a vector
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Introduction

This report details my internship with Pierre Rouchon and Igor Dotsenko on quantum state tomography
by maximum-likelihood reconstruction (MaxLike). It was done mainly at the Laboratory Kastler-Brosel
(LKB) in the Collège de France.

The goal of quantum state tomography is to find a way to reconstruct the state of a quantum system
from several direct or indirect measurements on it. In some cases these measurements do not modify the
state of the system and are called quantum non-destructive (QND) measurement.

The specific physical project on which I worked with Igor Dotsenko is the internship project of Luis
Najera on quantum thermodynamics in the case of atom-cavity interaction in quantum optics. More
precisely, we send a circular Rydberg atom in a resonant cavity containing several photon field. The
state of the cavity is thermal i.e it follows the Bose-Einstein distribution. The atom then interacts with
the cavity. If the atom is in a thermal state of its two atomic levels, that are at the same frequency
than the cavity, then a thermal exchange will occur in the expected way. However if we pump one of
the atom’s state in a hidden state, like a Maxwell’s demon, we can apparently break the second law of
thermodynamics and make a cold atom give heat to a hotter cavity.

In order to study this experiment, we need to measure the state of the cavity. That state cannot
be measured directly, so we reconstruct it by quantum state tomography using maximum-likelihood
estimation. This construction takes into account all the measurements made and deduces a density
matrix. To find it, one needs to solve a convex optimisation problem on the set of density matrices
(Hermitian positive definite matrices of trace 1). This was done using a gradient descent method with
projection of the gradient on the domain.

The estimated state is usually not a pure state because the reconstruction comes from a state that
has been prepared several times. All the prepared states are slightly different. Furthermore, other factors
like measurement imperfections and decoherent relaxation decrease the precision of the reconstruction.

With these measurements, we can now get and interpret the results of our Maxwell’s demon exper-
iment. However, to be able to interpret measurement, we need to know the error on the reconstructed
state. The original proofs in [8] on tomography only provide the standard deviation of usual quantum
observables which are linear in the density matrix. However, to perform our analysis of the second law,
we need to evaluate the error of the estimated entropy.

In order to do that, I first tried a Monte-Carlo algorithm and used the distribution around the
estimated value to sample the examined function. I could then deduce a mean and a standard deviation.
Later, I improved the proofs of [8] to show that evaluating the function on the estimator is indeed
asymptotically the average of the function around the estimator. I could then also get an analytic value
of the standard deviation around any function of the density matrix. Additionally I also worked on fixing
convergence problems when the information given by the experiment is incomplete.

In the end we get error bars on our plots and we are able to determine which points were, within their
error bars, consistent with the theoretical description of our Maxwell’s demon experiment and which were
not.

This report alternates maths and physics. The odd chapters are about the physical part of the
internship and the even ones about maths. The five first chapters are about my understanding of prior
work that I had to do in order to do what I did. The last two describe my personal contributions.

In Chapter 1, I present the experiment, its formal modelisation and why we need the quantum state
tomography. In Chapter 2, I explain the basics of maximum likelihood reconstruction and then I show in
Chapter 3 how this method is applied to our particular case. In Chapter 4, I show how to solve the convex
optimization problem that appeared. Then I present the results obtained before I arrived in Chapter 5.
In Chapter 6, I explain what I did for computing error bars of a non-linear function and some other work.
The final results are given in Chapter 7.

3



Chapter 1

Experimental setup and goal

In this chapter I expect the reader to know the basics of quantum mechanics, Hilbert spaces and the
Schrödinger equation. I will present the basic quantum electrodynamics concepts needed to understand
the experiment, and the experiment itself. Everywhere in my report I will use the usual bra-ket notation
and, therefore, a scalar product linear to the right.

I will first schematically describe the experiment setup and then quickly dive into some experimental
details. I’ll finish by explaining why the state reconstruction is needed.

1.1 Basic setup description
In this section I describe the experiment I worked with at the LKB. This experiment studies the in-
teraction between Rydberg circular atoms and light in superconducting cavities. We produce Rydberg
atoms in a known circular state, then we send them through a cavity containing a very small number of
photons (usually less than eight). The atom then goes through a detector that ideally performs projective
measurement of the state. The atoms can be tuned via Stark effect so the interaction can be resonant
(the cavity frequency correspond to a gap between atomic states) or dispersive (the frequency and the
gap do not match).

I will present the formalism for each component and then detail the formalism of their interaction. The
goal of the experiment is to study quantum thermodynamics. In particular, with the right manipulation
of the quantum state of an atom, we can force it to give heat to the cavity (emit a photon) even if the
atom is colder than the cavity. I will define the notion of temperature of a single atom later.

Most of the formulas come from the chapter 3 of [3] and the first part of [6].
A diagram of the experiment can be found in fig. 1.1.

1.1.1 Circular Rydberg atoms
The atoms are prepared in a specific circular Rydberg state called “ground” state |g⟩. It corresponds to
the energy level n = 50. We will also use |e⟩ called “excited” state which is the circular state at n = 51
and |f⟩, the “fundamental” state with n = 49. Ideally, the atom should never get in any other state
during our protocol. The gap between |e⟩ and |g⟩ is approximately 51GHz, whereas the gap between |g⟩
and |f⟩ is around 54GHz. These are microwave frequencies.

In most of our calculation we will manipulate our states by pairs, and not as the whole triplet, because
the atom will only interact with our setup at, or near, a resonance frequency. We’ll use the base (|e⟩, |g⟩)
in that order, but the same is true for (|g⟩, |f⟩). In such case, the Hamiltonian we will use is

H =
ℏω
2
σZ ,

where ω is the gap frequency and σZ in one of the three Pauli matrices used to describe a two-level
system:

σZ =

(
1 0
0 −1

)
σX =

(
0 1
1 0

)
σY =

(
0 −i
i 0

)
It is important to note that the X,Y, Z axis here have nothing to do with the real world spatial axis.

This is just a convention due to the fact that this two-level system behaves similarly to a spin-1/2 system
whose axis do have spatial orientation.

From these operators we may also build the raising and lowering operators:

σ+ =
σX + iσY

2
= |e⟩⟨g| =

(
0 1
0 0

)
σ− =

σX − iσY
2

= |g⟩⟨e| =
(
0 0
1 0

)
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Figure 1.1: A symbolic representation of the experiment (Credit: Luis Najera). The atoms leave from
the oven, then they pass through a velocity selection mechanism that ensure that only atoms moving at
the target speed are selected. Then, there is a circularization procedure that put all atoms in the state
|g⟩ that will be explained in section 1.1.1. On average 0.2 atoms go through in each batch. Most

unselected atoms will still go trough the experiment but as they are not Rydberg atoms, they will not
interact with anything including the detector. The three Ramsey zones are areas where we manipulate
the atomic state through a classical micro-wave field. In the cavity C2 (C1 is unused), a certain state of

the electromagnetic field is trapped with sufficiently few photons to observe quantum effects in its
interaction with the atom going through. At the exit, atoms are detected by a projective measurement

that give the energy level of the atom.

They are equivalent to the annihilation and creation operators of a usual harmonic oscillator (that I will
present in section 1.1.3). We can even express the Hamiltonian in a similar way: H = ℏω(σ+σ− − 1

2 ).

1.1.2 Ramsey zone: Interaction with classical field
In what we call Ramsey zone, the atom will be submitted to a classical oscillating field at pulsation ωf ,
resonant (or near the resonance) with the atomic transition. The field at the position of the atom will be
denoted by

E = 2E

ux cos(ωf t+ φ+ φx)
uy cos(ωf t+ φ+ φy)
uz cos(ωf t+ φ+ φz)


where u2x + u2y + u2z = 1. We do not merge the global phase φ into the component phase to be able to
use it later. This can be represented more cleanly using uf =

(
uxe

−iφx , uye
−iφy , uze

−iφz
)
:

E = E(uf e
−iωf t−φ + u∗

f e
+iωf t+φ). (1.1)

With that field we can now express the Hamiltonian Hf of the interaction between the electric dipole
of the atom and the electric field. It is Hf = −D · E as proven in section 3.1.2 of [3]. The dipole
operator can written in function of the position operator R of the electron relative to the nucleus. The
exact expression is D = qR. In our circular states having cylindrical symmetry, we have ⟨e|R|e⟩ = 0 and
⟨g|R|g⟩ = 0, so we only care about the off-diagonal terms. We write the dipole operator as

D = d

(
0 u∗

a

ua 0

)
= d(uaσ− + u∗

aσ+), (1.2)

such that ua has unit length and expresses the direction and d is the value of the electric dipole moment.
They are defined by q⟨g|R|e⟩ = dua. The field Hamiltonian has now the expression:

Hf = −dE
(

0 u∗
a · (uf e

−iωf t−φ + u∗
f e

iωf t+φ)

ua · (uf e
−iωf t−φ + u∗

f e
iωf t+φ) 0

)
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Figure 1.2: Precession of the state u on the Bloch sphere. (a) When Ωr and ∆r are of same magnitude.
The angle at which Ωr is placed is φ. (b) When ∆r is large : dispersive case. (c) When ∆r = 0: full

resonance case (φ = 0).

The free Hamiltonian of the system being Ha = ℏωa

2 σZ , we’ll need to express the evolution of the
system by separating both evolutions. We will place ourselves in the interaction picture (explanation
in appendix A). Both the free and interaction Hamiltonians make the state turn around, and we want
to see the difference between the two of them. Therefore, we remove H0 =

ℏωf

2 σZ . We remove the
Hamiltonian with the frequency of the field and not of the atom to simplify the field frequencies elsewhere.
The frequency of the atom in this new frame will be ∆r = ωa − ωf . Our new Hamiltonian H1 =

ei
H0
ℏ t(Hf +Ha −H0)e

−i
H0
ℏ t is thus

H1 =
ℏ∆r

2
σZ − dE

(
0 u∗

a · (uf e
−iωf t−φ + u∗

f e
iωf t+φ)eiωf t

ua · (uf e
−iωf t−φ + u∗

f e
iωf t+φ)e−iωf t 0

)
The two terms oscillating at frequency 2ωf are too fast to have lasting effects, so we can neglect them:

this is called the secular approximation. The new Hamiltonian is thus

H1 =
ℏ∆r

2
σZ − ℏ

Ωr

2

(
e−iφσ+ + eiφσ−

)
, (1.3)

where Ωr = 2d
ℏ Eu

∗
a ·uf = 2d

ℏ E⟨ua|uf ⟩. We can put some of φ in uf in eq. (1.1) to make Ωr real positive.
Thus, the phase φ is specific to the phase difference between the atom and the field. It can be tuned by
changing the phase of the field that we control.

When using the vector operator σ = (σX , σY , σZ), our Hamiltonian can be written as

H1 = ℏ
Ω′

r

2
σ · n, (1.4)

where
Ω′

r =
√
∆2

r +Ω2
r and n =

1

Ω′
r

(−Ωr cosφ, −Ωr sinφ, ∆r).

One can show that H1 represents a precession of the state of the atom on the Bloch sphere around n
at frequency Ω′

r. This precession is named “Rabi oscillation”. and is represented on the Bloch sphere in
fig. 1.2. The pulsation Ωr which is the frequency of precession when the the frequencies match is named
“Rabi frequency”

By controlling the relative phase between the field and the atom as well as the interaction duration
(the vector rotates by an angle Ω′

r∆t), we can realize all possible rotations i.e nearly all unitary operation
on this two-level system. In practice, both parameters need to be carefully calibrated because they can
have huge effects with very small variations.

1.1.3 Resonant cavities
A field mode in a cavity of a specific frequency ωc can be modeled as a usual one-dimensional harmonic
oscillator. Its Hilbert space is HC = CN. The basis of this space is composed of vectors {|n⟩}, called
Fock states, with n non-negative integer. One of the important operators in this space is the number
operator N =

∑
n n|n⟩⟨n|. The state |n⟩ represents a state with exactly n photons. There are also the

annihilation a and creation a† operators:

a =
∑
n

√
n|n− 1⟩⟨n|.
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Therefore, N = a†a and the energy of the cavity is then

Hc = ℏωc

(
N + 1

2

)
.

We need to find how to represent a field oscillating at frequency ωc. A general formula for a specific
mode of the classical field is

e(r) = E
(
f(r)αeiωct + f∗(r)α∗e−ωct

)
,

where E is a general normalisation factor in units of V/m, that we’ll compute later. A polarization
function f describes the spacial distribution of the electric field inside the cavity which depends on the
cavity shape. We normalize it to ∥f∥∞ = 1. Finally, α is the complex amplitude of the field.

We know that on classical harmonic oscillatiors, the eigenvectors of a, named coherent state represent
directly classical states. I remind that for each complex number α ∈ C, there is a unique state (up to
phase shift) |α⟩ such that a|α⟩ = α|α⟩. Let’s prove that in the case of field mode oscillator, the coherent
state also represents a classical state.

Property 1.1. A coherent state |ϕ(0)⟩ = |α⟩ evolves as:

|ϕ(t)⟩ = |αeiωct⟩

Proof. In the section time evolution of the section 3.1.2 of [3]

Therefore, we define the electric field operator to be

E(r) = E
(
f(r)a+ f∗(r)a†

)
. (1.5)

It will behave exactly as a classical field for coherent state and be a superposition of classical field for
other states. We can determine the value of E from the field energy operator:

H =

∫
ε0|E|2d3r

Property 1.2. The value we get for E is

E =

√
ℏωc

2ε0V

where V =
∫
|f(r)|2d3r is the effective mode volume

Proof. Just do ⟨n|H|n⟩ = ⟨n|
∫
ε0|E|2d3r|n⟩ and expand everything.

The value E is some kind of the average (more like r.m.s) field per photon in the cavity.

1.1.4 Atom-cavity interaction
In this section we’ll see what happens when we put a two-level atomic system in a cavity at or near
resonance frequencies. The systems are then coupled during all interaction time, in particular the states
|g, n+1⟩ and |e, n⟩, blend together as if absorbing and emitting photons continuously. The model we use
is called the James-Cumming model.

1.1.4.1 General case

In the general case, we just reuse the dipolar approximation Hamiltonian for the interaction:

Hi = −D ·E

By using eq. (1.2) and eq. (1.5), and assuming that the atom is at position r, we get :

Hi = −d(uaσ− + u∗
aσ+) · E

(
f(r)a− f∗(r)a†

)
.

For sake of simplification, we assume the atom is more or less in the middle of the cavity and thus that
f(r) = uc of unit length. If we do the same Heisenberg picture as in section 1.1.2, we’ll see that terms
associated with pure energy gain (σ+a†) or loss (σ−a) oscillates very quickly at the order of 2ωc, whereas
the one corresponding to photon absorbtion (σ+a) or emission (σ−a†) oscillates at a more reasonable
frequency. We can thus do the secular approximation again to obtain:

Hi =
ℏΩ0

2
(σ+a+ σ−a

†), (1.6)

7



Figure 1.3: The energy of dressed states at level n as a function of the atom-cavity detuning δ (in units
of /Ωn).

where the vacuum Rabi frequency reads:

Ω0 = −2Ed⟨ua|uc⟩
ℏ

.

Here again, for the sake of simplification, the cavity field and the atom are considered to be in phase,
and thus ⟨ua|uc⟩ is real negative so that Ω0 > 0. The full Hamiltonian is then

Hac =
ℏωa

2
σZ + ℏωc

(
N + 1

2

)
+

ℏΩ0

2
(σ+a+ σ−a

†). (1.7)

With this Hamiltonian, the states |e, n⟩ and |g, n + 1⟩ are coupled 2 by 2, except for |g, 0⟩ which is
stationary. On the space Sn = Span(|e, n⟩, |g, n+ 1⟩), the Hamiltonian is

Hn = ℏ
(
ωc(n+ 1) + δ

2
Ωn

2
Ωn

2 ωc(n+ 1)− δ
2

)
with Ωn =

√
n+ 1Ω0. Its eigenvectors are given by

|+, n⟩ = cos
θn
2
|e, n⟩+ sin

θn
2
|g, n+ 1⟩

|−, n⟩ = sin
θn
2
|e, n⟩ − cos

θn
2
|g, n+ 1⟩

with θn ∈ [0, π] and tan θn = Ωn

δ . These states are called dressed states. We can define again
Ω′

n =
√
Ω2

n + δ2 to have the energies

E±,n = ℏωc(n+ 1)± ℏΩ′
n

2
.

Those energies are represented in fig. 1.3.

1.1.4.2 Effective interaction time

Let’s go back to the hypothesis that f(r) is of unit length. According to [6], it is proven in [3] that, if
the atom crosses the cavity horizontally, instead of actually caring about the exact form of the field, we
can assume that everything behave like the atom traversed a full blown field with ∥f(r)∥ = 1 that has
an effective width weff . For an atom at speed v, all happens as if it is submitted to the Hamiltonian Hac

during
teff =

weff

v
.

1.1.4.3 Resonant case

If δ = 0, the Hamiltonian is of the form H = ℏωc(n + 1) + H1 where H1 is the Rabi Hamiltonian in
eq. (1.4) and n = ux. Therefore each pair of states at level n will oscillate around uX at pulsation Ωn.
In particular if the cavity is empty and the atom arrives in state |e⟩, the atom will absorb and emit a
photon at pulsation Ω0 which is thus the Vacuum Rabi pulsation.

8



1.1.4.4 Dispersive case

In the dispersive case i.e far off the resonance point we have a completely different behaviour. The
energy the atom cannot really change because, the energy of the photons do not match the interstate
gap. However, if we do a pertubative analysis in δ ≫ Ωn, we get some more usable results. For simplicity,
we assume that δ > 0.

In this analysis the new energies are

E±,n = ℏωc(n+ 1)± ℏ
2

(
δ +

Ω2
n

2δ

)
,

but the in this situation we have:

|+, n⟩ ≈ |e, n⟩ and |−, n⟩ ≈ |g, n+ 1⟩

If Ee,n = ℏωc(n+ 1
2 ) +

ℏ
2ωa is the normal energy of state |e, n⟩, the new one will be

E+,n = Ee,n +
Ω2

0

4δ
(n+ 1) .

and similarly for the other case:

E−,n = Eg,n+1 −
Ω2

0

4δ
(n+ 1)

If the cavity is in state |n⟩, The sum of the difference in pulsation of |e, n⟩ and |g, n⟩ is thus:

∆ωa =
Ω2

0

2δ

(
n+

1

2

)
Up to a global shift, all happens as if for an effective interaction time teff , we have a shift of phase

ϕ0 =
Ω2

0

2δ teff per photon. It is important to note that the most controllable parameter here is δ via the
stark effect on the atom.

1.2 QND Measurement
Quantum Non-Destructive measurement(QND) is a kind of quantum measurement that tries to preserve
the state of the observed system. By having the observed system interacting weakly with other systems,
we can sometimes gather enough information to reconstruct the state.

The QND measurement in the current experiment is realized by sending a sequence of individual
atoms prepared in a superposition state |g⟩+ |e⟩ through the cavity and interacting with it dispersively.
One can see in section 1.1.4.4 that an atom in this case will undergo a phase shift between its states
proportional to the number of photons stored in the cavity field. If we calibrate our system to have
an interesting ϕ0, the atomic states will be dispersed accordingly on the equator of the Bloch sphere
depending on the number of photons in the cavity. We can then do a π

2 Rabi-pulse at a specific phase
to rotate the equator to a polar circle on the Bloch sphere. Then, when we measure the atom, the
probabilities of being observed in |e⟩ or |g⟩ depends on the number of photons in the cavity. This setup
is called a Ramsey interferometer. By varying the phase of the last Rabi pulse we can gather enough
statistical information to recreate the state of the cavity.

However the only concrete output we get is a long list of state detections in |e⟩ and |g⟩, so we need a
statistical tool to reconstruct a corresponding density matrix from this data.
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Chapter 2

Maximum likelihood reconstruction

I put some reminders about multivariate covariances in appendix B, which could be useful in this chapter.

2.1 Basics of the estimation theory

2.1.1 Estimator
The goal of estimation is to estimate some parameters using observations or measurements. In the
simplest case, we measure a random output X ∈ X from an unknown input θ ∈ Θ. We place ourselves
in a model where the law of X conditionally to θ is known. Formally, we have for each θ a probability
measure Pθ on X . If Pθ has the right form (in particular, if X is a vector of repetition of the same
experiment), we can extract information on θ from X. For that we can use an estimator.

Definition 2.1. An estimator of parameter θ from X is just a deterministic function θ̂(X) that provides
the most likely value of θ that could have resulted in X.

Remark. The estimator notation θ̂ has noting to do with the notation of quantum operator in quantum
mechanics. It should usually be clear from the context which one it is.

The most frequent case of parameter is θ ∈ R. In that case we can easily compare the original θ with
its estimator θ̂ with a subtraction:

Definition 2.2. For a given θ, the bias of the estimator θ̂ is

B(θ̂) = Eθ(θ̂(X)− θ),

where the expectation Eθ is taken on the law Pθ. An estimator is biased if the bias is non zero and it is
unbiased otherwise.

Definition 2.3. For a given θ, the variance of the estimator θ̂ is

V (θ̂) = Eθ

(
(θ̂(X)− θ)

2
)
.

2.1.2 Likelihood
In the case where all probability measures Pθ are absolutely continuous against a “canonincal” measure
µ on X , we can define a function f(x; θ) such that

Pθ(A) =

∫
A

f(x; θ) dµ(x).

Definition 2.4. For a given observation x ∈ X , we define the likelihood function Lx(θ) = f(x; θ).

Definition 2.5. For a given observation x ∈ X , we define the log-likelihood function ℓx(θ) = lnLx(θ).

2.1.3 Fischer information and Cramér-Rao bound
We now assume a set of real parameter θ ∈ D ⊂ Rn. A way to know if we could improve our estimation
at a specific point is the gradient of the log-likelihood function. This is called the score, sx(θ) = ∂θℓx(θ).
The lower the score (its norm, actually), the better our estimation.

10



Property 2.1. The expectation of the score is 0.

We can then study the variance of score and its covariances with other things. In particular:

Lemma 2.2. The covariance of the score and any unbiased estimator is the identity:

cov(θ̂, sx(θ)) = I

In the light of the theorem about bounds of appendix B.2, we can give special interest to the variance
of the score and its link with the variance of any estimator.

Definition 2.6. The Fischer information of the parameter θ is defined as the variance of the score:

I(θ) = V
(
s(θ)

)
.

If θ ∈ R, this is just the expectation of the square of the score, but otherwise, I(θ) is a covariance
matrix thus at least positive semi-definite. This information value puts a bound on the minimum variance
of any unbiased estimator, which is called the Cramér–Rao bound.

Theorem 2.3 (Cramér–Rao bound). For any unbiased estimator θ̂ and if I(θ) > 0, we have

V (θ̂) ≥ I(θ)−1
.

Remark. In the multivariate case, the −1 obviously means the inverse of the matrix

Proof. The bound on multivariate correlation is proven in theorem B.5. The bound is written as

cov(X,Y )V (Y )
−1

cov(Y,X) ⩽ V (X).

Since I(θ) = V (sx(θ)) and from lemma 2.2, the bound holds.

In order to have a better interpretation of the Fischer information, if the likelihood is at least C 2 in
θ, we can rewrite it as a hessian:

Property 2.4. Under sufficient regularity assumption, the Fischer information can also be written as
the opposite of the Hessian of the log-likelihood function:

I(θ) = − ∂
2ℓ

∂θ2
(θ).

2.2 Maximum likelihood estimator

2.2.1 Definition
Now that we have proven the best variance possible, we still have to build an estimator approaching
this bound. There are many different kinds of estimator. The most used one is the average when
X = (X1, . . . , Xn), Eθ(Xi) = θ and Vθ(Xi) is small enough. However, in more complex cases this won’t
work. The goal of the estimator is to produce the more likely θ, ideally the maximum of a density function
p(θ|X).

If all measures can be expressed as density functions, using Bayes law, we obtain

p(θ|x) = pθ(x)
p(θ)

p(x)
= pθ(x)

p(θ)∫
pθ′(x)p(θ′) dθ′

. (2.1)

We aim now to maximize p(θ|x). However, that formula only makes sense if we have a prior law on
θ. If the prior distribution is more or less uniform, it is the same as maximizing pθ(x) = Lx(θ).

Definition 2.7. The maximum likelihood estimator θML is defined by:

θML(x) = argmaxLx.

The maximum likelihood have no excessively nice properties in its own. But when X = (X1, . . . , Xn),
where all theXi come from the same law Pθ(X0) and are independent, and n→∞, it has nice convergence
properties. In particular, it will converge in probability to the right θ and saturate the Cramér-Rao
bound.

In practice, as most probability laws are log-concave (in particular the normal law), we use the log-
likelihood, ℓx instead of Lx. Apart from concavity, this also has the advantage that multiple repetition
are additive instead of multiplicative:

Lx(θ) =
∏
i

Lxi(θ) ℓx(θ) =
∑
i

ℓxi(θ).

In particular, the probability goes down to zero very quickly. When computing on a 64-bit machine
floating point numbers, there is a high risk of L to be simply evaluated to zero when it is just really
small. Note that the natural logarithm of the minimum positive 64-bit floating point number is −740.
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Chapter 3

Computation of effect matrices

In this chapter, we stay in Hilbert spaces of finite dimension. Most of the results can be extended to
Hilbert spaces of countable dimension by adding some restrictions. Since we won’t need them in the rest
of the report, I won’t mention infinite dimension anymore. The space of operators on H is denoted by
L(H). The set of observables (Hermitian operators) is denoted by O(H). The set of unitary operators
on H is denoted by U(H).

3.1 Density matrices

3.1.1 Justification
In order to make significant observation with an imperfect experimental setup, we need to make averages
and statistics on quantum state. One way of doing that would be to manipulate probability measure
over the state space which is the unit sphere S of the model Hilbert space H. However, There are a lot
of distributions that are indistinguishable by any measurement. In first approximation, we say that two
probability distribution λ and µ on S are indistinguishable, if for any observable A on H, we have∫

S

⟨ϕ|A|ϕ⟩dλ(ϕ) =
∫
S

⟨ϕ|A|ϕ⟩dµ(ϕ).

We can rewrite it in∫
S

⟨ϕ|A|ϕ⟩dλ(ϕ) =
∫
S

Tr
(
|ϕ⟩⟨ϕ|A

)
dλ(ϕ) = Tr

(∫
S

|ϕ⟩⟨ϕ|dλ(ϕ)A
)
.

Definition 3.1. We define the density matrix of a probability distribution λ on quantum states:

ρ =

∫
S

|ϕ⟩⟨ϕ|dλ(ϕ).

Property 3.1. The average of an observable A in any probability distribution λ is given by Tr(ρA).

Remark. This is sufficient to fully characterise the distribution, because any observable A can be written
as A =

∑
a aPa, where Pa are orthogonal projector and are also observables. The average of Pa is Tr(ρPa)

and is the probability of getting output a when measuring A. Therefore this probability is the same for
all distributions having density matrix ρ.

Since two distribution that share the same density matrix are completely indistinguishable by any
measurement, in the rest of this report, we will use density matrix as the only representation of quantum
probability distribution. In practice, Quantum physicist mainly manipulate probabilistic quantum state
and not that much usual ket state, so the term quantum state is used for a statistical mixture described
by a density matrix. A state of the form |ϕ⟩ is thus called a pure state.

3.1.2 Properties
We can now study what are density matrices and find necessary and sufficient conditions for a matrix to
be a density matrix.

Property 3.2. A density matrix is Hermitian positive (ρ > 0) of trace 1.

Proof. |ϕ⟩⟨ϕ| > 0, so
∫
S
|ϕ⟩⟨ϕ|dλ(ϕ) > 0. Tr(|ϕ⟩⟨ϕ|) = 1, so Tr(ρ) = λ(S) = 1.
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If we want to prove that this is sufficient we need to look at the spectral decomposition. In finite
dimension n, a spectral decomposition of ρ give a collection of eigen values p1, . . . , pn which sum up to 1.
They are the analogous of probabilities in classical probability theory. The density matrix can then be
written as

ρ =
∑

pi|ϕi⟩⟨ϕi|.

Theorem 3.3. The condition 3.2 is necessary and sufficient i.e any Hermitian positive matrix of trace
1 is a density matrix.

Proof. Any matrix satisfying the condition 3.2 can be decomposed in ρ =
∑
pi|ϕi⟩⟨ϕi|, and thus the

atomic measure λ({|ϕi⟩}) = pi give exactly that density matrix.

The set of density matrix will be denoted by D(H) (or just D when there is no ambiguity). We have
the inclusions:

D(H) ⊂ O(H) ⊂ L(H).

As a density matrix is an observable, we can thus study its behavior as an observable. In state |Ψ⟩,
the average ⟨ρ⟩ is the probability of state |Ψ⟩ if we did a projective measurement in an orthonormal base
that contains |Ψ⟩. ρ is thus like an observable of classical probability.

3.1.3 Rank and purity
In finite dimension, we can also look at the rank of the density matrix that gives a lot of information.

Property 3.4. The rank of the density matrix ρ is the dimension of the support of any probability
distribution that can give this matrix (with the convention dimA = dimSpan(A)).

Definition 3.2. If a density matrix ρ has rank one, it only represents one unique state and can be
written ρ = |ϕ⟩⟨ϕ|. It is thus called a pure state. No difference is made between the state |ϕ⟩ and the
density matrix |ϕ⟩⟨ϕ| as both are called pure states.

On the other hand if rk ρ > 1, the density matrix represent a mixed state: a statistical mixture of
states.

Remark. It is very important to differentiate a quantum superposition for a statistical mixture. For
example on a qubit, |+⟩ = 1√

2
|0⟩ + 1√

2
|1⟩ is a quantum superposition while a statistical mixture would

be 50 % of |0⟩ and 50% of |1⟩. When the state in measured in base |0⟩, |1⟩, the results will be the same
but in an other basis they could be different. In particular, in basis {|+⟩, |−⟩}, the first state will be
measured as 100 % |+⟩ and 0 % |−⟩, but the second will still be 50 – 50 of |+⟩ and |−⟩.

Property 3.5. A state ρ is pure iff Tr ρ2 = 1.

Proof. Tr(ρ2) =
∑
p2i < 1 unless one pi is one and the others 0.

The value Tr ρ2 has in fact much more interesting properties, and thus deserves a name.

Definition 3.3. The purity of a quantum state represented by ρ is defined as γ = Tr ρ2.

Property 3.6. In dimension d, the purity is always between 1
d and 1. If γ = 1

d , then ρ = I
d , the

represented mixture is uniform and we have absolutely no information on the state. If γ = 1, the state is
pure and we thus have complete information on the quantum state.

Proof. Tr(ρ2) =
∑
p2i ⩽ 1. But the projection of 0 on the hyperplane of sum 1 is I

d which has therefore
the lowest norm of that plane which is 1

d .

The main interest of purity is that it remains constant during unitary evolution (Tr(U†ρU) = Tr ρ2),
whereas it will change in any other evolution (relaxation, decoherence, measurement etc) as we lose or
gain information.

3.1.4 Matrix coefficients
When we express the density matrix in a specific base, we gain a lot of information on the state projected
in that basis, in particular on how projective measurements in that basis takes place.

Definition 3.4. When ρ is express in the basis |1⟩, . . . , |d⟩, the diagonal coefficients, which are real and
non-negative, are called populations. The coefficient ⟨i|ρ|i⟩ equals the probability to obtain state i, when
measuring ρ in this basis.

The non-diagonal coefficients are complex and called coherences. The coherence between states |i⟩
and |j⟩ is ⟨i|ρ|j⟩. It is conjugate to the coherence between |j⟩ and |i⟩.
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The point of this distinction is that any projective measurement made in that basis will have the same
statistics whatever the value of coherences. Their values will only matter when measuring value in other
bases or when the state is evolving. This also means that, reciprocally, in the context of tomography,
Any measurements made in that basis can bring no information on the coherence.

As we will reconstruct ρ numerically and will use this matrix representation, we need to study the
structure of D(H) in this form. In particular:

Property 3.7. dimD(H) = d2 − 1 as a real vector space.

Proof. The (real) dimension of O(H) is d2 because there are d diagonal coefficient and d(d−1)
2 complex

off-diagonal coefficient so d + d(d − 1) coefficients in total. The constraint Tr ρ = 1 removes one degree
of freedom, so we only have d2 − 1 dimensions.

3.1.5 The case of a qubit
In the case of a qubit, with dimH = 2 (complex dimension), we know that the pure states, up to a phase
shift, can be represented on the Bloch sphere. We would like to know how to represent mixed states. The
dimension of D(H) is 3, so we can hope for a simple representation. Any density matrix from H can be
written as

ρ =
1

2
I + S,

where TrS = 0. A basis of the hyperplane of zero-trace hermitian matrice can be given by Pauli matrices:

σZ =

(
1 0
0 1

)
σX =

(
0 1
1 0

)
σY =

(
0 −i
i 0

)
.

If we write σ = (σX , σY , σZ), we obtain

ρ =
1

2
I + r · σ,

where r ∈ R3 is a usual 3D vector. Furthermore, we have:

Property 3.8. ρ ⩾ 0 if and only if ∥r∥ ⩽ 1.

Proof. det ρ = 1− ∥r∥2

We can then look at the purity γ in function of r. We have:

Property 3.9. γ = Tr(ρ2) = 1
2 (1 + ∥r∥

2)

Corollary 3.9.1. ρ is pure if and only if ∥r∥ = 1

Mixed states are thus represented by the Bloch “ball”. The pure states are laying on its surface i.e.
on the sphere. One can check that this representation matches the usual Block sphere representation of
pure states. The maximally mixed state I

2 is in the center of the ball.

3.1.6 Composite systems and partial trace
Next, we model a density matrix of a composite system. For a pure separable state, this is a simple
tensor product |ΨΦ⟩ = |Ψ⟩ ⊗ |Φ⟩ = |Ψ⟩|Φ⟩. Luckily for us we have

(|Ψ⟩|Φ⟩)⊗ (⟨Ψ|⟨Φ|) = |Ψ⟩⟨Ψ| ⊗ |Φ⟩⟨Φ|,

where ⊗ designate the tensor product of operators and matrices. Therefore the density matrix of the
composite system is the tensor product of the density matrices of each system. We still have the same
property of entanglement, i.e. the state is entangled if and only if the density matrix cannot be written
as a tensor product.

What is interesting now is to study the statistical result of measurement performed on one of the two
quantum subsystems H1 and H2. Let’s take an observable A on H1 and its extension to H = H1 ⊗H2

which is Ã = A ⊗ I. If we have a density matrix ρ = ρ1 ⊗ ρ2, then the average of A is Tr(ρÃ) =
Tr(ρ1A) Tr(ρ2) = Tr(ρ1A). On a tensor product density matrix, the evaluation of Ã only depends on the
part of ρ in H1 and we would like to express that on any density matrix. In order to do that, we rewrite
our computation as Tr(ρÃ) = Tr((ρ1 Tr(ρ2))A) and see that ρ1 Tr(ρ2) is the part of ρ in H1.
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Definition 3.5. Given a tensor product H = H1 ⊗ H2, The partial trace over H2, is a linear operator
TrH2 : L(H)→ L(H1) defined on tensor product by

TrH2(ρ1 ⊗ ρ2) = ρ1 Tr(ρ2)

and extended by linearity on the full L(H).
Property 3.10. For any operator ρ ∈ L(H), and any observable A ∈ O(H1), we have:

Tr(ρ(A⊗ I)) = Tr(TrH2(ρ)A)

Proof. It’s true if ρ is a tensor product and so it is true on any ρ by linearity.

An important remark to be made is that if a pure state in entangled, its partial trace may be a mixed
state. For example if we have two qubits, and we have a Bell state |Ψ⟩ = |00⟩+|11⟩√

2
, then

Tr2
(
|Ψ⟩⟨Ψ|

)
=

1

2
I.

3.2 Quantum operations
Even if a closed quantum system follows a unitary evolution, quantum systems are in general open. They
undergo interaction with their environment, whether it is from external measurement or simply thermal
relaxation. The goal of this section is to construct a representation of acceptable transformations for
open systems similar to those describing unitary evolution of a closed system. This section is strongly
inspired from [5].

3.2.1 Projective measurement
The first and simplest example of external interaction in quantum theory is a measurement. When
a quantum system interacts with a macroscopic measurement device, it is measured and collapsed in a
specific state. The usual framework for measurement is projective measurement. It is made by measuring
a observable that fully describes the measurement process.

Let A ∈ O(H) be an observable on H. The spectral decomposition of A tells us that A =
∑

a aPa,
where a are eigenvalues of A and Pa are orthogonal projectors on the corresponding eigenvector spaces.
When starting in state |Ψ⟩, we measure a with probability ⟨Ψ|Pa|Ψ⟩ and we get the output state

Pa|Ψ⟩√
⟨Ψ|Pa|Ψ⟩

.

In fact, Pa is also a quantum measurement operator which detects if we measure a or not, and thus
its average value is the probability of measuring a. We can then express the same thing in the space of
density matrices. When starting in ρ, we expect a with probability Tr(ρPa) and get as an output state

PaρPa

Tr(ρPa)
.

An important question when dealing with probability is whether they always sum to one, and in this
case, this is answered by the closure relation ∑

a

Pa = I

and as ⟨Ψ|I|Ψ⟩ = Tr(ρI) = 1, the probabilities are normalized.

3.2.2 Generalized measurement
In some case quantum detectors can perform other kinds of measurement, not projective. For example, a
measurement that completely destroys the object instead of projecting it in a specific vector space. The
main example is a photon counting detector. When a cavity is in a Fock state |n⟩, and we insert a photon
counting detector, the photons “crash” into the detector and are counted to be n. The remaining state is
always |0⟩, as there is no photon left. This measurement is obviously non projective as |0⟩ is orthogonal
to any |n⟩ with n > 0. We thus need a framework to handle this kind of measurement.

While a projective measurement of operator N , would have left the state in state |n⟩ because we
applied Pn = |n⟩⟨n|. The operation the detector apply to the system when measuring n is Mn = |0⟩⟨n|.
If we apply it to any state |Ψ⟩, we have to normalize Mn|Ψ⟩. The squared norm is ⟨Ψ|M†

nMn|Ψ⟩ and
by analogy, this looks like our probability. However, not any group of Mn can represent a generalized
measurement. We need a normalization condition which is quite simple given the probability expression:∑
M†

nMn = I.
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Definition 3.6. On a quantum Hilbert space H, a generalized measurement is a set of outcomes µ of the
measurement (there can be more outcomes that the dimension of H), and for each of them a measurement
operator Mµ. For the measurement to be complete, we require the normalization condition:∑

µ

M†
µMµ = I.

In that case the probability of outcome µ in state |Ψ⟩ is ⟨Ψ|M†
µMµ|Ψ⟩ and the resulting state is:

Mµ|Ψ⟩√
⟨Ψ|M†

µMµ|Ψ⟩
.

Remark. A projective measurement is just a special case of generalized measurement with Mµ = Pµ as
P †
µPµ = Pµ.

Property 3.11. If we have a mixed state ρ, the action of this generalized measurement is to measure µ
with probability Tr(MµρM

†
µ). The outcome would then be

MµρM
†
µ

Tr
(
MµρM

†
µ

) .
The question that is important now, is what happens when we forget the value of the measurement.

We can have each outcome µ with the corresponding probability, so the resulting state is

ρf =
∑
µ

Tr(MµρM
†
µ)

MµρM
†
µ

Tr
(
MµρM

†
µ

) =
∑
µ

MµρM
†
µ.

3.2.3 Quantum operations
The goal of this section is to describe a formalism to express the evolution of an open quantum system
in terms of density operators. Another order of presention with deeper analysis can be found in [5].

For the sake of generality, the input state Hi and the output system Ho will not be the same. In most
cases, they will, but in some case the system under study is causally related to an input system but is
not the same. What we want is an operator E : D(Hi)→ D(Ho). It maps the input mixed state into the
output mixed state and represents the evolution.

First, we remark that if ρ is mixed state representing ρ1 with probability p1 and ρ2 with probability
p2, then the output state must be E(ρ1) with probability p1 and E(ρ2) with probability p2. Therefore, in
the general case, we have

E(
∑

piρi) =
∑

piE(ρi)

and E thus preserves convex combinations. A better way of representing this is to say that E ∈
L(O(Hi),O(Ho)) i.e. E is linear on Hermitian operators. Any operator that preserves convex com-
binations on D(H) can be extended to a linear operator on Hermitian matrices (the proof is easy and not
interesting). The opposite is true if the operator preserves the positiveness and the value of the trace.

However, in order to keep positivity in all cases when we have two maps on different systems, we must
have E1 ⊗ E2 to also preserve positivity. We now have all conditions for a good definition.

Definition 3.7 (Trace-preserving quantum operation). Given an input space Hi and an output space
Ho, a linear map E : O(Hi) → O(Ho) is said to be a trace preserving quantum operation (or quantum
map) if:

• It preserves trace i.e Tr = Tr ◦ E.
• It is completely positive i.e, for any other space H0 with identity quantum operation I0, The map
I0 ⊗ E : O(H0 ⊗Hi)→ O(H0 ⊗Ho) preserves the positivity of Hermitian operators.

This definition is nice and clean, but not very easy to manipulate, so we’ll need a more efficient
representation to be able to manipulate them on computers. We will see that in section 3.2.5. Afterwards,
in section 3.2.6, we’ll see why this formalism can represent all sorts of open quantum evolutions, by giving
a more precise existence to the environment.
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3.2.4 Non-trace preserving quantum operations
Restraining ourselves to an operator preserving the trace can be a problem for some kinds of evolution.
For example, if we look at a generalized measurement (Mµ)µ, the operation of measuring and forgetting
is

M(ρ) =
∑
µ

MµρM
†
µ.

However, when we remember the outcome µ, the operation is ρ 7→ MµρM
†
µ

Tr(M0ρM
†
0 )

which is not linear.

The associated linear operation is Mµ(ρ) =MµρM
†
µ which satisfies all properties of definition 3.7 except

preserving the trace. In fact Mµ describes a process that is not sure to happen. The probability that
Mµ happens when we do the measurement on ρ is pµ = Tr(Mµ(ρ)) and the resulting density matrix is
Mµ(ρ)/pµ. Non-trace preserving quantum operation therefore represents operations where the observer
has learnt some information on the system. Notice that here, the notion of an observer is a mix of the
notion of drawing a value from the probability measure that the density matrix represents and the usual
observer associated to quantum collapses. Therefore the generic definition for quantum operators is

Definition 3.8 (quantum operation). Given an input space Hi and an output space Ho, a linear map
E : O(Hi)→ O(Ho) is said to be a quantum operation (or quantum map) if:

• It decreases the trace i.e Tr ◦ E < Tr.
• It is completely positive i.e, for any other space H0 with identity quantum operation I0, The map
I0 ⊗ E : O(H0 ⊗Hi)→ O(H0 ⊗Ho) preserves the positiveness of Hermitian operators.

Trace preserving operation represent deterministic processes that do not leak any information the
observer while non trace preserving operations describe processes that may happen with some probability
(the trace of the output) and for which the observer has learnt some classical information on the system.
A complete system of quantum operation (or measurement model) (Mµ)µ is a set of quantum operation
such that

∑
µ Mµ is trace preserving. We can evaluate this system like a generalized measurement, The

probability of the outcome µ is Tr(Mµ(ρ)) and the output state is

Mµ(ρ)

Tr (Mµ(ρ))

We can now look at two complete system in sequence to get the following property.

Property 3.12. Given (Mµ) and (K)i two measurement models, The probability or measuring µ then i
in state ρ is Tr(Ki(Mµ(ρ))) and the output state is

Ki(Mµ(ρ)))

Tr (Ki(Mµ(ρ))))

This obviously works for more than two systems and that’s why we can compose partial operator
without renormalizing each time and only care about renormalizing at the end. The behavior is exactly
the same as if we had a single system of operator indexed on (µ, i) where Eµ,i = Ki ◦Mµ.

3.2.5 Kraus operators, Kraus Maps
Until now, we have only manipulated abstract definition for quantum operations, let’s see how to represent
them numerically. In fact we already know a numerical formula for a certain kind of operation: unread
generalized measurements. The form we know is M(ρ) =

∑
Mµ(ρ) =

∑
MµρM

†
µ. In fact we can prove

this form is general and is called Krauss decomposition or Krauss map.

Theorem 3.13 (Krauss). An application E : O(Hi) → O(Ho) is a quantum operation if and only if
there exist a set of operators Ei ∈ L(Hi,Ho) such that

∑
EiE

†
i ≤ I and

E(ρ) =
∑
i

EiρE
†
i .

Proof. Can be found in [5].

Property 3.14. The operation is trace preserving if and only if
∑
i

EiE
†
i = I.

Any trace preserving quantum operators can thus be expressed as an unread quantum measurement.
It is like if all the decoherence processes were due to unread measurements from the environment.
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3.2.6 Interpretation with environment
In fact we can also express quantum operations as a unitary evolution with a environment and then a
partial trace. This approach is explained at the beginning of [5].

3.3 Likelihood in terms of quantum maps
Now it is time to use our new tools to give an usable expression for the likelihood function. This
transformation comes from [7].

The experiment can be represented as a starting state ρ that we want to determine with tomography.
This state evolves according to the experimental setup and thanks to some measurements made by the
experimenter. For a given run of the experiment, the result are y1, . . . , ym. The state ρi will be the
state just after the measurement i. The evolution from ρi−1 to ρi is given by a quantum operation that
depends on the result of the measurement:

ρi =
Ki,yi(ρi−1)

Tr (Ki,yi
(ρi−1))

The system of Ki,yi is complete for a given i. According to property 3.12, The probability of getting the
results y1, . . . , yn is

P (y,, . . . , yn) = Tr(Km,ym
◦ . . . ◦K1,y1

(ρ)).

We can use the adjoint maps for the Frobenius product (defined by Tr(AK(B)) = Tr(K∗(A)B)) to get

P (y,, . . . , yn) = Tr(ρK∗
1,y1
◦ . . . ◦K∗

m,ym
(I)) = Tr(ρEy1,...,yn).

The matrix E is called the effect matrix of the measurement y1, . . . , yn.

Property 3.15. The adjoint of a quantum operation is completely positive so all the Ei are positive
hermitian matrices.

If we have n sequence of measurement, we obtain n effect matrices E1, . . . , En that represent each
measurement. The log-likelihood function is thus

ℓ(ρ) =
∑
i

log(Tr(ρEi)). (3.1)

We just need to be able to compute the Ki,yi . To compute the adjoint, we simply use the representation
as Krauss operators, indeed if K(ρ) =

∑
µ
MµρM

†
µ then

K∗(ρ) =
∑
µ

M†
µρMµ.

3.4 Computation of Krauss operators for QND measurement
The actual computation of the Krauss operators is done in the supplementary information section of [4].
They take into account the detection errors, the decoherence of the cavity and of course all the theory
about quantum Rabi oscillations.
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Chapter 4

Convex optimization

Now we need to find the maximum ρML of ℓ, given that ρML is in D, the set of density matrix. The
problem we want to solve is {

maximize ℓ(ρ) on ρ

subject to ρ ∈ D

This problem is “easy” because it is convex and as we’ll see, convex problems have fast solutions.

4.1 Reminders on convex optimization
We must now define what is a convex problem, I assume the readers know what is a convex set. We must
now define convex cones. This presentation is based on lecture notes from Alexandre d’Aspremont, in
particular [2]

4.1.1 Convex cones
Definition 4.1. A set K ⊂ E where E is a vector space on R is a cone if

∀x ∈ K.∀λ ∈ R+, λ.x ∈ K

The λ can be 0 in this definition i.e we must have 0 ∈ K.

A convex cone is simply a cone that is convex. We are particularly interested in proper cones:

Definition 4.2. A cone K ⊂ E is a proper cone if
• It is closed (K = K)
• Is is solid (K̊ ̸= ∅)
• Is is pointed (It contains no lines)

In particular the set of vector with non negative coordinate (the positive orthant) or the set of positive
hermitian matrices (O+(H)) are proper cones. With this notion of proper cone we can define a generalized
inequality:

Definition 4.3. Two vectors a and b are said to be inferior according to K which is denoted by a ⩽K b
if b− a ∈ K. We say that a <K b if b− a ∈ K̊

In particular, the usual componentwise inequality on vectors is the the inequality of the positive
orthant and the usual inequality on matrices is the inequality of O+(H).

The last concept we need is the one of duals cones:

Definition 4.4. The dual cone K∗ of a cone K ⊂ E where E is euclidean or hermitian is the set

K∗ = {y ∈ Rn, ∀x ∈ K, ⟨y|x⟩ ⩾ 0}

In the hermitian case, the ⩾ 0 mean real and non negative.

A cone is self dual if it is its own dual. In the literature, the hermitian case is sometimes called
internal dual cone

Property 4.1. The dual of a proper cone is a proper cone

Property 4.2. The cone of positive hermitian matrices is self dual.
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Proof. Suppose H is hermitian and ⟨H|A⟩ ⩾ 0 for all A ∈ O+(H). Then if we diagonalize H, and if
there is any negative eigenvalue, the matrice which has as diagonal one in front of that eigenvalue and 0
in front of all the others will make the Frobenius product negative which is impossible, thus H ⩾ 0.

For a general matrice M , we have the Cartesian decomposition M = A+ iB with A and B hermitian.
The fact that the Frobenius product is always real positive is sufficient to conclude that B = 0 and
A ⩾ 0

4.1.2 Convex problems
I suppose that the reader knows the usual definition of a convex function. This definition can be gener-
alized, in the multivariate case, to proper cone equality:

Definition 4.5. A function f : dom f ⊂ E → F where E and F are real vector space is said to be
K-convex for K a proper cone of F if dom f is convex and

∀λ ∈ [0, 1], ∀x, y ∈ dom f, λf(x) + (1− λ)f(y) ⩾K f(λx+ (1− λ)y).

If K = R+, this is the usual convexity. A convex problem is then a problem of the form
minimize f0(x) on x ∈ Rn

subject to fi(x) ⩽Ki
0

hj(x) = 0

(4.1)

where f0 is convex, each fi : Rn → Ei is Ki-convex for i = 1, . . . ,m and each hj : Rn → R are affine for
j = 1, . . . , p. Obviously, the domain isn’t really Rn but

⋂
i dom fi. However all convex functions can be

extended by setting their values to ∞ outside their domain, so the distinction isn’t really relevant (affine
functions are always defined everywhere).

Definition 4.6. A point x is said to be feasible if it satisfies all the constraints in the “subject to”.

Property 4.3. The set of feasible points is convex.

The optimum value of the problem is the minimal value reached or approached by f0. It is noted fopt
in the rest of this section. In the approached case, it is the infimum of all the values taken by f0 on the
set of feasible points. Any x that reaches fopt is called a solution point.

Property 4.4. The set of solution points is always convex (but may be empty).

We can also express maximization concave problems as is the case of the log-likelihood estimation:
maximize f0(x) on x ∈ Rn

subject to fi(x) ⩾Ki

hj(x) = 0

Where f0 is concave, each fi is Ki-concave and each hj is affine.

4.1.3 Strong convexity
Definition 4.7. A function, f : Rn → R is strongly convex on a set A, if it is of class C 2 on A and if
there is a constant µ such that for any point of A, we have

∇2f ⩾ µ.I

A problem is strongly convex if f0 is strongly convex on the feasible set and this set is closed. This
happens if all constraint functions are continuous for example.

Property 4.5. A strongly convex problem has exactly one solution that is reached in a single point

fopt = f(xopt)
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4.1.4 Dual problem
A dual problem for a given problem is like the problem viewed from the other side. If our main (primal)
problem is a minimization, the goal of the dual problem is to produce the best possible lower bound. The
dual will thus be a maximization problem. In order to do that, we first need to define the Lagrangian of
the problem (which has nothing to do with the Lagrangian of classical mechanics).

Definition 4.8. Given a problem in form 4.1, We define its Lagrangian by the function

L : Rn ×
∏

Ei × Rp → R

(x, η1, . . . , ηm, λ1, . . . , λp) 7→ f0(x) +

m∑
i=1

⟨ηi|fi(x)⟩+
p∑

j=1

λjhj(x)

If we want it to be under the minimum of the primal independently of x when the constraints are
satisfied, we need to minimize on x.

Definition 4.9. The Lagrange dual function or simply dual function is defined by

g(η, λ) = inf
x∈Rn

L(x, η, λ).

Property 4.6. g is concave.

Proof. Left to the reader or can be found in a convex optimization book.

We can now reach our goal to have a lower bound independent of x:

Property 4.7. If ∀i ∈ {1, . . . , n}, ηi ⩾K∗
i
0, and the optimum of the primal is fopt, then

g(η, λ) ⩽ fopt

Proof. Let’s take x any value respecting the constraints. We have

g(η, λ) ≤ L(x, η, λ) ≤ f0(x)

The first inequality comes from minimization over all possible x. The second inequality comes from the
fact that fi(x) ⩽Ki

0 and ηi ⩾K∗
i
0 so, by definition of the dual cone, ⟨ηi|fi(x)⟩ ⩽ 0. Furthermore all

hj(x) = 0. If we minimize over all x, we get the property.

If we want to find the best lower bound, we thus have the following convex problem to solve which is
called the dual problem {

maximize g(η, λ) on η, λ

subject to ηi ⩾K∗
i
0

(4.2)

4.1.5 Strong duality and KKT conditions
Here we study the link between the dual and the primal problem and try to find conditions for solutions
and various other properties. Suppose we have a problem in standard form 4.1 with its optimum f̃ and
its canonical dual 4.2 with its optimum g̃. What we have proven in the previous section is that

g̃ ⩽ f̃

This is called weak duality. In some specific cases, we have g̃ = f̃ , this is called strong duality. The
fact that a problem is strongly dual is very important for it’s study and impact various properties. One
way of proving that a convex problem is strongly dual is:

Property 4.8 (Slaters’ constraint qualification). If the primal convex problem has a point that is in the
interior of the set of feasible points i.e. a point x that satisfies fi(x) <Ki 0 and hj(x) = 0, then the
problem is strongly dual.

Property 4.9 (Complementary slackness). If strong duality holds and x̃ is optimal for the primal and
η̃, λ̃ are optimal for the dual, then:

g(η̃, λ̃) = L(x̃, η̃, λ̃) = f(x̃)

and thus ⟨η̃i|fi(x̃)⟩ = 0 for any i.
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Proof.
f(x̃) = g(η̃, λ̃) ⩽ L(x̃, η̃, λ̃) ⩽ f(x̃)

Theorem 4.10 (KKT conditions). The Karush-Kuhn-Tucker conditions, given x, η, λ are:
• x is feasible
• For all i, ηi ⩾K∗

i
0

• For all i, ⟨ηi|fi(x)⟩ = 0
• The gradient of the Lagrangian ∂L

∂x is 0:

∇f0(x) +
m∑
i=1

∇⟨ηi|fi(x)⟩+
p∑

j=1

λj∇hj(x) = 0.

For a strongly dual convex problem, they are equivalent to the optimality of x for the primal and the
optimality of η, λ for the dual.

Property 4.11. If we have Slater’s condition (4.8), x is optimal if and only if there exists a η, λ satisfying
the KKT conditions.

4.2 Solution characterization

4.2.1 Characterization
Now we can move on to the optimal solutions of the maximum likelihood problem:{

maximize ℓ(ρ) on ρ ∈ D(H)

which literally means, “maximize the log-likelihood on density matrices”. In standard form, this is:
maximize

∑
i

log(Tr(ρEi)) on ρ ∈ O(H)

subject to ρ ⩾ 0

Tr ρ = 1

The optimization is on the vector space O(H). This problem satisfies Slater’s condition (4.8) as the
identity matrix is alway in the interior of D. Therefore all results for previous section are available, in
particular we can characterize the solution using the KKT conditions (4.10).

Property 4.12. ρML is an optimal solution if and only if there exists η ⩾ 0 and λ such that

⟨η|ρML⟩ = 0 and ∇ℓ+ η = λI

Proof. Using property 4.11 and
∂⟨η|ρ⟩
∂ρ

= η.

4.2.2 Uniqueness
The simplest case to ensure the solution exists and is unique, is to check if the problem is strongly convex:

Property 4.13. If Spani(Ei) = O(H), then the problem is strongly convex.

Proof. In the interior of D, the gradient of ℓ is:

∇ℓ =
∑
i

Ei

Tr(ρEi)
(4.3)

and so its hessian is:
∇2ℓ(X,Y ) = −

∑
i

Tr(XEi) Tr(Y Ei)

Tr(ρEi)2
(4.4)

which is obviously negative (∇2ℓ(X,X) < 0 for any X).

However if Span(Ei) is not full, we still have some properties: exact solutions will exist and fill an
affine sub-space of D orthogonal to Span(Ei). Actually it will be exactly the orthogonal of Span(Ei)
projected on D. Which solution to choose among those was one of the problem that was still unsolved
when I arrived, I propose some potential solutions in section 6.3.
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4.3 Projected gradient method
In this section the goal is to actually compute a solution ρML to the max-log-likelihood problem up to
numerical errors.

4.3.1 Algorithm
On unconstrained convex problems, the simplest way to find the optimum is to do a “gradient descent”.
It means that we go downward (toward lower f0) following the gradient. The algorithm start from x = x0
and is:

• Compute ∇f0(ρ).
• Choose an ε
• Move by h = −ε∇f0(x), i.e. x← x+ h.

The choice of ε is complex and has important consequences. Some examples are:
• Choose always the same value
• Choose a slowly decreasing value independent of the rest.
• Choose the best value that minimize t 7→ f0(x+ t∇f0(x)).
• Choose the best value that minimize the second order approximation

t 7→ f0(x) + t∥∇fc(x)∥2 +
t2

2
∇f t0 · ∇2f0 · ∇f0

In practice the last one was chosen.

Property 4.14. If f0 is strongly convex, the gradient descent algorithm with second order approximation
converges toward a solution for any unconstrained problem

However out problem is not unconstrained. The solution must in the feasible set D. One way of
dealing with that is to project the new point x+ h back to D. Projecting a point on a compact convex
set is always doable. We’ll see how to do it numerically in section 4.3.2

Property 4.15. For a constrained strongly convex problem, the projected gradient descent method with
second order approximation converges

In practice we’ll do “gradient ascent” as in our problem as we are maximizing a concave function. The
full algorithm is thus:

• Compute ∇f0(ρ) and ∇2f0(ρ)
• Choose an ε that maximizes (can be done in O(1) time):

t 7→ f0(x) + t∥∇fc(x)∥2 +
t2

2
∇f t0 · ∇2f0 · ∇f0

• Move by h = ε∇f0(x).
• Project on D. x← PD(x+ h).

4.3.2 Projection
This algorithm is an adaptation of work done by Pierre Six in [9], made by Pierre Rouchon in the actual
codebase.

For a given point A ∈ O(H), its projection on D is the point of D that is the nearest from A. We
want to: {

minimize ∥A− ρ∥ on ρ

subject to ρ ∈ D

Let first diagonalize A ∈ O(H) into A = UDU†.
We have ∥A− ρ∥ = ∥D−U†ρU∥ but we have U†ρU ∈ D ⇐⇒ ρ ∈ D, thus our problem is equivalent to:{

minimize ∥D − ρ∥ on ρ

subject to ρ ∈ D

But any outdiagonal coefficient of ρ would only increase the distance, as we can remove all of them
and stay in D (Warning: removing only part of them would not guaranty to stay in D). Our problem is
thus equivalent to (given that D = diag(d)):

minimize ∥d− x∥ on x ∈ Rn

subject to x > 0

∥x∥1 = 1
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This is therefore just projecting a point on a simplex of dimension n − 1 in Rn, a much simpler
problem but still not trivial. This problem is still convex, and satisfies Slater’s condition (4.8) because
x =

(
1
n , . . . ,

1
n

)
is strictly in the interior of the feasible set. If we minimize the squared, norm, we have a

C∞ problem, and thus we can characterize the solution with the KKT conditions:
• x is feasible
• n ⩽ 0. (dual feasibility)
• n · x = 0. (complementary slackness)
• 2(xi − di) + n+ 2c1 = 0 (∇L = 0).
There are two cases: either xi > 0 and ni = 0 and thus xi = di− c, or xi = 0 and di ⩽ c. The c value

cut the set of axis in two parts: those above and those below.

Theorem 4.16. The following algorithm computes the right projection:
• Sort x into dp(1) ⩾ · · · ⩾ dp(n).
• Find i0, the first index such that ci0 > dp(i0+1) with

ck =

k∑
i=1

dp(i) − 1

|S|

• For i ⩽ i0, xp(i) = dp(i) − c
• For i > i0, xp(i) = 0.

Proof. Property 4.11 ensures the uniqueness of the solution. We just need to find one point that satisfies
the KKT conditions. One can check condition by condition, that the solution computed by this algorithm
satisfies all KKT conditions. The only non-trivial point is that dp(i0) ⩾ ci0 , and this is true because it is
equivalent to dp(i0) ⩾ ci0−1 which is true because i0 − 1 didn’t satisfy the condition.
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Chapter 5

First Results

In this chapter I will present the actual experimental protocol we realized and the first result that were
done before I arrived. Most of the work in this section is still unpublished and is the content of the
internship of Luis Najera.

5.1 Extracting results and basic errors
Thanks to results of the previous chapter, we can now reconstruct ρML, the density matrix that maximizes
the log-likelihood of our measurement. In the next section, I’ll explain the exact experimental protocol
we used. But first let’s see how to use the result of the reconstruction. [8] proves that for any observable,
as the number of measurements grows, the average value of an observable A is Tr(ρMLA) +O( 1

N ). The
standard deviation due to the dispersion of measurements around this value tends to be:

VA = Tr(A||H−1(A||)) +O(
1

N2
) (5.1)

where:
• Dr is the submanifold of D of matrices with rank r
• PML is the orthogonal projector on the range of ρ.
• A|| is the orthogonal projection on the tangent space to Drk ρ in ρ:

A|| = A− Tr(APML)

Tr(PML)
PML − (I − PML)A(I − PML)

• H is the hessian of ℓ|Drk ρ
in ρ:

H(A) =
∑
i

Tr(AEi||)

Tr2(ρMLEi)
Ei|| + (λI −∇ℓ(ρML))Aρ

+
ML + ρ+MLA(λI −∇ℓ(ρML))

The ρ+ is the moore-penrose pseudo inverse (inversion of non-zero eigen values). The λ is the
one from property 4.12. The H is the Fischer information on the submanifold Drk ρ as proven in
property 2.4

Please take care that this is not the standard deviation on quantum measurement due to quantum
uncertainty, nor the deviation due to the probabilistic nature of ρML. This deviation comes from the
dispersion of the effect matrices Ei. If all the Ei are the same, ρML = Ei

Tr(Ei)
and VA = 0 for any A.

Furthermore it is a known problem of max-likelihood method that VA does not measure the deviation
due to how few experiment there are. If we have only one Ei, the max-likelihood algorithm will tell that
ρML = E1

Tr(E1)
with 0 deviation. I didn’t had time to address that in this internship and no one in my

team did it before, so we just assume we have enough measurements so that the O( 1
N ) is small enough

i.e significantly smaller than VA.
Remark. The individual coefficients can be observed with some specific matrices. We can thus compute
the deviation on each population and coherence individually. Those deviations are not independent.

5.2 Maxwell Demon experiment

5.2.1 Overview
The goal of this experiment is to study heat exchange and thermodynamics at a individual quantum
level. In particular, with some quantum manipulations, we create a Maxwell Demon context where a
colder atom can give heat to a hotter cavity.
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The protocol is the following:
• The cavity is cleared by sending a bunch of Rydberg atoms in groud state |g⟩ into it so that they

absorb any remaining photons. The temperature of the cavity is then T = 0K.
• A thermal field is built inside the cavity at a given initial temperature TC . This temperature is

different from the cryostat temperature, so it isn’t stable (but the relaxing time is long enough).
• A single Rydberg atom is sent through the setup.
• In the first Ramsey zone, it is set to temperature Ta.
• In the second Ramsey zone, it may or may not undergo an action from the Maxwell demon system

that make it interact with the fundamental level |f⟩.
• The atom interacts with the second cavity at temperature TC , emiting and absorbing photons.
• The atom is observed to be in either |e⟩, |g⟩ or |f⟩.
• A bunch of non-resonant QND atoms are sent to observe the state of the cavity.
• We reconstruct the state of the cavity by maxlike estimation thanks to the QND measurements.

5.2.2 Thermal state
We first need to define what is a thermal state at temperature T . Ideally it is the statistical state that a
quantum system reaches when interacting with a thermostat (a macroscopic system) at temperature T .
According the Maxwell-Bolzman distribution, the probability to be in state i of energy Ei is:

pi =
e−βEi

Z

where β = 1
kBT , and Z is the partition function Z =

∑
e−βEi . The thermal state is thus

ζβ =
∑
i

pi|i⟩⟨i|

This can be expressed more compactly with

ζβ =
eβH

Tr (eβH)
(5.2)

where H is the Hamiltonian. This is true for any quantum system of finite dimension.
In the case of a thermal qubit with energy gap Eg, we let pβ(Eg) = e−βEg

1+e−βEg
be the probability of

being in the top state .

5.2.3 Atom state
The Rydberg atom is prepared in state ζSβ . This state is a thermal mix of |e⟩ and |g⟩. However, in
practice atoms are in pure states. The Ramsey zone is calibrated to do just a rotation with the right
angle to bring |g⟩ to:

(1− pβ(ℏωeg))|g⟩+ eiϕpβ(ℏωeg)|e⟩

The angle and thus the temperature is chosen by the experimenter. However the axis of the rotation is
random, and thus the phase ϕ is also random. The average of those states is thus ζSβ .

However the goal of the experiment is to make the |e⟩-|g⟩ system interact with |f⟩ in order to decom-
pose those interaction. We’ll artificially split our system into two qubits HQ and HD, for the main system
e–g and the demon system g-f respectively. The atom is thus represented by the System HQ⊗HD. The
mapping is:

|e⟩ = |1Q1D⟩ |g⟩ = |0Q1D⟩ |f⟩ = |0Q0D⟩

The system is built in such a way that the first qubit is only about the e-g interaction and the demon
qubit is only about the g-f interaction. The state |1Q0D⟩ is purely fictitious and always has probability
zero in all our calculations. This decomposition allows to speak about entanglement and other concepts
that need multiple systems on a single atom.

The initial atom state is thus:
ζQβ ⊗ |1

D⟩⟨1D|
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5.2.4 Maxwell demon: readout
The demon action happens just before the cavity to avoid spontaneous emissions or absorbtion of random
thermal photons.

The goal of the demon is simply to send the state |g⟩ to |f⟩ in order to make only the excited state
interact with the cavity. That way, the atom can only emit energy to the cavity and cannot receive
energy from it. This is called readout because in terms of qubit, the system qubit is “copied” on the
demon qubit. In order to make that unitary we also need to send |f⟩ on |g⟩ but no atom should be in |f⟩
in the initial state. The corresponding quantum gate in the 2-qubit system is an inverted C-Not: The
second bit is flipped if the first on is 0.

5.2.5 Cavity interaction: Feadback
Inside the cavity the atom undergo an adiabatic passage that forces the absorption or the emission of an
atom. As the passage is done only around ωeg, the state |f⟩ does not interact at all with the cavity:

|g, n+ 1⟩ 7→ |e, n⟩
|g, 0⟩ 7→ |g, 0⟩
|e, n⟩ 7→ |g, n+ 1⟩
|f, n⟩ 7→ |f, n⟩

If the demon qubit is set to one, the unitary operation applied to the QC system is:

U = |00⟩⟨00|+ |1⟩⟨0| ⊗ a+ |0⟩⟨1| ⊗ a†

where a is the annihilation operator of the cavity.

5.3 Quantum information
The thermodynamical analysis of a quantum system requires certain tools in particular Von-Neumann
entropy:

Definition 5.1. The Von-Neumann entropy is a function S : D → R defined by:

S(ρ) = −Tr(ρ ln ρ)

Where ln is the principal logarithm on Hermitian positive definite matrices. It can be prolonged by
continuity on semi-definite positive Hermitian matrices.

This quantity is the analog of Shanon entropy for classical systems (H(p) =
∑

i−pi log pi). From
that quantity we can build all the other information theory quantity like conditional entropy or mutual
information with S as a building block. The equivalent of the marginal law in classical theory is the
partial trace. In particular, the relative entropy is the analogous of the Kullback–Leibler divergence.

For more details I suggest consulting a book like [5].

5.4 Thermodynamical analysis
Luis Bajera, whose internship project motivated the work of my internship, had done some interesting
work on the second law of thermodynamics. In particular he related the second law of thermodynamics
to the notions of quantum information theory. His main result, that we wanted to test, is a rewrite of the
second law of thermodynamics. Usually if two systems have temperature T1 and T2, are put into contact
and exchange some heat Q from 1 to 2, we’ll have:

Q

T2
− Q

T1
⩾ 0.

If we speak about the inverse temperature β, we’ll write:

∆βQ ⩾ 0.

But this inequality does not hold when the Maxwell demon is activated, because the fact that the
demon learns information about the system somehow reduces the entropy in some way. The new inequality
named Weak second law is then

∆βQ−∆IQC:D ⩾ 0 (5.3)
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Figure 5.1: Plot of the exchanged heat depending on the Maxwell demon state (ON or OFF )

where IQC:D is the mutual information between, on one side the main atomic qubit Q and the cavity C,
and on the other side the demon D. In fact Luis managed to find the exact value of this quantity to get
what we call strong second law

∆βQ−∆IQC:D = DQC (5.4)

where DQC is the relative entropy of the system QC compared to its original thermal state ζQβQ
⊗ ζCβC

.

5.5 Experimental results
The goal of the experiment was thus to check Luis’ results, in particular the strong second law. The
plots I will give here are the one that were made before I arrived to the lab. First we plot in fig. 5.1 the
exchange of energy in function of the relative temperature ∆β from the point of view both systems. In
theory QC = −QQ. In particular, when the demon is OFF the thermal equilibrium is at ∆β = 0 whereas
when it is activated it is shifted to the left. In that case, we are forcing the heat to move from the atom
to the cavity. We can see that there are error bars on the heat because heat is simple quantum observable
and thus its error can be evaluated thanks to the results of [8].

We can now plot the mutual information in fig. 5.2. In this one we see that demon acquires a lot of
information in the readout phase and then somehow “use” it when arriving in the feedback phase.

We can then plot the weak second law in fig. 5.3, and the strong second law in fig. 5.4. In particular,
we need error bars to determine it the point below 0 in fig. 5.3 and all the points off the 0 axis in fig. 5.4
are just random variations or actually mean something.
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Figure 5.2: Plot of the mutual information in the readout phase vs the feedback phase

Figure 5.3: Plot of the weak second law in eq. (5.3)
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Figure 5.4: Plot of the strong second law in eq. (5.4)
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Chapter 6

Error estimation and validity proofs

As seen in the previous chapter, most of our thermodynamics quantities involve directly or indirectly
entropy or other statistical quantities of the density matrix. However the proof of validity in [8] only
covers the case of observables, i.e. functions such as f(ρ) = Tr(ρA) with A ∈ O(H). In our case the
entropy is not an observable, it is not even linear. It depends not on quantum properties but on the
statistical part of the density matrix. And even worse, its derivative goes to infinity on the edge of D.

The two problems I have to solve are then: for a generic function f : D → R,
• Is the average value of f(ρ) indeed f(ρML)?
• How to compute the error on the value of such general f on the reconstructed matrix as eq. (5.1)

does not work?
My first approach to solve the second problem was a Monte-Carlo simulation explained in section 6.1.

It gave quite good results especially since, before this, the team had absolutely no idea of the error of
various entropy-related values. It was thus impossible to evaluate how a point a bit off the theoretical
curve fitted there.

However this first approach was filled with more or less wrong independence hypothesis (I was forced
to assume independence nearly everywhere). So I dived into [8] and proved the first point to be true and
found a way to adapt eq. (5.1) to fulfill the second point.

In the end another problem was that, as explained in section 4.2.2, if Span(Ei) is not the full space,
the solution is not unique. We need a way to pick the “best solution”. As this is not well defined I propose
two possible definitions, both based on maximizing a score function, in section 6.3.

6.1 Quick approach: Monte-Carlo estimation
At the beginning of my internship, I designed a Monte-Carlo algorithm to sample the probability space
according to the distribution deduced from the deviation on each coefficient. The goal was to have a
quick and dirty method to quickly get error bars that would have been a little but not too much wrongly
estimated.

In order to do that, I had to create a probability distribution that matched the deviation on each
coefficient. But this distribution cannot be sampled easily because it is the projection of an other
probability law on a subvector-space. Let’s look at the problem more formally.

In Luis’ setup, we have only information on the population from the reconstruction and we force the
coherences to be 0. The problem is thus just about probability vectors on the diagonal. So our input
is a set of values pi and deviations ∆pi such that each pi marginal law is a normal law. In theory the
probability distribution on Rn is:

dp(x1, . . . , xn) = K exp

(∑ (xi − pi)2

2∆p2i

)
d(x1, . . . , xn)

where K is a normalization constant. However, the vector x = (x1, . . . , xn) must be positive and sum
to 1. We’ll call Pn the set of probability vectors of dimension n. We will define our new law on Pn by
the same density function but on top of the Lebesgue measure of dimension n − 1. This distribution is
much harder to simulate because it is both projected and truncated (Pn is not the whole hyperplane of
sum 1).

In order to do the sampling, I use an adapted hit and run method to build a Markov chain on Pn

whose stationary distribution is the wanted distribution. The base idea is very simple: I know how to
truncate a Gaussian law to a segment and sample it on that segment. So an iteration of the Markov
chain is to go from the previous point xn−1 and sample a random direction in the hyperplane of sum 1.
This direction and xn−1 give us an affine line of that hyperplane.
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We can then compute the intersection of that line and Pn. Then we can project the multivariate
Gaussian law on the line. As we are working with normal laws, the projected law will be normal and we
just have to figure out the center and the standard deviation. If we scale the whole space on each axis
by the corresponding ∆pi, this is just an orthogonal projection.

Once we have the law on the line and the segment, we sample the truncated law on the segment
and this gives us xn. The wanted distribution is indeed a stationary distribution of this Markov chain,
and the chain fully mixes the set Pn. On discrete probability sets, this is sufficient to say that there is
only one stationary distribution and that the chain converges towards it. I hope that this is still true
for continuous chains. I decided that this is an inexact and informal way to get the deviation on our
functions and thus spending more time on it to have strong convergence results instead of doing the work
of the next section was not a good idea.

If I assume that the chain indeed converges toward the right probability distribution, then by sampling
this chain long enough, I can get the statistic average and standard deviation of any real function of Pn.
This give good enough error bars for our purposes.

6.2 Complete first order error-bars
In this section, I try to formalize and prove formulas for getting the expectation and standard deviation of
any function on the set of density matrices D following the probability given by the maximum-likelihood
reconstruction.

All of the theorems in this section are generalizations, adaptations, and improvements from [8]. The
goal here is to compute the expected value and the variance of a generic function h : D → R on a variable
ρ following a prior distribution P0 knowing all the measurement we did. If SpanEi is the full space, we
will prove that when the number N of measurement goes to infinity, the expectation is

E(h(ρ)) = h(ρML) +O(N−1)

and the variance is
V (h(ρ)) = Tr(∇h||H−1(∇h||)) +O

( 1

N2

)
where ∇h is the gradient of h on the set of Hermitian matrices of null-trace, and A|| and H are the same
as below eq. (5.1). Both asymptotic value are independent of P0. It is important to note that the term
O( 1

N2 ) in the variance formula is still only one order of magnitude below the main term because the
variance will decrease in 1

N when the number of experiments increase.
One can check that if we set h(ρ) = Tr(Aρ), we’ll find back the result of section 5.1.
Obviously some regularity conditions, that will be given later, are needed on h for these results to

work. I tried and achieved to have quite low regularity conditions, so that people could use these results
with low-regularity functions. However these conditions are not sufficient to deal with the entropy on
the edge of D. In section 6.2.4, I explain how one can achieve similar results with the entropy, but with
other terms less bounded e.g. E(h(ρ)) = h(ρML) +O(N−ε) for ε < 1.

Let’s formalize how to prove those asymptotic. For simplicity we’ll assume that P0 can be expressed
as a density function on the Lebesgue measure of the Tr = 1 hyperplane. With that out of the way,
we can study the modification of P0 thanks to the measurements we did by the means of the likelihood
function. L(ρ) = eℓ(ρ) is the density of probability of having the measurements we had, given the density
matrix ρ. Therefore, according to Bayes law (see eq. (2.1)), we have

E(h(ρ)) =
Ih
I1

where
Ih =

∫
h(ρ)eℓ(ρ)P0(ρ)dρ.

However to do asymptotic expansions we need to grow a single variable. Thus, we’ll write our
asymptotic development as if we repeated the experiment and got again the same results. The log-
likelihood function will then be Nℓ. We’ll assume that this give the same asymptotic behavior as if we
grew the number of measurements inside ℓ. The number of repetition that’ll grow to infinity will thus be
N , so we will study what happens when N →∞ on

Eh(N) =
Ih(N)

I1(N)

where
Ih(N) =

∫
h(ρ)eNℓ(ρ)P0(ρ)dρ.
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Then, to compute variances, we only need to get the expectation of:

hV =
(
h− lim

N→∞
Eh(N)

)2
6.2.1 Full rank
We’ll start by studying what happens when rk ρML = n i.e when ρML is in the interior of D. To do that,
we first need a few technical theorems.

Theorem 6.1. Let g : U → R be a function of class C 1 on U a neighborhood of 0. If g(0) ̸= 0, we have,
as N →∞: ∫

z∈U

g(z)e−
N
2 ∥z∥2

dz = g(0)

(
2π

N

)n
2

+O
(
N−n

2 −1
)

Proof. We can decompose g in g(z) = g(0) + h(z) with h(z) = O(∥z∥) as g is C 1 in 0, thus:∫
z∈U

g(z)e−
N
2 ∥z∥2

dz = g(0)

∫
z∈U

e−
N
2 ∥z∥2

dz +

∫
z∈U

h(z)e−
N
2 ∥z∥2

dz.

Furthermore, ∣∣∣∣∫
z∈U

h(z)e−
N
2 ∥z∥2

dz

∣∣∣∣ ⩽ C

∫
z∈U

∥z∥e−N
2 ∥z∥2

dz

⩽ C

∫
z∈Rn

∥z∥e−N
2 ∥z∥2

dz

⩽ CAn

∫
r∈R+

rn+1e−
N
2 r2dr

⩽ CAn

∫
r∈R+

rn+1e−
N
2 r2dr

⩽ O
(
N−n

2 −1
)

where C is the constant such that |h(z)| ⩽ C∥z∥, An is the surface of the hypersphere of Rn and the
last line comes from eq. (C.2). Up to exponentially small terms (O(eNδ) for a given δ), we have (using
eq. (C.1)):

g(0)

∫
z∈U

e−
N
2 ∥z∥2

dz ≈ g(0)
∫
z∈Rn

e−
N
2 ∥z∥2

dz = g(0)

(
2π

N

)n
2

However when g(0) = 0, the previous theorem does not give anymore the first order term but just a
bound on the integral which may not be very useful in certain cases. We’ll thus look in more details at
the case g(0) = 0. We’ll assume additionally that ∇g = 0, because that is what happens for our cases
that require that theorem.

Theorem 6.2. Let g : U → R be a function of class C 3 on U a neighborhood of 0. If g(0) = 0 and
∇g(0) = 0, we have, as N →∞:∫

z∈U

g(z)e−
N
2 ∥z∥2

dz =
Tr(∇2g(0))

2N

(
2π

N

)n
2

+O
(
N−n

2 −2
)
.

Proof. g can be written g(z) = 1
2 ⟨z|∇

2g(0)|z⟩ + O(∥z∥3) because it is C 3. The integral on the O(∥z∥3)
part gives O

(
N−n

2 −2
)

with eq. (C.2) with the same method as in the precedent proof.
We can then use lemma C.1 to get the result.

Up until now, we used a simple Gaussian in the exponential, but in practice, what we want in there
is our log-likelihood function ℓ, let’s do a generic theorem then:

Theorem 6.3. Let U be an open set containing 0. Let f : U → R be a C 4 function. Let g : U → R be a
C 1 function. Assume that f has a unique global non critical maximum in 0 (∇f = 0 and ∇2f < 0). We
have at N →∞: ∫

z∈U

g(z)eNf(z)dz = g(0)

(
2π

N

)n
2 eNf(0)√
|det∇2f(0)|

+O(eNf(0)N−n
2 −1)
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Additionally, If g(0) = 0 and ∇g(0) = 0, and f ∈ C 6 and g ∈ C 3, we have:

∫
z∈U

g(z)eNf(z)dz =
Tr
(
−∇2g(0)

(
∇2f(0)

)−1
)

2N

(
2π

N

)n
2 eNf(0)√
|det∇2f(0)|

+O
(
eNf(0)N−n

2 −2
)

Proof. First we assume f(0) = 0 without loss of generality (it suffice to divide everything by eNf(0)).
The Morse lemma (C.4) tells us that there is a neighborhood V of 0 and a diffeomorphism ψ : V → V ′

with ψ(0) = 0 such that

f(z) = −1

2
∥ψ(z)∥2 and ∇ψ(0) =

√
−∇2f.

Because the hessian of f is negative definite in 0 and the maximum is unique, all values of f outside of
V are below a constant −δ. So all the part of the integral outside of V are O(e−Nδ) and thus negligible.
We can now study the integral only on V . We can then make a change of variable on ψ:∫

z∈V

g(z)eNf(z) =

∫
z∈V ′

g(ψ−1(z))e−
N
2 ∥z∥2

J(z)dz

with J(z) = |det∇ψ−1|. We can then set g0(z) = g(ψ−1(z))J(z), and look at the two cases:
• As f ∈ C 4, we have ψ ∈ C 2 (and thus also ψ−1) and finally J ∈ C 1, but g is also in C 1, so g0 is in

C 1. We can then apply theorem 6.1 and get the result we want with:

g0(0) = g(ψ−1(0))J(0) = g(0)
1

det∇ψ(0)
=

g(0)√
|det∇2f |

• As f ∈ C 6, we have ψ ∈ C 4 (and thus also ψ−1) and finally J ∈ C 3, but g is also in C 3, so g0 is in
C 3. We can then apply theorem 6.2 and get the result we want with:

∇gt0 = ∇gt∇ψ−1 × J + g ◦ ψ−1 ×∇J

but as g(0) = 0, we have g(ψ−1(0)) = 0 and furthermore ∇g(0) = 0 so ∇(g ◦ ψ−1)(0) = 0. Finally,
the only remaining term is:

∇2g0(0)) = ∇2(g ◦ ψ−1)× J(0)

= (∇ψ−1(0))
t∇2g(0)(∇ψ−1(0))× 1√

|det∇2f |

If we put that to the trace, we get the result we wanted.

6.2.2 Partial rank
When ρML is not of full rank, we are on the edge of D. We must thus study what happens to the results
of the previous section, when we are on the edge. Luckily, we can just study the case of edges on which
only one dimension is missing. Indeed when more dimension are missing, there is a trick to bring it back
to only one dimension missing.
Remark. All formulas here work with only x i.e if n, the dimension of z, is 0. It suffice to note that the
Lebesgue measure of the point is 1 and all the proofs work.

Theorem 6.4. Let U be an open set of R+ ×Rn where (0, 0) ∈ U . The R+ coordinate will be x and the
Rn coordinate will be z. Let g : U → R be a C 1 function. The derivatives against the edge i.e on x are
taken as one-sided derivatives. We have as N →∞:∫

(x,z)∈U

xmg(x, z)e−N(x+ 1
2∥z∥

2) dx dz = g(0, 0)m!(2π)
n
2N−n

2 −m−1 +O(N−n
2 −m−2)

Proof. With the now usual argument, we can restrict ourselves to a rectangular set U ′ = [0, η)×Uz ⊂ U .
Here we decompose g in g(x, z) = h(z) + xg1(x, z) with h(z) = g(0, z) (We can do that because g is C 1).
As g1 is bounded on U , we have:∫

(x,z)∈U ′
xm+1g1(x, z)e

−N(x+ 1
2∥z∥

2) dxdz ⩽ ∥g1∥∞
∫
(x,z)∈U ′

xm+1e−N(x+ 1
2∥z∥

2) dx dz

= O(N−n
2 −m−2)
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This is because we can split the integral and use eq. (C.1) and eq. (C.3).
On the other hand, thanks to eq. (C.1) and theorem 6.1, we have:∫

(x,z)∈U ′
xmh(z)e−N(x+ 1

2∥z∥
2) dxdz =

∫ η

0

xme−Nx dx×
∫
z∈Uz

h(z)e−
N
2 ∥z∥2

dz

= m!N−m−1 × (h(0)

(
2π

N

)n
2

+O
(
N−n

2 −1
)
)

Theorem 6.5. If we add to the previous theorem the hypothesis that g(0) = 0, ∇g(0) = 0 and g is C 2

and in particular C 3 on the variable z (i.e. for any x, z 7→ g(x, z) ∈ C 3), we have:

∫
(x,z)∈U

xmg(x, z)e−N(x+ 1
2∥z∥

2) dxdz =
m! Tr

(
∂2g
∂z2

)
2Nm+2

(
2π

N

)n
2

+O
(
N−n

2 −m−3
)

Proof. We use the same U ′ as in last proof. By applying lemma C.2 twice, we get

g(x, z) = h(z) + x2g2(x, z)

For that same reason as in previous proof, The integral on x2g2 is O(N−n
2 −m−3). We can then, like the

previous proof, split the integral and use eq. (C.1) and theorem 6.2 to get the result.

Like in the previous section we now need to take care about a generic function f in the exponential.
We can’t use the theorem 6.3 because it assume a null gradient for f but here ∂f

∂x could be negative.

Theorem 6.6. Let U be an open set of R+ ×Rn where (0, 0) ∈ U . The R+ coordinate will be x and the
Rn coordinate will be z. Let f : U → R be a function of class C 4 and g : U → R be a function of class C 1.
The derivative against the edge i.e on x are taken as one-sided derivative. Assume that f has a global
non-critical maximum in 0 so that ∂f

∂z (0) = 0 and ∂2f
∂z2 (0) < 0. Furthermore, we assume that ∂f

∂x (0) < 0.
We have as N →∞:∫

(x,z)∈U

xmg(x, z)eNf(x) dxdz =
g(0, 0)m!(2π)

n
2

N
n
2 +m+1

× eNf(0,0)√∣∣∣det ∂2f
∂z2

∣∣∣ (−∂f
∂x

)m+1
+O(eNf(0,0)N−n

2 −m−2)

Additionally, if g(0) = 0, ∇g(0) = 0, g is C 2 and in particular g is C 3 on variable z and f is C 6, We
have as N →∞:

∫
(x,z)∈U

xmg(x, z)eNf(x) dx dz =

m! Tr

(
∂2g
∂z2

(
∂2f
∂z2

)−1
)

2Nm+2
×

(
2π
N

)n
2 eNf(0,0)√∣∣∣det ∂2f

∂z2

∣∣∣ (−∂f
∂x

)m+1
+O

(
eNf(0,0)N−n

2 −m−3
)

Proof. We start by supposing f(0, 0) = 0 by dividing everything by eNf(0,0).
We now do a change a variable to bring back f to be −x− 1

2∥z∥
2 like in the proof of theorem 6.3. To

that change of variable we decompose f in f(x, z) = h(z) + xf1(x, z) with h(z) = f(0, z). The change of
variable x̃ = xf1(x, z) and z̃ = ψ(z) where ψ is the Morse lemma decomposition of h will give the right
result. Doing the actual variable change and computing the Jacobian is left to the reader. The regularity
analysis is the same as in theorem 6.3

6.2.3 Application
Here we can finally apply all those asymptotic theorems to our case. I first recall the notations. For
h : D → R, we define

Ih(N) =

∫
ρ∈D

h(ρ)eNℓ(ρ)P0(ρ)dρ (6.1)

where P0 is the prior probability distribution on density matrices. So that we have its expectation

Eh(N) =
Ih(N)

I1(N)
. (6.2)

Its variance is the expectation of:

hV =
(
h− lim

N→∞
Eh(N)

)2
(6.3)

We make some technical assumptions such as:
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• P0(ρML) > 0: If our estimator has a null-probability, the prior distribution doesn’t make much
sense.

• P0 is of class C 3: This is necessary for the various asymptotic developments.
• D = D(Cd): We use simple d-dimensional density matrices.

Lemma 6.7. For any h of class C 1 on D, we have:

Eh(N) = h(ρML) +O

(
1

N

)
and for any h of class C 2 such that h(ρML) = 0, ∇h(ρML) = 0, and such that, if we name z the variable
on the space tangent to Drk ρML

in ρML, g is of class C 3 in z, we have:

Eh(N) =

Tr

(
−∂

2h

∂z2
(ρML)

(
∂2ℓ

∂z2
(ρML)

)−1
)

2N
+O

(
1

N2

)
Proof if ρML has full rank. In this case, D is a neighborhood of ρML in the hyperplane of Hermitian
matrices of trace 1. This hyperplane is itself an euclidean real vector space isometric to Rn for a given
n. ℓ is smooth so it is C 4, and it has a global unique (by convexity) non-critical (by strong convexity)
maximum in ρML. As both h and P0 are of class C 1, we can just do a translation to apply theorem 6.3.
We have then:

Ih(N) = h(ρML)P0(ρML)

(
2π

N

)n
2 eNℓ(ρML)√
|det∇2f(ρML)|

+O(eNℓ(ρML)N−n
2 −1)

and

I1(N) = P0(ρML)

(
2π

N

)n
2 eNℓ(ρML)√
|det∇2f(ρML)|

+O(eNℓ(ρML)N−n
2 −1)

Everything then simplifies in the result we wanted:

Eh(N) =
Ih(N)

I1(N)
= h(ρML) +O

(
1

N

)
In second case h(ρML) = 0, z just span the full space and so represent the same variable as ρ. Therefore

h is just plainly C 3, we can thus just apply the second part of theorem 6.3, and get:

Ih(N) =
Tr
(
−∇2h(ρML)

(
∇2ℓ(ρML)

)−1
)

2N

(
2π

N

)n
2 eNℓ(ρML)√
|det∇2f(ρML)|

+O
(
eNf(0)N−n

2 −2
)

And finally:

Eh(N) =
Ih(N)

I1(N)
=

Tr
(
−∇2h(ρML)

(
∇2ℓ(ρML)

)−1
)

2N
+O

(
1

N2

)

Proof if ρML has partial rank and ∇ℓ ̸= λI. This proof is a bit more subtle, because in theorem 6.6, the
edge dimension x is of only one dimension but here, we may miss several dimensions. We thus need to
mount a change of variable that reduces several dimension to one. This change of variable came form [8].

Before starting let’s just name h0(ρ) = h(ρ)P0(ρ).
First let r be the rank of ρML. Then let’s suppose that ρML is diagonal by rotating everything along

a unitary U such that ρML = UDU†. D will then be diag(0, . . . , 0, p1, . . . , pr). We’ll define ∆ by:

D =

(
0 0
0 ∆

)
We can then pose the following change of variable:

Ψ(ξ, ζ, ω) = exp

(
0 ω
−ω† 0

)(
ξ 0
0 ∆ + ζ − Tr ξ I

r

)
exp

(
0 −ω
ω† 0

)
(6.4)

Where ξ ∈ O(Cd−r), ω ∈ M(d−r),r and ζ ∈ O(Cr) but with Tr ζ = 0. First, let’s show that it is a
diffeomorphism. We have:

∇Ψ(D) · (δξ, δζ, δω) =
(

δξ δω∆
∆ δω δζ − Tr(δξ) Ir

)
(6.5)
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This is bijective in 0 (∆ is invertible), so by local inversion theorem Ψ : U → V is a diffeomorphism on
U a neighborhood of D. By the same argument as usual, we can focus our study of the various integral
to only U ′ = U ∩ D and even to U ′′ = Ů ′ because U ′ \ U ′′ is of null measure. We can thus apply the
change of variable∫

ρ∈U ′′
h0(ρ)e

Nℓ(ρ)dρ =

∫
(ξ,ζ,ω)∈V ′′

h0(Ψ(ξ, ζ, ω))eNℓ(Ψ(ξ,ζ,ω))J(ξ, ζ, ω)dξ dζ dω (6.6)

Where J((ξ, ζ, ω)) is the determinant of the Jacobian of Ψ and V ′′ = Ψ(U ′′).
In fact we can characterize what the edge of D is in the (ξ, ζ, ω)-space:

ρ = Ψ(ξ, ζ, ω) > 0 ⇐⇒ ξ > 0

So we would like ξ to be our x variable and (ζ, ω) to be our z variable. On one hand the second part
is easy: let’s name z the variable z = (ζ, ω). One the other hand the first part is not that easy because ξ
is multidimensional (except if r = n− 1).

Luckily If we write ξ = xσ with σ ∈ D(Cd−r), we’ll have ξ > 0 ⇐⇒ x > 0 and we are brought back
to a single one sided variable. If we name Φ(x, σ) = xσ our function, it is a diffeomorphism on the whole
R>0×D(Cd−r) to the positive definite Hermitian matrices of size r. Furthermore it’s Jacobian can easily
be computed and it is xr.

There just one problem before doing a new change of variable: In order to do a proper change of
variable, we’ll need to split ξ from z, Thus we’ll build a rectangle neighborhood V ′′′ of (0, 0, 0) that
separates ξ on one side and z on the other, such that V ′′′ = V ′′′

ξ × V ′′′
z . We’ll also use W ′′′ = Φ−1(V ′′′

ξ )
We’ll thus have:∫

ρ∈U ′′′
h0(ρ)e

Nℓ(ρ)dρ =∫
(x,σ)∈W ′′′

∫
z∈V ′′′

z

xmh0(Ψ(Φ(x, σ), z))eNℓ(Ψ(Φ(x,σ),z))J(Φ(x, σ), z) dxdσ dz (6.7)

Where m = dimD(Cd−r) = (d− r)2 − 1. If we split again W ′′′ in a rectangular sub-neighborhood of
0, namely W ′′′′

x ×W ′′′′
σ , we have:

∫
ρ∈U ′′′′

xmh0(ρ)e
Nℓ(ρ)dρ =∫

σ∈W ′′′′
σ

(∫
(x,z)∈W ′′′′

x ×V ′′′
z

h0(Ψ(Φ(x, σ), z))eNℓ(Ψ(Φ(x,σ),z))J(Φ(x, σ), z) dxdz

)
dσ (6.8)

We now want to apply theorem 6.6 on the integral inside the parenthesis. Let’s check all the hypothesis.
U =W ′′′′

x × V ′′′
z is a neighborhood of (0, 0) in R+ × Rn. ℓ,Ψ,Φ are smooth so f(x, z) = ℓ(Ψ(Φ(x, σ), z))

will be C 4. Being a non-critical global maximum is conserved when pre-composing with any differentiable
function so (0, 0) is global maximum of f on U .

We now only need to prove about f that ∂f
∂x < 0:

∂f

∂x
× δx = ∇ℓ ·

(
δx σ 0
0 −δxI

)
According to property 4.12 If ∇f ̸= λI, we have η ̸= 0 with η ⩾ 0 such that Tr(ηD) = 0 and

∇f + η = λI, Thus we have:

η =

(
ν 0
0 0

)
(6.9)

with ν ⩾ 0 and ν ̸= 0. Therefore:
∂f

∂x
= −Tr(ησ) < 0.

Additionally, h and P0 are C 1, and J is smooth so g(x, z) = h0(Ψ(Φ(x, σ), z))J(Φ(x, σ), z) is of class C 1.
We can then apply theorem 6.6, and when h(ρML) ̸= 0 we have:

Ih(N) =
h(ρML)P0(ρML)J(0, 0)m!(2π)

n
2

N
n
2 +m+1

×
∫
σ∈W ′′′′

σ

eNℓ(ρML)√∣∣∣det ∂2f
∂z2

∣∣∣ (−∂f
∂x

)m+1
dσ +O

(
eNf(0,0)

N
n
2 +m+2

)
(6.10)
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We can then simplify everything and get the result we want.

In the case h(ρML) = 0. We can easily check that the various regularity conditions are directly mapped
on the similar conditions on g. Because ∂h

∂z = 0 by hypothesis, we have:

∂2g

∂z2
(0, 0) = J(0, 0)P0(ρML)

∂2h

∂z2
(ρML)

Therefore when we apply theorem 6.6 and simplify by eq. (6.10), we get the second result we wanted.

The corner case where the ρML is on the edge of D but the gradient toward the exterior is 0 is not
done in this report like in the original paper [8]. The probability that such an event happens is really low
(if it is not 0) in particular if we take into account the numerical errors of the implementation. However
it can still probably be done by splitting again the x and z variable but keeping x as a quadratic variable
in the function in the exponential.

Theorem 6.8. For any h : D → R of class C 1, we have its expectation:

Eh(N) = h(ρML) +O

(
1

N

)
Additionally, if it is of class C 3 in the inside and along the edges and C 2 otherwise with ∂2h

∂x2 = o( 1x )
when leaving the edge (where x is a scalar variable not tangent to the edge), we’ll have the variance:

Vh(N) = EhV
(N) =

Tr(∇h||H−1(∇h||))
N

+O(
1

N2
)

where:
• Dr is the submanifold of D of matrices with rank r
• PML is the orthogonal projector on the range of ρ.
• A|| is the orthogonal projection on the tangent space to Drk ρ in ρ:

A|| = A− Tr(APML)

Tr(PML)
PML − (I − PML)A(I − PML)

• H is the hessian of ℓ|Drk ρ
in ρ:

H(A) =
∑
i

Tr(AEi||)

Tr2(ρMLEi)
Ei|| + (λI −∇ℓ(ρML))Aρ

+
ML + ρ+MLA(λI −∇ℓ(ρML))

Where ρ+ is the Moore-Penrose pseudo inverse.

Proof. The expectation proof is just a direct application of lemma 6.7. For the variance, it’s a bit more
tricky. First, let’s check the regularity conditions. We want to apply lemma 6.7 on hV =

(
h− h(ρML)

)2.
On the inside h is of class C 3, so we have

∇hV = 2(h− h(ρML))∇h and ∇2hV = 2(h− h(ρML))∇2h+ 2|∇h⟩⟨∇h| (6.11)

And we find out, that if ρML is on the edge, ∇2hV can be prolonged to the edge because ∇2h will be
dominated by (h−h(ρML)). If we are inside, we have a C 3 neighborhood, so we don’t care. Furthermore,
we have that ∇hV = 0. Therefore, we can apply lemma 6.7 and get:

Vh(N) = EhV
(N) =

Tr

(
−∂

2hV
∂z2

(ρML)

(
∂2ℓ

∂z2
(ρML)

)−1
)

2N
+O

(
1

N2

)
As seen in eq. (6.11), ∂2hv

∂z2 = 2|∂h∂z ⟩⟨
∂h
∂z

t|. We just have some equalities to show:
• ∂h

∂z = ∇h||: If we take an hermitian matrix A written as

A =

(
A0 A0,r

A†
0,r Ar

)
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one can check that we have

A|| =

(
0 A0,r

A†
0,r Ar − Tr(Ar)

I
r

)
which is exactly the tangent space to Drk ρML

at ρML. Furthermore that tangent space is exactly
spanned by z.

• ⟨X|
(

∂2ℓ
∂z2

)−1

|X⟩ = Tr(X × H−1(X)): Computing the link between the original hessian at ρML

truncated to the tangent space and ∂2ℓ
∂z2 is a bit more complicated because the z variable has a curve.

We use again explicitly the change of variable of the previous proof. If we write ℓ(z) = ℓ(Ψ(z)), we
have

∂2ℓ

∂z2
= ⟨∇ℓ|∇2Ψ+∇Ψ∇2ℓ∇Ψ

In this formula, ∇2Ψ is a not a matrix but a 3 dimensional tensor with two input sides and one
output side. The ⟨∇ℓ| applies on the output side.
Since ∇Ψ|X⟩ = |X||⟩ the second term is simply

∇Ψt∇2ℓ∇Ψ =
∑
i

|Ei||⟩⟨Ei|||
Tr2(ρMLEi)

On the other hand, with some calculus, one can prove that

∇2Ψ(δz, δz) =

(
2δω∆ δω ?

? ?

)
.

We use again the notations of eq. (6.9) and property 4.12. We know that ⟨λI|∇2Ψ = 0 because Y
in the set of matrices of trace one. So the only remaining part is:

⟨∇ℓ|∇2Ψ(δz, δz) = −2Tr(νδω∆δω).

If we write δΨ = ∇Ψδz, we have:

Tr(δΨ(λI −∇ℓ(ρML))δΨρ
+
ML + δΨρ+MLδΨ(λI −∇ℓ(ρML))) = −Tr(δΨηδΨρ+ML + δΨρ+MLδΨη)

= −2Tr(νδω∆δω)

In the end,

⟨X| ∂
2ℓ

∂z2
|X⟩ = ⟨X|H(X) = Tr(XH(X))

so they are just two version of the same operator.

If we remove the N factor and replace Nℓ by just ℓ, the N denominator will enter H and we will have
the results that were announced at the beginning of the section 6.2

6.2.4 Regularity of Entropy
If look at the previous regularity constraints, the entropy does not satisfy them: it is not C 1 on the edge,
and its variance is not C 2 on the edge. However, if I define intermediate regularity classes as:

Definition 6.1. We say that a function f : R→ R is of class C β in 0 if for k = ⌊β⌋, the function is C k

on a neighborhood of 0 and we can write:

f (k) = f (k)(0) + o(xβ−k)

Remark. f is of class C β if and only if f ′ ∈ C β−1.

Remark. This definition extends trivially to multivariate functions, So I’ll use the notation for those
functions

Property 6.9. If f ∈ C β and ⌊k⌋ = β, we have

f(x) = f(0) + xf ′(0) + · · ·+ x(k)

k!
f (k)(0) + o(xβ)

Proof. If we call g(x) = f(x) −
(
f(0) + xf ′(0) + · · ·+ x(k)

k! f
(k)(0)

)
, then g(i)(0) = 0 for any i ⩽ k, and

g(k)(x) = o(xβ−k). By successive integration’s we get g(i)(x) = o(xβ−i) and thus g(x) = o(xβ).
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Theorem 6.10. For any h : D → R of class C ε with 0 < ε < 1, we have its expectation:

Eh(N) = h(ρML) +O

(
1

Nε

)
Proof. It suffice to go over all the proofs and replace C 1 by C ε everywhere, and all the proofs can be
adapted: when we decompose g in g(z) = g(0) + h(z) with O(∥z∥) in theorem 6.1, We just replace it by
h(z) = O(∥z∥ε). In all the proof the change of class propagates well (The product of a C 1 function and
C ε function is C ε. The same is true for composition g ◦ f if g is C ε and f is in C 1).

In theorem 6.4, we also decompose g(x, z) in h(0, z) + xg1(x, z). In the C ε, we can do g(x, z) =
h(0, z) + xεg1(x, z) and the rest of the proof will give what we want.

Theorem 6.11. Let’s take h : D → R that is C 3 on the interior of D and on the tangent spaces to the
edges. Furthermore we ask that h is C ε on the edge for 0 < ε < 1 and that it satisfies ∂h

∂x = o( 1
xδ ) with

0 < δ < ε, for any scalar variable x not tangent to the edge, the variance will be:

Vh(N) = EhV
(N) =

Tr(∇h||H−1(∇h||))
N

+O(
1

N1+ε−δ
)

Proof. Let’s study the regularity of hV = (h− h(ρML))
2. On the interior of D we have:

∇hV = 2(h− h(ρML))∇h

First on any vector variable z tangent to the edge of D, this formula will be true on the edge with
partial gradient on z. On any variable x not tangent to the edge, we’ll have ∂hv

∂x = 2o(xε)o( 1x
δ
) = o(xε−δ).

From ε > δ, we deduce that ∂hV

∂x (ρML) exists and is 0, so hV can be prolonged in a C 1 function on the
edge. In fact is prolonged in a C 1+ε−δ function.

Now, if we look at lemma 6.7, it only manipulates derivative on z, so its proof works. If we go further
back, all theorem require both C 3 in the interior and when tangent to the edge, and C 2 otherwise. That
C 2 can be replaced everywhere by C 1+ε−δ with the same kind of proof modification as in the previous
theorem.

Property 6.12. The con-Newman entropy is of class C ε for any ε < 1 on the edge of D, and smooth
on the interior.

Proof. xε ln(x) −−−→
x→0

0, for any 0 < ε

Corollary 6.12.1. The expectation of the entropy S is

ES(N) = S(ρML) +O(N−ε)

Remark. It is likely that as ε→ 1, the hidden constant of the O will explode.

Property 6.13. The entropy satisfy the hypothesis of theorem 6.11 for any ε < 1 and any δ < ε.
Therefore for any 1 < β < 2, we have

VS(N) =
Tr(∇S||H−1(∇S||))

N
+O

(
1

Nβ

)
I haven’t tried them all, but I think all the other entropy-related values like mutual-information

will also have similar regularity characteristics and thus will have the same result on the asymptotic
expectation and variance.

6.3 Fixing the non full span problem

6.3.1 Centering function
As explained in section 4.2.2, when the Ei do not span the whole space of positive hermitian matrices,
the solution to the max-likelihood problem is not unique. We need to decide a way to pick one. The
simplest way to do that is to choose a centering function c : D → R such that, the higher c is, the more
“centered”, the density matrix is. This function must satisfy some properties to make sense

Definition 6.2. A function c : D(H)→ R is a centering function if:
1. It is concave, so that being between other matrices is always better.

2. argmaxρ∈D c =
I

dimH
.
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3. c must be unitary invariant: c(UρU†) = c(ρ) for U ∈ U(H)
4. In dimension 2, the density matrix is inside the Bloch sphere which is linearly isomorphic to D.

Any vector space cutting this space gives either a disc or a segment that has an obvious center. c
must give that center.

All these constraints are qualitative constraints that ensure that c makes sense as a centering function.
If a function does not satisfy those conditions, it is not a good centering function. But satisfying them
does not guaranty that the function make sense from the physical point of view. The logarithm of the
determinant and the von-Neuman entropy are good candidates. I plot heatmaps of them on random
planes to see how good they are in fig. 6.1. However, I don’t think there is a perfect centering function
waiting to be found, but I obviously can’t prove that.

I didn’t use any of its results directly in the report, but [1] was very useful for analysing the structure
of the density matrix space in my quest for the perfect centering function

6.3.1.1 Log-Determinant

The log-determinant is good choice of strictly concave function. It seems to really keep the matrices
geometrically centered. And on some special case, for example if it happens to be quadratic on the vector
space studied, It will give the exact center (It the determinant is quadratic on a slice of D, that slice
will be an ellipsoid which has an exact center). The reasons to use the log determinant instead of the
determinant are twofold: It is strictly concave on D, and it will more likely fit on a machine floating point
number on the edges of D.

I haven’t time to prove formally that the log-determinant satisfy all centering function properties, but
none of those should be hard to do.

6.3.1.2 Von Neumann Entropy

The Von-Neumann entropy is also a good choice of centering function from a probabilistic point of view.
Maximizing the entropy means maximizing the incertitude, which makes sense when we are moving on
direction on which we have zero information.

The entropy also satisfies the four conditions and thus is a centering function.

6.3.1.3 In practice

That part of my work wasn’t directly useful for Luis project, because his effect matrices only span the
populations of Fock base and thus the centering simply consists in putting 0 in each correlation, which I
think achieve perfect centering whatever the centering function is.

6.3.2 Two objective optimisation
In order to use the centering function, what we want to do is that, after optimizing ℓ and landing on
M = argmaxρ∈D ℓ(ρ), we can optimize the centering function on M and get the most centered matrix
that maximize ℓ.

One way of doing it is to do exactly what I just said: Find a ρint in M with a first optimization
(projected gradient ascent will find one). Then we could optimize c on M . However I have no idea how
to project a vector on M : The projection method described in section 4.3.2 only works on the whole D
because D is unitary invariant which is generally not the case of M .

An other way of doing that is by using a kind of barrier method with c. By optimizing ℓ + εc and
reducing progressively ε, we’ll the right ρML = argmaxρ∈M c.

Property 6.14. If I name ρε the solution of:{
maximize ℓ+ εc on ρ ∈ D

Then, if c is strictly concave, and uniformly continuous we’ll have:

ρε −−−→
ε→0

ρML = argmaxρ∈M c

Proof. Let’s define ℓML = ℓ(ρML). ℓ is strictly concave on all the dimension on which there is an Ei i.e
all the dimension orthogonal to M . That means that if ℓ(ρε)→ ℓML, then d(ρε,M)→ 0.

Then lets prove that ℓ(ρε)→ ℓML. We now that ℓML > ℓ(ρε), but we also know that ℓ(ρε) + εc(ρε) ⩾
ℓML + εc(ρML). Therefore:

ℓML − ℓ(ρε) < ε(g(ρε)− g(ρML))

41



(a) dimension 2 (b) dimension 3

(c) dimension 4 (d) dimension 5

Figure 6.1: In order to compare log ◦det and S, I plotted them on random affine planes slicing D. I pick
a random density matrix A and two random orthonormal null trace matrices H1 and H2. I then plot
log ◦ det and S in the plane A+ xH1 + yH2. In each case log ◦ det is on top and the entropy is below.

The colorless area is outside of D
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But c is strictly concave so it has an upper bound. So when ε → 0, we have ℓML − ℓ(ρε) → 0 and thus
d(ρε,M)→ 0.

Let’s name ρpε the projection of ρε on M . As ρpε ∈M , we have g(ρpε) < c(ρML).
By uniform continuity, d(g(ρpε), c(ρε))→ 0 and g(ρML) is between them so c(ρpε)→ c(ρML). But as

c is strictly concave, this must mean that ρpε → ρML.
On the other hand we had d(ρε,M) = d(ρε, ρpε)→ 0, so in the end we have ρε → ρML.

This proof works perfectly with the entropy but not with the log ◦ det as it isn’t uniformly continuous.
Furthermore, the projected gradient method won’t work directly with the entropy because when project-
ing on the edge, the gradient of the entropy will be infinite. I think both of this problems have solutions,
for example when we are on the edge, only output the tangent gradient for the entropy. However, the
internship is finished, so I won’t have the time to check it properly.

43



Chapter 7

Final Results

7.1 Approximation and implementation of first order error prop-
agation

Now I have the operator H, and I want to compute the standard deviation on various functions that are
mixture of classical observable evaluations and entropy-related functions. For my function h : D → R, I
know from previous chapter that its standard deviation is:√

Tr(∇h||H−1∇h||) (7.1)

The problem is that the functions I want to evaluate are complex and span multiple files of source
code. I would like a method to propagate the error estimation through all the layers of the code, following
the way functions are computed. In order to do that, let’s look at a more generic way of propagating
errors.

Suppose we have a random variable X ∈ Rn and its covariance matrix VX . Suppose we take a function
f : Rn → Rm such that P (X ∈ dom f) = 1. We would like to know the covariance matrix of f(X). If X
has a probability distribution centered on its expectation X0, such as a normal law, we can make a first
order approximation and assume that f on the domain where X varies looks like f(X0)+∇f · (X −X0).
In such a situation one can prove that:

Vf(X) = ∇f tVX∇f = ⟨∇f |Vx|∇f⟩. (7.2)

This really looks like the eq. (7.1). In fact if we linearize our Hermitian matrices ∇h and thus think
of H as an element of L(O(H)), we can write:

Vh = ⟨∇h|||H−1|∇h||⟩

Furthermore the projecting operator || is linear and thus can be put in a matrix form such that

Vh = ⟨∇h|P tH−1P |∇h⟩.

In fact we have P tH−1P = H but I don’t need it so I won’t prove it. What is important is that
Vρ = P tH−1P looks like the covariance matrix of ρ around ρML and thus I proved in the last chapter
that the first order error propagation gives the right asymptotic variance of any function.

Therefore, in the code, I compute Vρ from the results of the reconstruction and then when a function
is applied on a variable, I compute its covariance matrix with eq. (7.2). In the end when a function has
a single dimension output, the variance matrix is a simple variance real that I can put through a square
root to get the standard deviation on that value.

7.2 Plots
Here are the plots of section 5.5 upgraded with the new error bars. Unfortunately I didn’t have enough
time to finish implementing the error propagation of last section, so those values come from the Monte-
Carlo algorithm. We added several new points of data in between. The horizontal error bars are due to
Luis and are originated from imperfections in the control and measurement of the temperatures of both
the cavity and the atom.
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Figure 7.1: Plot of the exchanged heat depending on the Maxwell demon state (ON or OFF )

Figure 7.2: Plot of the mutual information in the readout phase vs the feedback phase
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Figure 7.3: Plot of the weak second law in eq. (5.3)

Figure 7.4: Plot of the strong second law in eq. (5.4)
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Conclusion

This internship was really interesting; I had to understand a lot of various mathematical and physical
theory to understand the huge amount of work that my predecessor did. Once I did that, I could have
the pleasure to make a small but nevertheless important contribution to the field of quantum state
tomography.

It was really interesting to see the inner working of such a physics lab, and to see the amazing
experimental setup they have at the LKB. In particular to see them running. Before this internship I
couldn’t imagine that physicists were able to control atoms and photons one by one to make experiments.

On a more theoretic point of view, this internship greatly improved my comprehension of quantum
mechanics both on the calculus side and the interpretation side including my way of interpreting classical
mechanics and thermodynamics. It has also improved my knowledge on asymptotic integrals, but that
is a bit less prone to philosophy.

In the end, this was a great experience where I learnt a lot of things and met a lot of interesting
people, some of which I want to thank :

Thanks

• Thanks to Igor Dotsenko for welcoming me in his lab, showing me their amazing experimental setup
and giving me interesting things to do around it.

• Thanks to Pierre Rouchon for giving me interesting corner-case problems to solve around log-
likelihood maximization and helping me along the way when I was stuck.

• Thanks to Luis Najera for having a great internship project thus allowing me to contribute to
something very interesting. Thanks also to him for answering all my question about the codebase
and helping me to implement some parts of my work. Also thank to him for answering various
physical questions when I had trouble understanding quantum electro-dynamics or just quantum
information theory.

• Thanks to Valentin Metillon for helping me to understand various thing about physics and statistics.
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Appendix A

Quantum mechanics pictures

Pictures are different way to perceive and express quantum mechanics. They vary in how the system
state and the various operators change over time. All these representations yield the same mechanics
and are equivalent up to certain change of Hilbert space basis dependent on time. Going from one to the
other is just up to a unitary U(t).

A.1 Schrödinger picture
The Schrödinger picture is the usual representation of quantum mechanics. In this context, only the
state of the system varies and the way to observe it do not change. When the system evolves under
Hamiltonian H(t), the various operators relevant to the system are constant (unless they vary because
of a external source which is not the system) and the state follow the Schrödinger equation:

Equation A.1.

iℏ
∂|Ψ⟩
∂t

(t) = H(t)|Ψ(t)⟩

Property A.2. If H is constant over time, the solution of equation A.1 is:

|Ψ(t)⟩ = e−iH
ℏ t|Ψ(0)⟩

On very important theorem that makes a link with the Heisenberg picture is the following:

Theorem A.3 (Ehrenfest).
d

dt
⟨A⟩ = i

ℏ
⟨[H,A]⟩+

〈
∂A

∂t

〉

A.2 Heisenberg picture
In the Heisenberg picture however, the state in H only corresponds to the initial state and represent the
whole trajectory. However to measure an observable at time t, you use its expression A(t) at this point
in time. The equation that rules this evolution is

Equation A.4.
dA

dt
=
i

ℏ
[H,A] +

(
∂A

∂t

)
H

Here the [·, ·] is the commutator and the partial derivative is the variation of A due to external
elements out of the system (i.e. the variation of A in Schrödinger picture). This equation is actually the
not-averaged version of Ehrenfest theorem (A.3)

Property A.5. The Schrödinger picture and Heisenberg picture describe the same mechanics. In par-
ticular ⟨Ψ|A|Ψ⟩ is the same for any operator in both pictures.

Proof. The value of the average in Schrödinger picture is given by Ehrenfest theorem. Let’s compute
the same average in Heisenberg picture. On the right side, the averaging give instantly the right hand of
Ehrenfest theorem. We only have left to prove:〈

dA

dt

〉
=

d

dt
⟨A⟩

But this is still true by linearity.
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In fact, The Schrödinger equation has a general solution which is the unitary evolution operator
U(t). From there, the evolution of the state in Schrödinger’s picture in |Ψ(t)⟩ = U(t)|Ψ(0)⟩, whereas
the evolution of a operator in Heisenberg picture is A(t) = U†(t)A0(t)U(t), where A0(t) expresses the
variation from external elements.

If the Hamiltonian is time-independent, U(t) = e−iH
ℏ t

A.3 Interaction picture
Sometimes, in order to compare two phenomenon, it is useful to compare two Hamiltonian in certain way.
Usually, this is to compare the free evolution of a system to the interaction with another system, this is
why this is called the interaction picture. Will split our Hamiltonian in two parts:

H = H0 +H1

In most case we’ll try to keepH0 time independent and simple, whereasH1 will contains all the complexity
of the system. That way, U0(t), will still be e−i

H0
ℏ t. We’ll then make operators evolve with H0, when the

state evolves with H1. The equations are:

iℏ
∂|Ψ⟩
∂t

(t) = H1(t)|Ψ(t)⟩

A(t) = U†
0 (t)A0(t)U0(t)

This equivalent to manipulating state in a moving frame that moves according to U0. The Schrödinger
frame would then be the fixed frame and the Heisenberg frame would be the one that move exactly with
the state.
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Appendix B

Covariance

B.1 Covariance and variance
Definition B.1. Given two random vector X ∈ Rn and Y ∈ Rm, we let the covariance matrix be defined
by:

cov(X,Y ) =
(
cov(Xi, Yj)

)
i⩽n,j⩽m

The fundamental goal of the covariance matrix is to have ⟨a| cov(x, y)|b⟩ = cov(a · x, b · y)

Property B.1. If X ∈ Rn and Y ∈ Rm are two random vectors, we have cov(X,Y ) = cov(Y,X)
t.

Property B.2. If A is a deterministic matrix, we have cov(AX,Y ) = A cov(X,Y )

Definition B.2. Given a random vector X ∈ Rn, we define its variance by

V (X) = cov(X,X)

Property B.3. For X ∈ Rna random vector, we have V (X) > 0

B.2 Correlation
Definition B.3. If X and Y are two real valued variables that are not fixed (non-zero variance), we
have:

ρ =

∣∣∣∣ cov(X,Y )

σ(X), σ(Y )

∣∣∣∣
where σ(X) =

√
V (X)

Property B.4. We always have: |ρ| ≤ 1

We can extend the correlation to the multivariate case by setting

ρ = V (X)
− 1

2 cov(X,Y )V (Y )
− 1

2

The norm of ρ now becomes the symmetric part of the polar decomposition: |ρ| = (ρρt)
1
2 . We can now

get the theorem that give the bound on the correlation:

Theorem B.5. If X ∈ Rn and Y ∈ Rm are random vectors, and V (Y ) is invertible, we have:

cov(X,Y )V (Y )
−1

cov(Y,X) ⩽ V (X)

Corollary B.5.1. If V (X) is also invertible, we have |ρ| < I

Proof. We take a ∈ Rn such that ⟨a|V (X)|a⟩ > 0 and any b ∈ Rm. By using property B.4, we get:

⟨a| cov(X,Y )|b⟩√
⟨a|V (X)|a⟩

√
⟨b|V (Y )|b⟩

⩽ 1

To saturate the inequality, we can maximize the numerator on b, while keeping the denominator constant.
If we use the Lagrange multiplier method, we want to find a critical point of:

L(b, λ) = ⟨a| cov(X,Y )|b⟩+ λ⟨b|V (Y )|b⟩
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We thus need to have:
⟨a| cov(X,Y ) + 2λ⟨b|V (Y ) = 0

and thus:
⟨b| = − 1

2λ
⟨a| cov(X,Y )V (Y )

−1

By substituting in the first equation we get:

⟨a| cov(X,Y )V (Y )
−1

cov(Y,X)|a⟩√
⟨a|V (X)|a⟩

√
⟨a| cov(X,Y )V (Y )

−1
cov(Y,X)|a⟩

⩽ 1

We thus get for all a such that ⟨a|V (X)|a⟩ > 0:

⟨a| cov(X,Y )V (Y )
−1

cov(Y,X)|a⟩ < ⟨a|V (X)|a⟩

As for other a, both terms are 0, this inequality holds for all a, thus the theorem holds.
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Appendix C

Some useful calculus

∫
z∈Rn

e−
N
2 ∥z∥2

dz =

(
2π

N

)n
2

(C.1)∫
r∈R+

rn+1e−
N
2 r2dr = 2

n
2N−n

2 −1Γ
(n
2
+ 1
)

(C.2)

On integers, we have a simple value for the gamma-like integral:∫
r∈R+

rme−Nrdr = m!N−m−1 (C.3)

Lemma C.1. Let S be an real symmetric matrix of dimension n, we have:∫
z∈Rn

⟨z|S|z⟩e−N
2 ∥z∥2

dz =
Tr(S)

N

(
2π

N

)n
2

Proof. If we take the spectral decomposition of S and split the coordinate along S eigenvectors, the result
comes after some calculus.

C.1 Morse lemma
Lemma C.2. Let f : U ⊂ Rn → Rm, be C n with U a neighborhood of 0. Suppose that f(0) = 0. Then
we have g : U → L(Rn,Rm) of class C n−1 such that:

f(x) = g(x)x

and with g(0) = ∇f(0)

Proof. g(x) =
∫ 1

0
∇f(tx)dt

Lemma C.3. Let f : U ⊂ Rn → R, be C n with U a neighborhood of 0. Suppose that f(0) = 0 and
∇f(0) = 0. Then we have h : U → S(Rn) of class C n−2 such that h(0) = ∇2f(0) and:

f(x) = ⟨x|h(x)|x⟩

Proof. We apply lemma C.2 on f to get g, that we see as a gradient g : U → Rn. Then we apply it again
on g to get h0, then we take the symmetric part:

h =
h0 + ht0

2

We also have: h0(0) = ∇g(0) = ∇2f(0) = h(0)

Lemma C.4 (Morse lemma). Let f : U ⊂ Rn → R, be C n with U a neighborhood of 0. Suppose that
f(0) = 0, ∇f(0) = 0 and ∇2f > 0. Then we have a neighborhood V of 0 and ψ : V → Rn of class C n−2,
a such that on V :

f(x) = ∥ψ(x)∥2

If n ⩾ 3, we can have ψ a diffeomorphism with ∇ψ(0) =
√
∇2f(0)
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Proof. We take h as in lemma C.3. As h is continuous, we can take V such that h > 0 on V (h(0) =
∇2f > 0).

We can then define ψ(x) =
√
h(x)x. With the square root being the C∞ square root on the positive

definite matrices. If n ⩾ 3, then h is C 1, thus we have: ∇ψ(0) =
√
h(0) =

√
∇2f(0). As ∇2f(0) > 0,

we have ∇ψ(0) invertible, so by local inversion theorem, we can reduce the size of V to make ψ a
diffeomorphism on V .
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