Randomised Load Balancing on Networks

Thomas Sauerwald
University of Cambridge
thomas.sauerwald@cl.cam.ac.uk

Discrete Load Balancing on Networks

- **Initially:** Each node has any number of tokens
- **Goal:** Each node has \(\approx \) average number of tokens

For large-scale distributed networks, nodes should operate locally without global knowledge on the load distribution or topology.

Communication Models

- **Diffusion**
- **Matching Model**

In Diffusion, nodes balance their load concurrently with all neighbours, whereas in the Matching Model nodes average their load with matched neighbours only.

Questions

1. How to achieve a small discrepancy as quickly as possible?
2. How well can we approximate the continuous case where load is divisible?

Discrepancy Bounds

Deterministic Rounding (Always Rounding Down)

For any regular graph, the discrepancy is \(O(\frac{\lambda K}{\sqrt{n}}) \) after \(O(\frac{\lambda K}{\sqrt{n}} \log(1 - \frac{K}{n})) \) rounds.

Randomised Rounding

For any regular graph, the discrepancy is constant w.h.p. after \(O(\frac{\lambda K}{\sqrt{n}}) \) rounds.

Iterative Protocol (Matching Model)

- For every round \(t = 1, 2, \ldots \)
 - Generate a random matching
 - Average load across edges of the matching

There are several distributed protocols for generating proper random matchings.

Approximating the Continuous Case

- \(\Theta(\log n) \) for expanders
- \(O(\sqrt{\log n}) \) for any graph
- \(O(\log \log n) \) for grids

References

