

When is Coalescing as fast as Meeting?

Thomas Sauerwald (Cambridge)

joint work with Varun Kanade (Oxford) & Frederik Mallmann-Trenn (MIT) (to appear in SODA 2019)

Introduction

Relating Coalescing Time to the Mixing and Meeting Time

Conclusion

• P transition matrix of a lazy walk on an undirected, connected graph G

$$p_{u,v} = \begin{cases} \frac{1}{2} & \text{if } u = v, \\ \frac{1}{2 \deg(u)} & \text{if } \{u,v\} \in E(G), \\ 0 & \text{otherwise.} \end{cases}$$

• π with $\pi_v = \frac{\deg(v)}{2|E|}$ is the stationary distribution

• P transition matrix of a lazy walk on an undirected, connected graph G

$$p_{u,v} = \begin{cases} \frac{1}{2} & \text{if } u = v, \\ \frac{1}{2 \deg(u)} & \text{if } \{u,v\} \in E(G), \\ 0 & \text{otherwise.} \end{cases}$$

• π with $\pi_v = \frac{\deg(v)}{2|E|}$ is the stationary distribution

• P transition matrix of a lazy walk on an undirected, connected graph G

$$p_{u,v} = \begin{cases} \frac{1}{2} & \text{if } u = v, \\ \frac{1}{2 \deg(u)} & \text{if } \{u,v\} \in E(G), \\ 0 & \text{otherwise.} \end{cases}$$

• π with $\pi_v = \frac{\deg(v)}{2|E|}$ is the stationary distribution

- Fundamental Quantities ————

• mixing time:
$$t_{\min}(\frac{1}{e}) = \min\{t \in \mathbb{N}: \forall u \in V: \frac{1}{2} \sum_{v \in V} |p_{u,v}^t - \pi_v| \leq \frac{1}{e}\}$$

• P transition matrix of a lazy walk on an undirected, connected graph G

$$p_{u,v} = \begin{cases} \frac{1}{2} & \text{if } u = v, \\ \frac{1}{2 \deg(u)} & \text{if } \{u,v\} \in E(G), \\ 0 & \text{otherwise.} \end{cases}$$

• π with $\pi_v = \frac{\deg(v)}{2|E|}$ is the stationary distribution

Fundamental Quantities

• mixing time:
$$t_{\min}(\frac{1}{e}) = \min\{t \in \mathbb{N}: \forall u \in V: \frac{1}{2} \sum_{v \in V} |p_{u,v}^t - \pi_v| \le \frac{1}{e}\}$$

• (maximum) hitting time: $t_{hit} = \max_{u,v \in V} \mathbf{E}_u [\min\{t: X_t = v\}]$

P transition matrix of a lazy walk on an undirected, connected graph G

$$p_{u,v} = \begin{cases} \frac{1}{2} & \text{if } u = v, \\ \frac{1}{2 \deg(u)} & \text{if } \{u,v\} \in E(G), \\ 0 & \text{otherwise.} \end{cases}$$

• π with $\pi_v = \frac{\deg(v)}{2|E|}$ is the stationary distribution

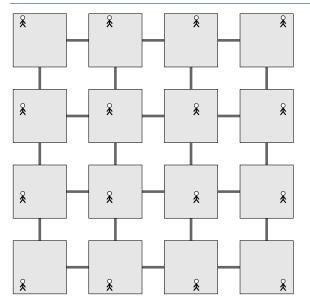
- Fundamental Quantities -

• mixing time:
$$t_{\min}(\frac{1}{e}) = \min\{t \in \mathbb{N}: \forall u \in V: \frac{1}{2} \sum_{v \in V} |p_{u,v}^t - \pi_v| \le \frac{1}{e}\}$$

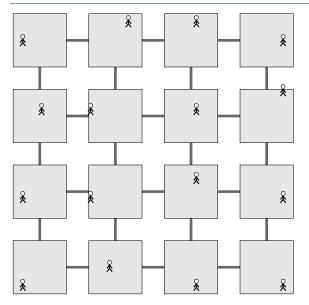
• (maximum) hitting time: $t_{hit} = \max_{u,v \in V} \mathbf{E}_u [\min\{t: X_t = v\}]$

Focus of this talk -

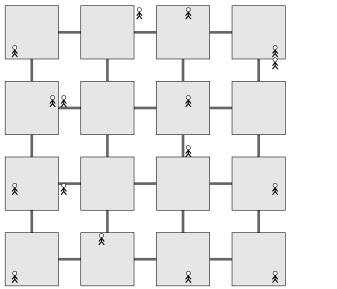
- meeting time: $t_{\text{meet}} = \max_{u,v \in V} \mathbf{E}_{u,v} [\min \{t: X_t = Y_t\}]$
- coalescing time: t_{coal} = E_{1,2,...,n}[...]



Particles: 16

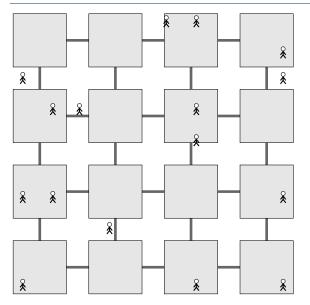


Particles: 16

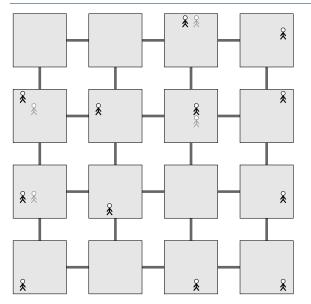


Time: 0.5

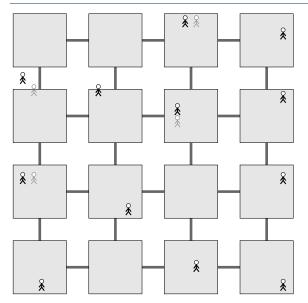
Particles: 16



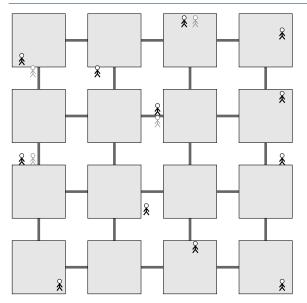
Particles: 16



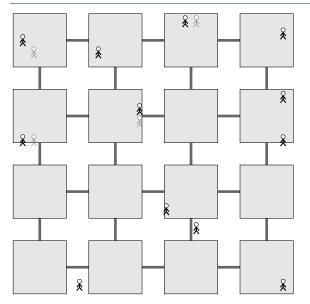
Particles: 12



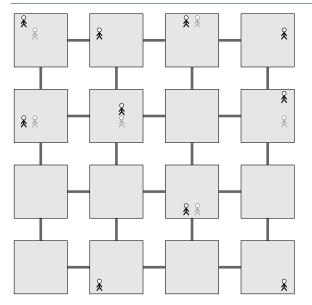
Particles: 12



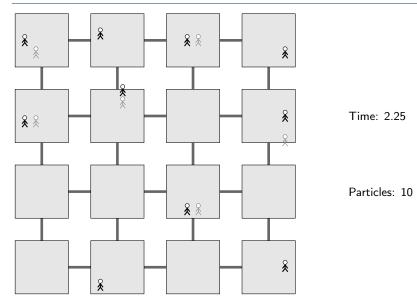
Particles: 12

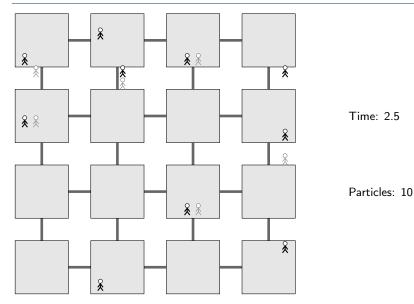


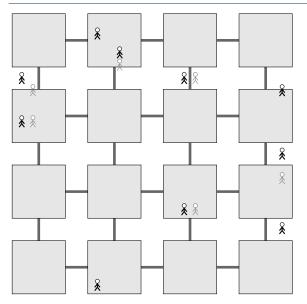
Particles: 12

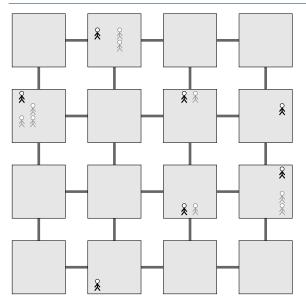


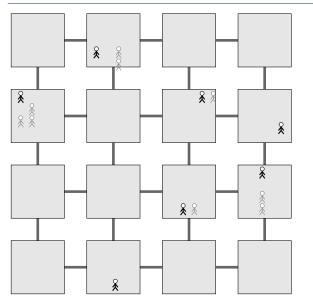
Particles: 10

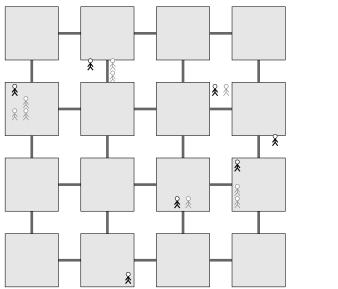






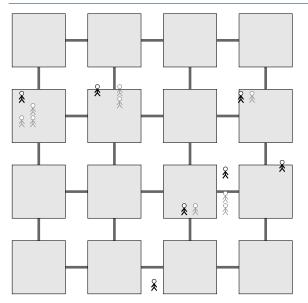






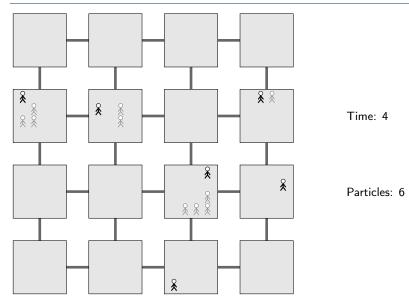
Time: 3.5

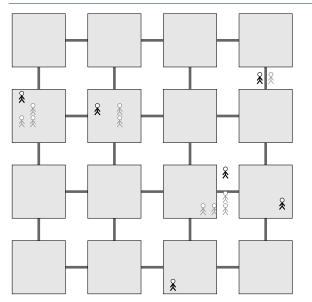
Particles: 7

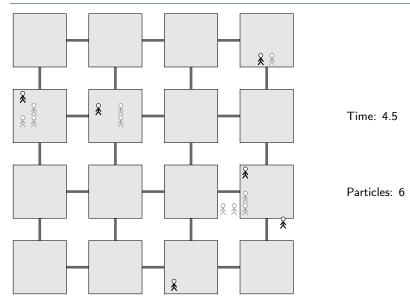


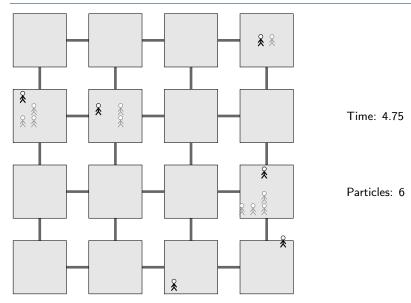
Time: 3.75

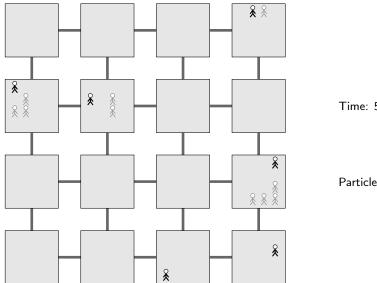
Particles: 7

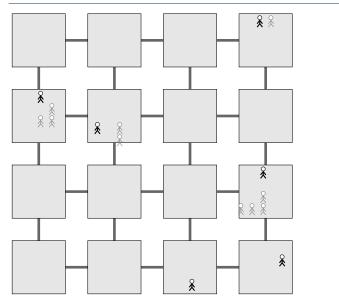


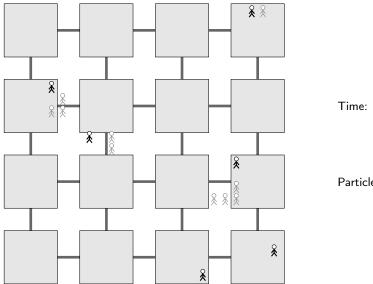






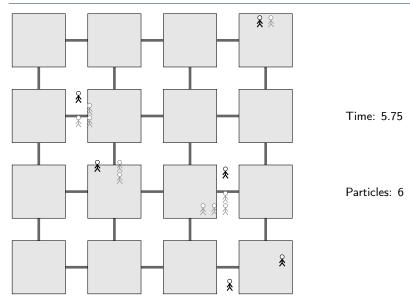


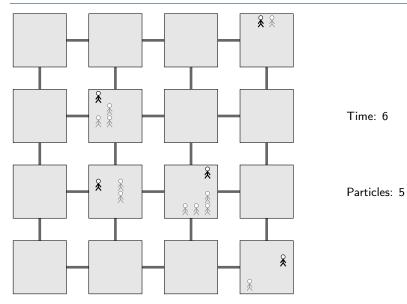


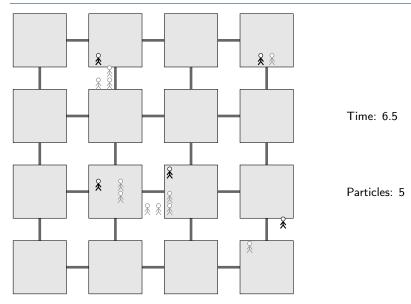


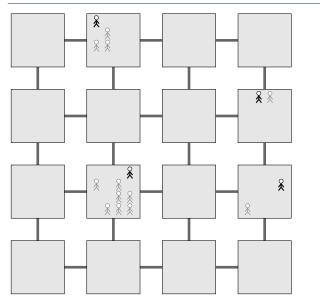
Time: 5.5

Particles: 6

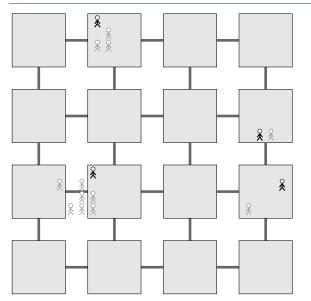


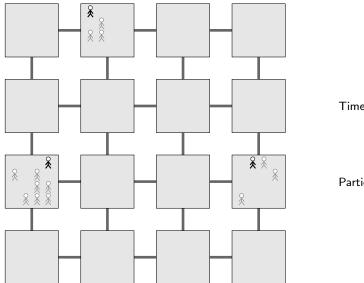


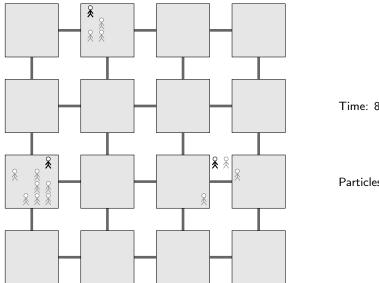




Particles: 4

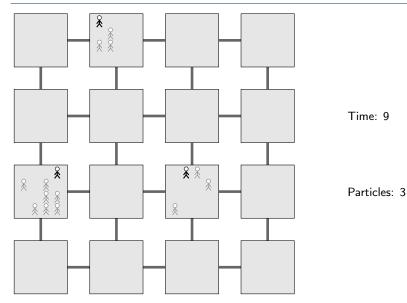


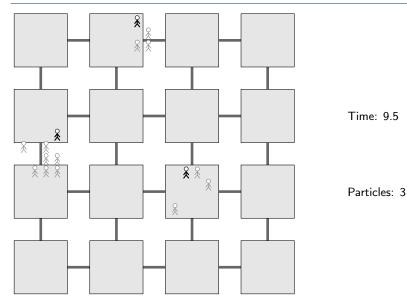


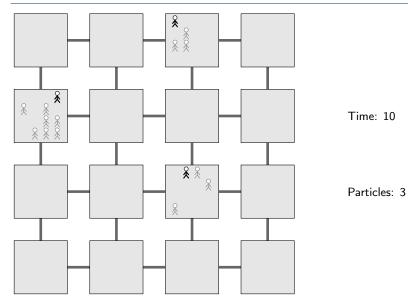


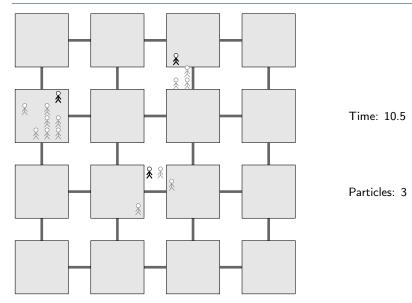
Time: 8.5

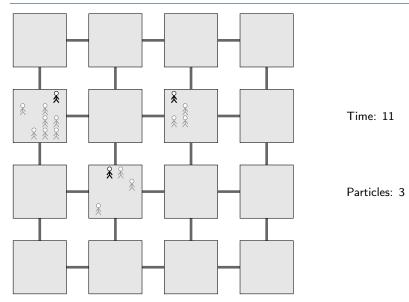
Particles: 3

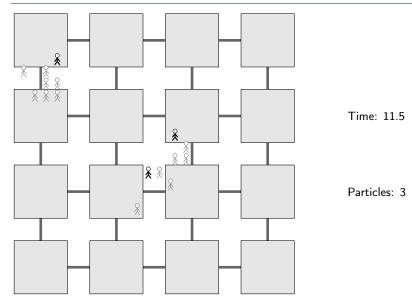


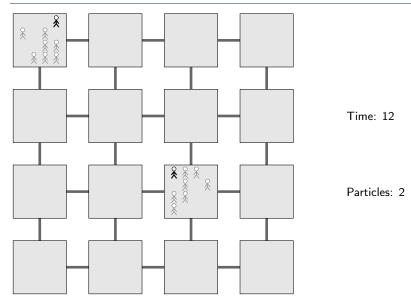


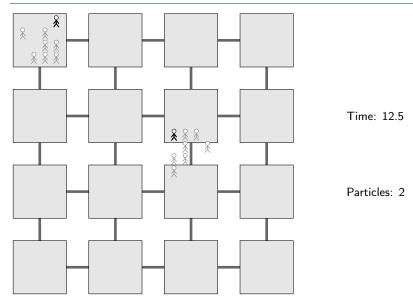


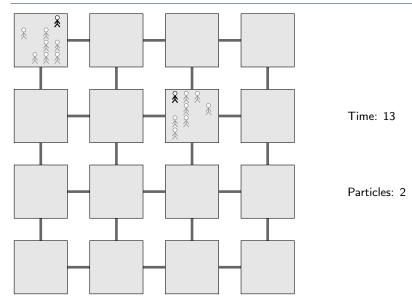


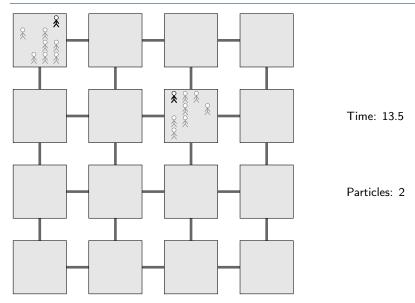


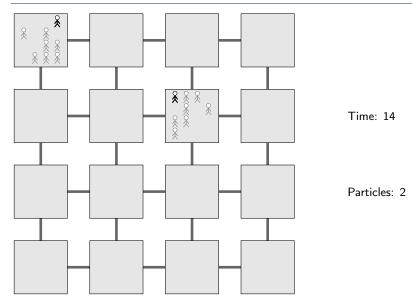


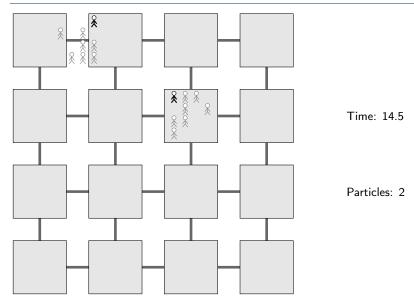




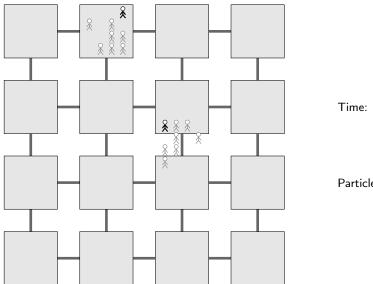






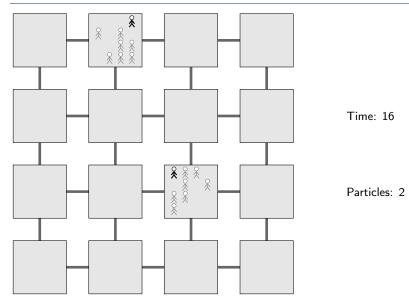


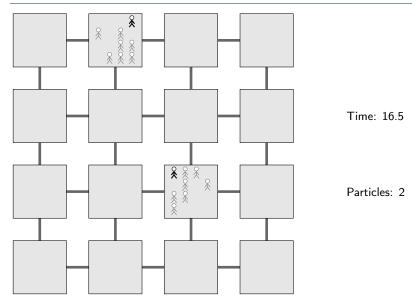


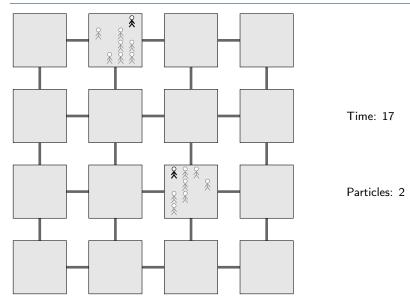


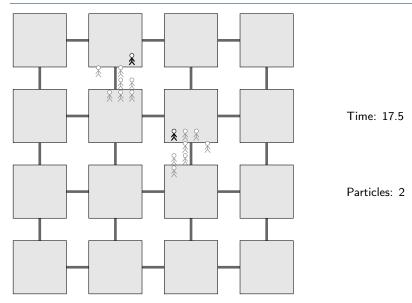
Time: 15.5

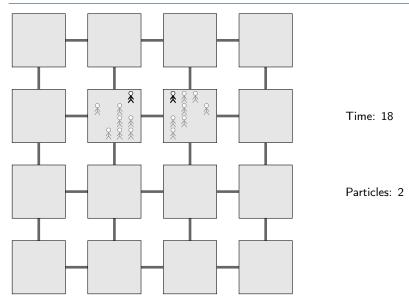
Particles: 2

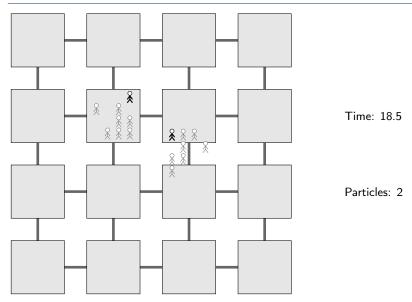


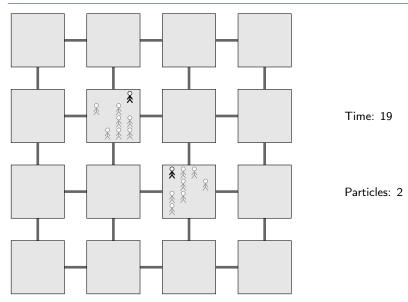


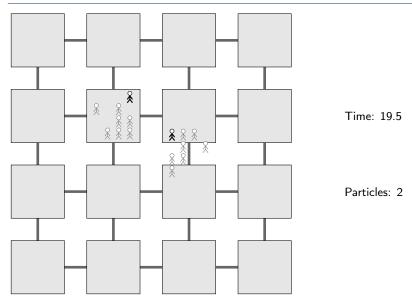


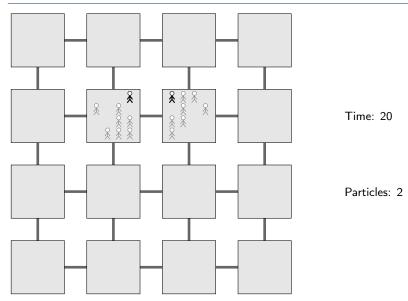


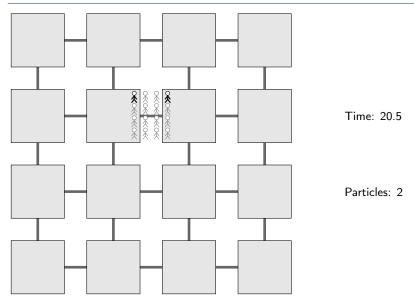


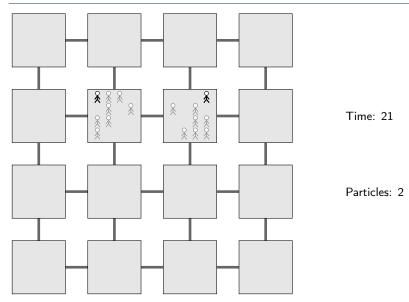


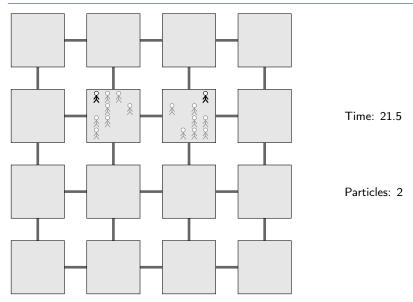


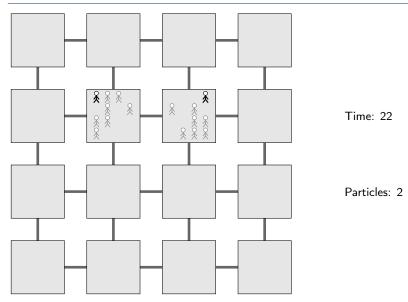


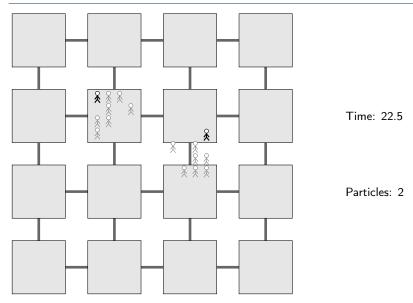


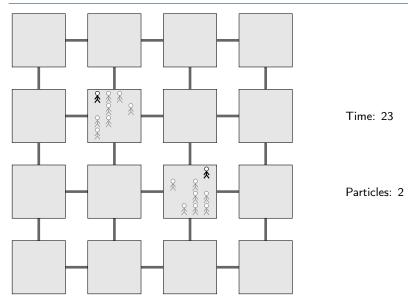


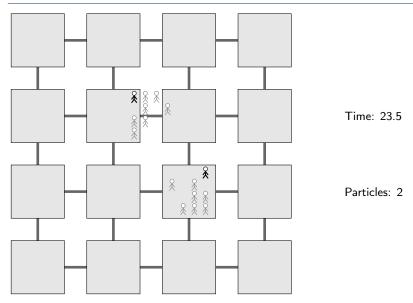


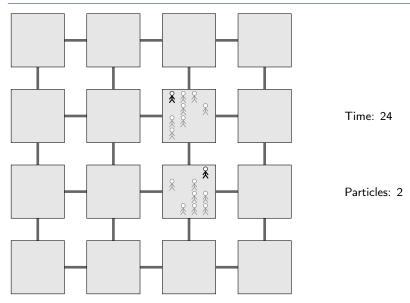


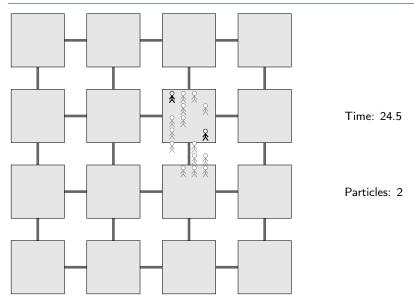


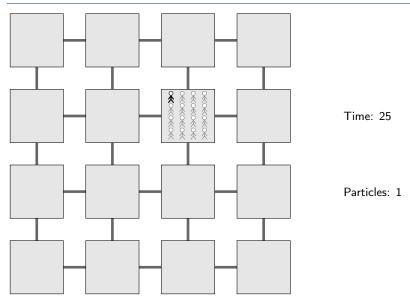


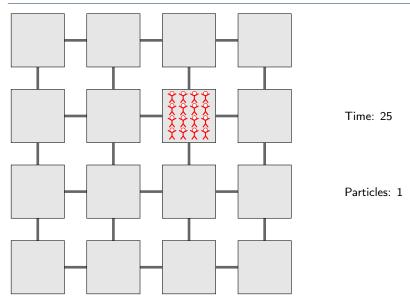


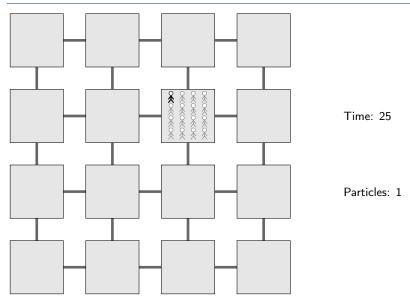


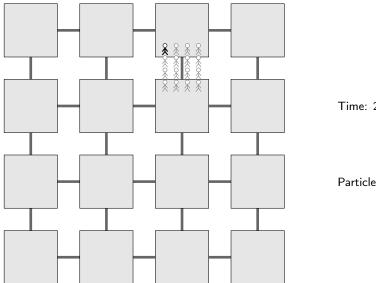




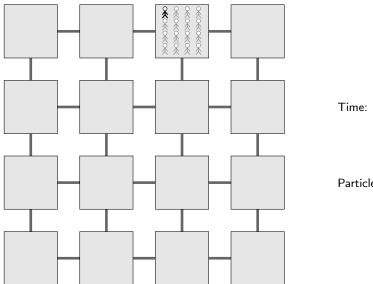








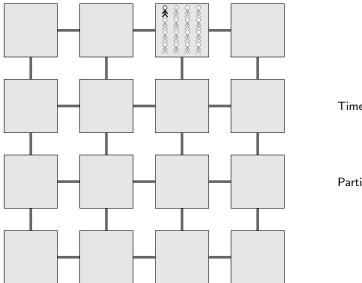
Time: 25.5



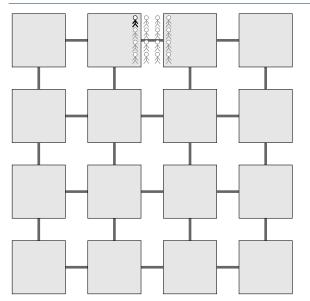
Time: 26



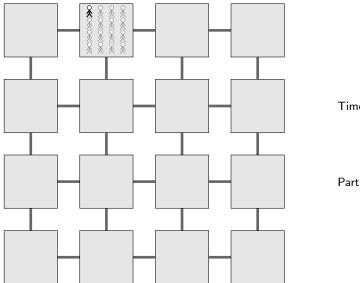
Time: 26.5



Time: 27



Particles: 1



Time: 28

Particles: 1

— Voter Model -

- Given a graph G = (V, E) with *n* nodes, each with a different opinion
- At each round, each node "pulls" w.p. 1/2 the opinion of a random neighbor, otherwise keeps his current opinion.

— Voter Model —

- Given a graph G = (V, E) with *n* nodes, each with a different opinion
- At each round, each node "pulls" w.p. 1/2 the opinion of a random neighbor, otherwise keeps his current opinion.

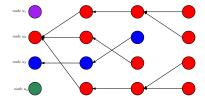
— Duality -

Time to reach consensus = Time for n coalescing particles to merge.

— Voter Model –

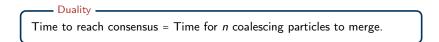
- Given a graph G = (V, E) with *n* nodes, each with a different opinion
- At each round, each node "pulls" w.p. 1/2 the opinion of a random neighbor, otherwise keeps his current opinion.

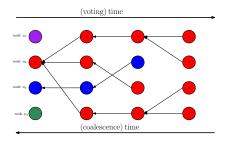
Duality — Time to reach consensus = Time for*n*coalescing particles to merge.



— Voter Model —

- Given a graph G = (V, E) with *n* nodes, each with a different opinion
- At each round, each node "pulls" w.p. 1/2 the opinion of a random neighbor, otherwise keeps his current opinion.





• For any graph, $t_{\text{coal}} \lesssim t_{\text{meet}} \cdot \log n$

[Hassin, Peleg, DIST'01]

• For any graph, $t_{\text{coal}} \lesssim t_{\text{meet}} \cdot \log n$

[Hassin, Peleg, DIST'01]

• For a random *d*-regular graph (non-lazy walks), $t_{\text{coal}} = (2 + o(1)) \cdot \frac{d-1}{d-2} \cdot n$ [Cooper, Frieze, Radzik, SIAM J. Discrete Math.'09]

- For any graph, $t_{coal} \lesssim t_{meet} \cdot \log n$ [Hassin, Peleg, DIST'01]
- For a random *d*-regular graph (non-lazy walks), $t_{\text{coal}} = (2 + o(1)) \cdot \frac{d-1}{d-2} \cdot n$ [Cooper, Frieze, Radzik, SIAM J. Discrete Math.'09]
- For any graph, $t_{coal} \leq \frac{1}{1-\lambda_2} \cdot \left(\log^4 n + \frac{1}{\|\pi\|_2^2}\right)$ [Cooper, Elsässer, Ono and Radzik, SIAM J. Discrete Math.'13] • For any graph $t_{coal} \leq \frac{1}{\Phi} \cdot \frac{|E|}{\delta}$, where δ is the minimum degree

[Berenbrink, Giakkoupis, Kermarrec and Mallmann-Trenn, ICALP'16]

- For any graph, $t_{coal} \lesssim t_{meet} \cdot \log n$ [Hassin, Peleg, DIST'01]
- For a random *d*-regular graph (non-lazy walks), $t_{coal} = (2 + o(1)) \cdot \frac{d-1}{d-2} \cdot n$ [Cooper, Frieze, Radzik, SIAM J. Discrete Math.'09]
- For any graph, $t_{coal} \lesssim \frac{1}{1-\lambda_2} \cdot \left(\log^4 n + \frac{1}{\|\pi\|_2^2}\right)$ [Cooper, Elsässer, Ono and Radzik, SIAM J. Discrete Math.'13]
- For any graph $t_{\text{coal}} \lesssim \frac{1}{\Phi} \cdot \frac{|E|}{\delta}$, where δ is the minimum degree [Berenbrink, Giakkoupis, Kermarrec and Mallmann-Trenn, ICALP'16]

For the continuous-time variant:

- For any graph, $t_{coal} \lesssim t_{hit}$ [Oliveira, TAMS'12]
- (simplified) For graphs with $t_{mix} \ll n$, t_{coal} behaves like on a clique

[Oliveira, Ann. Prob.'12]

• For many graphs, $t_{coal} \asymp t_{meet}$ or even $t_{coal} \asymp n$ (if G is regular)

- For any graph, $t_{coal} \lesssim t_{meet} \cdot \log n$ [Hassin, Peleg, DIST'01]
- For a random *d*-regular graph (non-lazy walks), $t_{coal} = (2 + o(1)) \cdot \frac{d-1}{d-2} \cdot n$ [Cooper, Frieze, Radzik, SIAM J. Discrete Math.'09]
- For any graph, $t_{coal} \lesssim \frac{1}{1-\lambda_2} \cdot \left(\log^4 n + \frac{1}{\|\pi\|_2^2}\right)$ [Cooper, Elsässer, Ono and Radzik, SIAM J. Discrete Math.'13]
- For any graph $t_{\text{coal}} \lesssim \frac{1}{\Phi} \cdot \frac{|E|}{\delta}$, where δ is the minimum degree [Berenbrink, Giakkoupis, Kermarrec and Mallmann-Trenn, ICALP'16]

For the continuous-time variant:

- For any graph, $t_{coal} \lesssim t_{hit}$ [Oliveira, TAMS'12]
- (simplified) For graphs with $t_{mix} \ll n$, t_{coal} behaves like on a clique

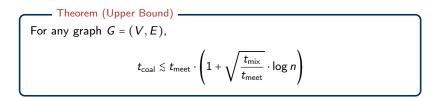
[Oliveira, Ann. Prob.'12]

- For many graphs, $t_{\text{coal}} \asymp t_{\text{meet}}$ or even $t_{\text{coal}} \asymp n$ (if G is regular)
- Under the premise that t_{mix} and t_{meet} are "simpler" quantities, when does $t_{coal} \times t_{meet}$ hold?

Introduction

Relating Coalescing Time to the Mixing and Meeting Time

Conclusion



For any graph G = (V, E),

$$t_{\mathsf{coal}} \lesssim t_{\mathsf{meet}} \cdot \left(1 + \sqrt{rac{t_{\mathsf{mix}}}{t_{\mathsf{meet}}}} \cdot \log n
ight)$$

• Whenever
$$rac{t_{ ext{meet}}}{t_{ ext{mix}}} \gtrsim (\log n)^2$$
, we have $t_{ ext{coal}} imes t_{ ext{meet}}$

- Theorem (Upper Bound) —

For any graph
$$G = (V, E)$$
,

$$t_{\mathsf{coal}} \lesssim t_{\mathsf{meet}} \cdot \left(1 + \sqrt{\frac{t_{\mathsf{mix}}}{t_{\mathsf{meet}}}} \cdot \log n\right)$$

• Whenever
$$rac{t_{ ext{meet}}}{t_{ ext{mix}}} \gtrsim (\log n)^2$$
, we have $t_{ ext{coal}} \asymp t_{ ext{meet}}$

- If $\frac{t_{\text{meet}}}{t_{\text{mix}}} \asymp 1$, our bound states $t_{\text{coal}} \lesssim t_{\text{meet}} \cdot \log n$
- \Rightarrow bound can be viewed as a refinement of the basic $t_{\mathsf{coal}} \lesssim t_{\mathsf{meet}} \cdot \log n$

Theorem (Upper Bound) –

or any graph
$$G = (V, E)$$
,

F

$$t_{\mathsf{coal}} \lesssim t_{\mathsf{meet}} \cdot \left(1 + \sqrt{\frac{t_{\mathsf{mix}}}{t_{\mathsf{meet}}}} \cdot \log n\right)$$

• Whenever
$$rac{t_{ ext{meet}}}{t_{ ext{mix}}} \gtrsim (\log n)^2$$
, we have $t_{ ext{coal}} imes t_{ ext{meet}}$

- If $\frac{t_{\text{meet}}}{t_{\text{mix}}} \asymp 1$, our bound states $t_{\text{coal}} \lesssim t_{\text{meet}} \cdot \log n$
- \Rightarrow bound can be viewed as a refinement of the basic $t_{\text{coal}} \lesssim t_{\text{meet}} \cdot \log n$

Application to "Real World" Graph Models _____

If the max-degree satisfies $\Delta \lesssim n/\log^3 n$ and $t_{\text{mix}} \lesssim \log n$, then $t_{\text{coal}} \asymp t_{\text{meet}}$.

Theorem (Upper Bound) -

or any graph
$$G = (V, E)$$
,

F

$$t_{\mathsf{coal}} \lesssim t_{\mathsf{meet}} \cdot \left(1 + \sqrt{rac{t_{\mathsf{mix}}}{t_{\mathsf{meet}}}} \cdot \log n\right)$$

• Whenever
$$rac{t_{ ext{meet}}}{t_{ ext{mix}}} \gtrsim (\log n)^2$$
, we have $t_{ ext{coal}} imes t_{ ext{meet}}$

- If $\frac{t_{\text{meet}}}{t_{\text{mix}}} \asymp 1$, our bound states $t_{\text{coal}} \lesssim t_{\text{meet}} \cdot \log n$
- \Rightarrow bound can be viewed as a refinement of the basic $t_{\text{coal}} \lesssim t_{\text{meet}} \cdot \log n$

If the max-degree satisfies $\Delta \lesssim n/\log^3 n$ and $t_{\min} \lesssim \log n$, then $t_{coal} \asymp t_{meet}$.

Unfortunately we are not able to determine t_{meet} (it is conceivable though that $t_{\text{meet}} \approx 1/||\pi||_2^2$)

Proof is a bit technical, and we will only glance over one challenging part.

• Consider two random walks $(X_t)_{t\geq 0}$, $(Y_t)_{t\geq 0}$ starting from stationarity

- Consider two random walks $(X_t)_{t\geq 0}$, $(Y_t)_{t\geq 0}$ starting from stationarity
- By a scaling argument,

$$\Pr\left[\operatorname{int}(X,Y,t_{\min})\right] \geq \frac{t_{\min}}{16t_{\operatorname{meet}}} \eqqcolon p,$$

Proof is a bit technical, and we will only glance over one challenging part.

- Consider two random walks $(X_t)_{t\geq 0}$, $(Y_t)_{t\geq 0}$ starting from stationarity
- By a scaling argument,

$$\Pr\left[\operatorname{int}(X, Y, t_{\min})\right] \geq \frac{t_{\min}}{16t_{\operatorname{meet}}} \Rightarrow p$$

- If we have j random walks $Y^1,Y^2,\ldots,Y^j,$ do we have

$$\Pr\left[\bigcup_{\ell=1}^{j} \operatorname{int}(X, Y^{\ell}, t_{\min})\right] \ge 1 - (1-p)^{j} \qquad ??$$

Proof is a bit technical, and we will only glance over one challenging part.

- Consider two random walks $(X_t)_{t\geq 0}$, $(Y_t)_{t\geq 0}$ starting from stationarity
- By a scaling argument,

$$\Pr\left[\operatorname{int}(X, Y, t_{\min})\right] \geq \frac{t_{\min}}{16t_{\operatorname{meet}}} \Rightarrow p$$

• If we have j random walks Y^1, Y^2, \ldots, Y^j , do we have

$$\Pr\left[\bigcup_{\ell=1}^{j} \operatorname{int}(X, Y^{\ell}, t_{\min})\right] \geq 1 - (1-p)^{j}$$
?

This is of course wrong, since the events are not independent!

Proof is a bit technical, and we will only glance over one challenging part.

- Consider two random walks $(X_t)_{t\geq 0}$, $(Y_t)_{t\geq 0}$ starting from stationarity
- By a scaling argument,

$$\Pr\left[\operatorname{int}(X,Y,t_{\mathrm{mix}})\right] \geq \frac{t_{\mathrm{mix}}}{16t_{\mathrm{meet}}} =: p,$$

• Define for $\tau \coloneqq t_{mix}$,

$$C_1 \coloneqq \{(x_0, \dots, x_\tau) \in \mathcal{T}_\tau \colon \Pr\left[\operatorname{int}(x, Y, \tau)\right] \ge \frac{p}{3}\}$$
$$C_2 \coloneqq \{(x_0, \dots, x_\tau) \in \mathcal{T}_\tau \colon \Pr\left[\operatorname{int}(x, Y, \tau)\right] \ge \sqrt{p}\}.$$

Proof is a bit technical, and we will only glance over one challenging part.

- Consider two random walks $(X_t)_{t\geq 0}$, $(Y_t)_{t\geq 0}$ starting from stationarity
- By a scaling argument,

$$\Pr\left[\operatorname{int}(X,Y,t_{\mathrm{mix}})\right] \geq \frac{t_{\mathrm{mix}}}{16t_{\mathrm{meet}}} =: p,$$

• Define for $\tau \coloneqq t_{mix}$,

$$C_1 := \{ (x_0, \dots, x_\tau) \in \mathcal{T}_\tau \colon \Pr\left[\operatorname{int}(x, Y, \tau) \right] \ge \frac{p}{3} \}$$
$$C_2 := \{ (x_0, \dots, x_\tau) \in \mathcal{T}_\tau \colon \Pr\left[\operatorname{int}(x, Y, \tau) \right] \ge \sqrt{p} \}.$$

• Then, $\Pr\left[\left(X_t\right)_{t=0}^{\tau} \in C_1\right] \ge \frac{\sqrt{p}}{3}$ or $\Pr\left[\left(X_t\right)_{t=0}^{\tau} \in C_2\right] \ge \frac{p}{3}$.

- Consider two random walks $(X_t)_{t\geq 0}$, $(Y_t)_{t\geq 0}$ starting from stationarity
- By a scaling argument,

$$\Pr\left[\operatorname{int}(X,Y,t_{\mathrm{mix}})\right] \geq \frac{t_{\mathrm{mix}}}{16t_{\mathrm{meet}}} =: p,$$

• Define for
$$\tau := t_{\text{mix}}$$
,

$$C_1 := \{(x_0, \dots, x_{\tau}) \in \mathcal{T}_{\tau} : \Pr\left[\operatorname{int}(x, Y, \tau)\right] \ge \frac{p}{3}\}$$

$$C_2 := \{(x_0, \dots, x_{\tau}) \in \mathcal{T}_{\tau} : \Pr\left[\operatorname{int}(x, Y, \tau)\right] \ge \sqrt{p}\}.$$
clique (vertex-transitive graphs)
• Then, $\Pr\left[(X_t)_{t=0}^{\tau} \in C_1\right] \ge \frac{\sqrt{p}}{3}$ or $\Pr\left[(X_t)_{t=0}^{\tau} \in C_2\right] \ge \frac{p}{3}.$

- Consider two random walks $(X_t)_{t\geq 0}$, $(Y_t)_{t\geq 0}$ starting from stationarity
- By a scaling argument,

$$\Pr\left[\operatorname{int}(X,Y,t_{\mathrm{mix}})\right] \geq \frac{t_{\mathrm{mix}}}{16t_{\mathrm{meet}}} =: p,$$

• Define for
$$\tau := t_{\text{mix}}$$
,

$$C_1 := \{(x_0, \dots, x_{\tau}) \in \mathcal{T}_{\tau} : \Pr\left[\operatorname{int}(x, Y, \tau)\right] \ge \frac{p}{3}\}$$

$$C_2 := \{(x_0, \dots, x_{\tau}) \in \mathcal{T}_{\tau} : \Pr\left[\operatorname{int}(x, Y, \tau)\right] \ge \sqrt{p}\}.$$
(clique (vertex-transitive graphs)
• Then, $\Pr\left[(X_t)_{t=0}^{\tau} \in C_1\right] \ge \frac{\sqrt{p}}{3}$ or $\Pr\left[(X_t)_{t=0}^{\tau} \in C_2\right] \ge \frac{p}{3}$.

- Consider two random walks $(X_t)_{t\geq 0}$, $(Y_t)_{t\geq 0}$ starting from stationarity
- By a scaling argument,

$$\Pr\left[\operatorname{int}(X,Y,t_{\mathrm{mix}})\right] \geq \frac{t_{\mathrm{mix}}}{16t_{\mathrm{meet}}} =: p,$$

• Define for
$$\tau := t_{\text{mix}}$$
,
 $C_1 := \{(x_0, \dots, x_{\tau}) \in \mathcal{T}_{\tau}: \Pr[\operatorname{int}(x, Y, \tau)] \ge \frac{p}{3}\}$
 $C_2 := \{(x_0, \dots, x_{\tau}) \in \mathcal{T}_{\tau}: \Pr[\operatorname{int}(x, Y, \tau)] \ge \sqrt{p}\}.$
clique (vertex-transitive graphs)
• Then, $\Pr[(X_t)_{t=0}^{\tau} \in C_1] \ge \frac{\sqrt{p}}{3}$ or $\Pr[(X_t)_{t=0}^{\tau} \in C_2] \ge \frac{p}{3}.$
• Suppose $\Pr[(X_t)_{t=0}^{\tau} \in C_2] \ge \frac{p}{3}$. Then a *p*-fraction of all walks have a "good" trajectory that is hit by a stationary walk with probability at least $\sqrt{p} \dots$

Proof is a bit technical, and we will only glance over one challenging part.

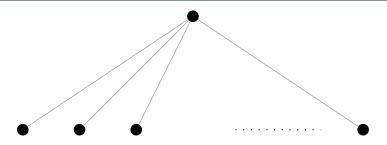
- Consider two random walks $(X_t)_{t\geq 0}$, $(Y_t)_{t\geq 0}$ starting from stationarity
- By a scaling argument,

$$\Pr\left[\operatorname{int}(X,Y,t_{\mathrm{mix}})\right] \geq \frac{t_{\mathrm{mix}}}{16t_{\mathrm{meet}}} =: p,$$

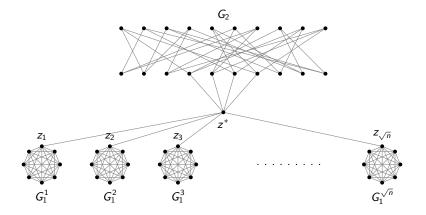
• Define for
$$\tau := t_{\text{mix}}$$
,
 $C_1 := \{(x_0, \dots, x_{\tau}) \in \mathcal{T}_{\tau}: \Pr[\operatorname{int}(x, Y, \tau)] \ge \frac{p}{3}\}$
 $C_2 := \{(x_0, \dots, x_{\tau}) \in \mathcal{T}_{\tau}: \Pr[\operatorname{int}(x, Y, \tau)] \ge \sqrt{p}\}.$
clique (vertex-transitive graphs)
• Then, $\Pr[(X_t)_{t=0}^{\tau} \in C_1] \ge \frac{\sqrt{p}}{3}$ or $\Pr[(X_t)_{t=0}^{\tau} \in C_2] \ge \frac{p}{3}.$
• Suppose $\Pr[(X_t)_{t=0}^{\tau} \in C_2] \ge \frac{p}{3}$. Then a *p*-fraction of all walks have a "good" trajectory that is hit by a stationary walk with probability at least $\sqrt{p} \dots$

• (Issue: Random walks coalesce and could therefore have terminated earlier!)

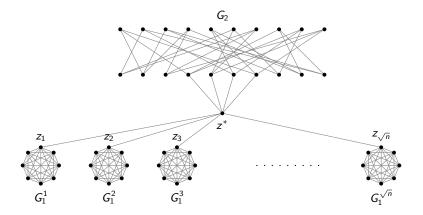
A Graph Demonstrating Tightness



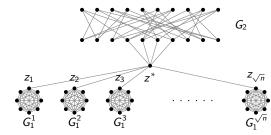
A Graph Demonstrating Tightness



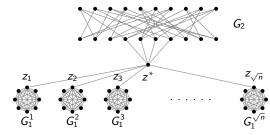
A Graph Demonstrating Tightness



- G_1^i , $1 \le i \le \sqrt{n}$ are cliques over \sqrt{n} nodes
- G_2 is a \sqrt{n} -regular Ramanujan graph on $n/\sqrt{\alpha}$ nodes ($\alpha = t_{meet}/t_{mix}$)
- Node z^* is connected to one designated node in each G_1^i and to $\sqrt{n/\alpha}$ distinct nodes in G_2

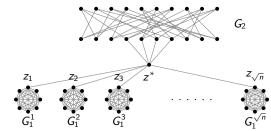


- G_1^i , $1 \le i \le \sqrt{n}$ are cliques over \sqrt{n} nodes
- G₂ is a √n-regular Ramanujan graph on n/√α nodes (α = t_{meet}/t_{mix})
- Node z^* is connected to one designated node in each G_1^i and to $\sqrt{n/\alpha}$ distinct nodes in G_2

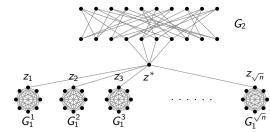


- G_1^i , $1 \le i \le \sqrt{n}$ are cliques over \sqrt{n} nodes
- G_2 is a \sqrt{n} -regular Ramanujan graph on $n/\sqrt{\alpha}$ nodes $(\alpha = t_{meet}/t_{mix})$
- Node z^* is connected to one designated node in each G_1^i and to $\sqrt{n/\alpha}$ distinct nodes in G_2

——— Random Walk Quantities ———



- $G_1^i, 1 \le i \le \sqrt{n}$ are cliques over \sqrt{n} nodes
- G_2 is a \sqrt{n} -regular Ramanujan graph on $n/\sqrt{\alpha}$ nodes $(\alpha = t_{meet}/t_{mix})$
- Node z^* is connected to one designated node in each G_1^i and to $\sqrt{n/\alpha}$ distinct nodes in G_2

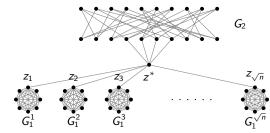


- $G_1^i, 1 \le i \le \sqrt{n}$ are cliques over \sqrt{n} nodes
- G_2 is a \sqrt{n} -regular Ramanujan graph on $n/\sqrt{\alpha}$ nodes $(\alpha = t_{meet}/t_{mix})$
- Node z* is connected to one designated node in each G_1^i and to $\sqrt{n/\alpha}$ distinct nodes in G_2

Random Walk Quantities

- $t_{mix} \times n$

 - ">": Cheeger's Inequality
 "<": use principle of "Mixing-Time equal to Hitting-Time of Large Sets" [Peres, Sousi, J. of. Theor. Prob.'15]



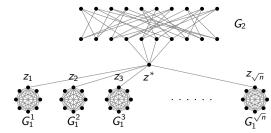
- $G_1^i, 1 \le i \le \sqrt{n}$ are cliques over \sqrt{n} nodes
- G_2 is a \sqrt{n} -regular Ramanujan graph on $n/\sqrt{\alpha}$ nodes $(\alpha = t_{meet}/t_{mix})$
- Node z* is connected to one designated node in each G_1^i and to $\sqrt{n/\alpha}$ distinct nodes in G_2

Random Walk Quantities

- $t_{mix} \times n$

 - "≥": Cheeger's Inequality
 "≤": use principle of "Mixing-Time equal to Hitting-Time of Large Sets" [Peres, Sousi, J. of. Theor. Prob.'15]

```
• t_{\text{meet}} \simeq \alpha n
```



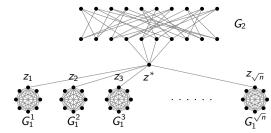
- G_1^i , $1 \le i \le \sqrt{n}$ are cliques over \sqrt{n} nodes
- G_2 is a \sqrt{n} -regular Ramanujan graph on $n/\sqrt{\alpha}$ nodes $(\alpha = t_{meet}/t_{mix})$

Random Walk Quantities

- $t_{mix} \asymp n$
 - "≥": Cheeger's Inequality
 - "≤": use principle of "Mixing-Time equal to Hitting-Time of Large Sets" [Peres, Sousi, J. of. Theor. Prob.'15]

• $t_{meet} \asymp \alpha n$

- very unlikely to meet outside G2
- After t_{mix} steps, w.p. $(1/\sqrt{\alpha})^2$ both walks on $G_2 \Rightarrow$ meet w.c.p.

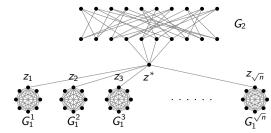


- $G_1^i, 1 \le i \le \sqrt{n}$ are cliques over \sqrt{n} nodes
- G_2 is a \sqrt{n} -regular Ramanujan graph on $n/\sqrt{\alpha}$ nodes $(\alpha = t_{meet}/t_{mix})$

Random Walk Quantities

- $t_{mix} \asymp n$
 - "≥": Cheeger's Inequality
 - "≤": use principle of "Mixing-Time equal to Hitting-Time of Large Sets" [Peres, Sousi, J. of. Theor. Prob.'15]
- $t_{meet} \asymp \alpha n$
 - very unlikely to meet outside G2
 - After t_{mix} steps, w.p. $(1/\sqrt{\alpha})^2$ both walks on $G_2 \Rightarrow$ meet w.c.p.

• $t_{coal} \gtrsim \sqrt{\alpha} n \log n$



- G_1^i , $1 \le i \le \sqrt{n}$ are cliques over \sqrt{n} nodes
- G_2 is a \sqrt{n} -regular Ramanujan graph on $n/\sqrt{\alpha}$ nodes $(\alpha = t_{meet}/t_{mix})$

Random Walk Quantities

- $t_{mix} \asymp n$
 - "≥": Cheeger's Inequality
 - "≤": use principle of "Mixing-Time equal to Hitting-Time of Large Sets" [Peres, Sousi, J. of. Theor. Prob.'15]
- $t_{meet} \asymp \alpha n$
 - very unlikely to meet outside G2
 - After t_{mix} steps, w.p. $(1/\sqrt{\alpha})^2$ both walks on $G_2 \Rightarrow$ meet w.c.p.
- $t_{\text{coal}} \gtrsim \sqrt{\alpha} n \log n$
 - \exists one walk starting from G_1^i that doesn't reach G_2 in $\sqrt{\alpha n} \log n$ steps

For the example $t_{\text{mix}} \asymp \sqrt{n}$, $t_{\text{meet}} \asymp \alpha \sqrt{n}$ and $t_{\text{coal}} \gtrsim \sqrt{\alpha \cdot n} \log n$:

For the example $t_{\text{mix}} \asymp \sqrt{n}$, $t_{\text{meet}} \asymp \alpha \sqrt{n}$ and $t_{\text{coal}} \gtrsim \sqrt{\alpha \cdot n} \log n$:

Theorem (Lower Bound) For any $\alpha = \frac{t_{meet}}{t_{mix}} \in [1, \log^2 n]$ there exists a family of almost-regular graphs such that: $t_{roal} \ge t_{meet} \cdot \left(1 + \sqrt{\frac{t_{mix}}{t_{mix}}} \cdot \log n\right)$

$$t_{\text{roal}} \gtrsim t_{\text{meet}} \cdot \left(1 + \sqrt{\frac{t_{\text{mix}}}{t_{\text{meet}}}} \cdot \log n\right)$$

For the example $t_{\text{mix}} \asymp \sqrt{n}$, $t_{\text{meet}} \asymp \alpha \sqrt{n}$ and $t_{\text{coal}} \gtrsim \sqrt{\alpha \cdot n} \log n$:

Theorem (Lower Bound) For any $\alpha = \frac{t_{meet}}{t_{mix}} \in [1, \log^2 n]$ there exists a family of almost-regular graphs such that:

$$t_{\text{coal}} \gtrsim t_{\text{meet}} \cdot \left(1 + \sqrt{\frac{t_{\text{mix}}}{t_{\text{meet}}}} \cdot \log n\right)$$

Theorem (Upper Bound) For any graph G = (V, E), $t_{coal} \leq t_{meet} \cdot \left(1 + \sqrt{\frac{t_{mix}}{t_{meet}}} \cdot \log n\right)$

For the example $t_{\text{mix}} \asymp \sqrt{n}$, $t_{\text{meet}} \asymp \alpha \sqrt{n}$ and $t_{\text{coal}} \gtrsim \sqrt{\alpha \cdot n} \log n$:

Theorem (Lower Bound) For any $\alpha = \frac{t_{meet}}{t_{mix}} \in [1, \log^2 n]$ there exists a family of almost-regular graphs such that:

$$t_{\text{coal}} \gtrsim t_{\text{meet}} \cdot \left(1 + \sqrt{\frac{t_{\text{mix}}}{t_{\text{meet}}}} \cdot \log n\right)$$

Theorem (Upper Bound) For any graph G = (V, E), $t_{coal} \lesssim t_{meet} \cdot \left(1 + \sqrt{\frac{t_{mix}}{t_{meet}}} \cdot \log n\right)$

• For almost-regular graphs, t_{coal} might be as large as $t_{meet} \cdot \log n$

For the example $t_{\text{mix}} \asymp \sqrt{n}$, $t_{\text{meet}} \asymp \alpha \sqrt{n}$ and $t_{\text{coal}} \gtrsim \sqrt{\alpha \cdot n} \log n$:

Theorem (Lower Bound) For any $\alpha = \frac{t_{meet}}{t_{mix}} \in [1, \log^2 n]$ there exists a family of almost-regular graphs such that:

$$t_{\text{coal}} \gtrsim t_{\text{meet}} \cdot \left(1 + \sqrt{\frac{t_{\text{mix}}}{t_{\text{meet}}}} \cdot \log n\right)$$

- For almost-regular graphs, t_{coal} might be as large as $t_{\text{meet}} \cdot \log n$
- However, for any vertex-transitive graph, $t_{coal} \approx t_{meet} (\approx t_{hit})$

• For any regular graph, $t_{\rm hit} \lesssim \frac{n}{1-\lambda_2}$

[Broder, Karlin, FOCS'88]

- For any regular graph, $t_{\rm hit} \lesssim \frac{n}{1-\lambda_2}$
- For any graph, $t_{hit} \lesssim \frac{1/\pi_{min}}{\Phi \cdot \log \Phi}$

[Broder, Karlin, FOCS'88]

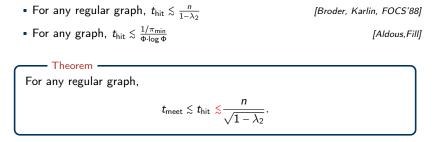
[Aldous,Fill]

- For any regular graph, $t_{\rm hit} \lesssim \frac{n}{1-\lambda_2}$
- For any graph, $t_{\text{hit}} \lesssim \frac{1/\pi_{\min}}{\Phi \cdot \log \Phi}$

[Broder, Karlin, FOCS'88]

[Aldous,Fill]

Theorem Theorem For any regular graph, $t_{
m meet} \lesssim t_{
m hit} \lesssim rac{n}{\sqrt{1-\lambda_2}}.$



• For any given $1/(1 - \lambda_2)$, there is a graph matching this bound up to constants

- For any regular graph, $t_{hit} \lesssim rac{n}{1-\lambda_2}$
- For any graph, $t_{hit} \lesssim \frac{1/\pi_{min}}{\Phi \cdot \log \Phi}$

[Broder, Karlin, FOCS'88]

[Aldous,Fill]

Theorem Theorem For any regular graph, $t_{
m meet} \lesssim t_{
m hit} \lesssim rac{n}{\sqrt{1-\lambda_2}}.$

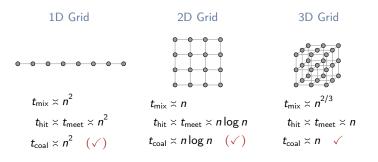
- For any given $1/(1 \lambda_2)$, there is a graph matching this bound up to constants
- Applying Cheeger's inequality, we obtain $t_{hit} = O(n/\Phi)$.

Introduction

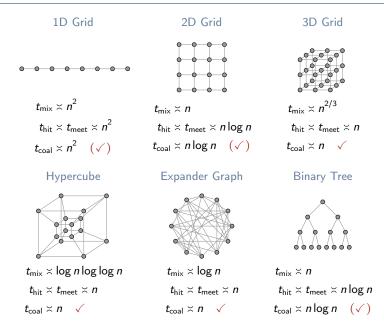
Relating Coalescing Time to the Mixing and Meeting Time

Conclusion

Application to Concrete Networks



Application to Concrete Networks



- Results ------

1. For arbitrary graphs,
$$t_{\text{coal}} \lesssim t_{\text{meet}} \cdot \left(1 + \sqrt{\frac{t_{\text{mix}}}{t_{\text{meet}}}} \cdot \log n\right)$$

Results -

1. For arbitrary graphs,
$$t_{\text{coal}} \lesssim t_{\text{meet}} \cdot \left(1 + \sqrt{\frac{t_{\text{mix}}}{t_{\text{meet}}}} \cdot \log n\right)$$

2. For any $\frac{t_{\text{meet}}}{t_{\text{mix}}} \in [0, \log^2 n]$, there is an almost-regular matching graph

Results

1. For arbitrary graphs,
$$t_{\text{coal}} \lesssim t_{\text{meet}} \cdot \left(1 + \sqrt{\frac{t_{\text{mix}}}{t_{\text{meet}}}} \cdot \log n\right)$$

- 2. For any $\frac{t_{\text{meet}}}{t_{\text{mix}}} \in [0, \log^2 n]$, there is an almost-regular matching graph 3. For graphs with constant Δ/d , $t_{\text{mix}} \lesssim t_{\text{meet}} \lesssim t_{\text{coal}} \lesssim t_{\text{hit}} \lesssim t_{\text{cov}}$

Results

1. For arbitrary graphs,
$$t_{\text{coal}} \lesssim t_{\text{meet}} \cdot \left(1 + \sqrt{\frac{t_{\text{mix}}}{t_{\text{meet}}}} \cdot \log n\right)$$

- 2. For any $\frac{t_{\text{meet}}}{t_{\text{mix}}} \in [0, \log^2 n]$, there is an almost-regular matching graph 3. For graphs with constant Δ/d , $t_{\text{mix}} \lesssim t_{\text{meet}} \lesssim t_{\text{coal}} \lesssim t_{\text{hit}} \lesssim t_{\text{cov}}$

 Open Questions — 	 	

Results

1. For arbitrary graphs,
$$t_{\text{coal}} \lesssim t_{\text{meet}} \cdot \left(1 + \sqrt{\frac{t_{\text{mix}}}{t_{\text{meet}}}} \cdot \log n\right)$$

- 2. For any $\frac{t_{\text{mext}}}{t_{\text{mix}}} \in [0, \log^2 n]$, there is an almost-regular matching graph 3. For graphs with constant Δ/d , $t_{\text{mix}} \lesssim t_{\text{meet}} \lesssim t_{\text{coal}} \lesssim t_{\text{hit}} \lesssim t_{\text{cov}}$

Open Questions -

• Can we prove $t_{coal} \lesssim t_{hit}$ for all graphs?

Results

1. For arbitrary graphs,
$$t_{\text{coal}} \lesssim t_{\text{meet}} \cdot \left(1 + \sqrt{\frac{t_{\text{mix}}}{t_{\text{meet}}}} \cdot \log n\right)$$

- 2. For any $\frac{t_{\text{met}}}{t_{\text{mix}}} \in [0, \log^2 n]$, there is an almost-regular matching graph 3. For graphs with constant Δ/d , $t_{\text{mix}} \lesssim t_{\text{meet}} \lesssim t_{\text{coal}} \lesssim t_{\text{hit}} \lesssim t_{\text{cov}}$

Open Questions -

• Can we prove $t_{coal} \lesssim t_{hit}$ for all graphs? Roberto I. Oliveira, Yuval Peres: Random walks on graphs: new bounds on hitting, meeting, coalescing and returning. CoRR abs/1807.06858 (2018)

Results

1. For arbitrary graphs,
$$t_{\text{coal}} \lesssim t_{\text{meet}} \cdot \left(1 + \sqrt{\frac{t_{\text{mix}}}{t_{\text{meet}}}} \cdot \log n\right)$$

- 2. For any $\frac{t_{\text{met}}}{t_{\text{mix}}} \in [0, \log^2 n]$, there is an almost-regular matching graph 3. For graphs with constant Δ/d , $t_{\text{mix}} \lesssim t_{\text{meet}} \lesssim t_{\text{coal}} \lesssim t_{\text{hit}} \lesssim t_{\text{cov}}$

Open Questions -

• Can we prove $t_{coal} \lesssim t_{hit}$ for all graphs? Roberto I. Oliveira, Yuval Peres: Random walks on graphs: new bounds on hitting, meeting, coalescing and returning. CoRR abs/1807.06858 (2018)

• Is it true that
$$t_{coal}^{(disc)} \times t_{coal}^{(cont)}$$
 for any graph?

Results

1. For arbitrary graphs,
$$t_{\text{coal}} \lesssim t_{\text{meet}} \cdot \left(1 + \sqrt{\frac{t_{\text{mix}}}{t_{\text{meet}}}} \cdot \log n\right)$$

- 2. For any $\frac{t_{\text{met}}}{t_{\text{mix}}} \in [0, \log^2 n]$, there is an almost-regular matching graph 3. For graphs with constant Δ/d , $t_{\text{mix}} \lesssim t_{\text{meet}} \lesssim t_{\text{coal}} \lesssim t_{\text{hit}} \lesssim t_{\text{cov}}$

Open Questions

- Can we prove $t_{coal} \lesssim t_{hit}$ for all graphs? Roberto I. Oliveira, Yuval Peres: Random walks on graphs: new bounds on hitting, meeting, coalescing and returning. CoRR abs/1807.06858 (2018)
- Is it true that $t_{coal}^{(disc)} \approx t_{coal}^{(cont)}$ for any graph?
- Reduce the number of walks to some threshold $\kappa \in [1, n]$. Conjecture:
 - For any (regular) graph, no. walks can be reduced to \sqrt{n} in O(n) time.
 - More generally, it takes $O((n/\kappa)^2)$ time to go from n to κ .

The End

*****	×	×	8	* *	×	×	×	×
8	×	×	×	×	% %	×	×	×
×	***		**	***	×	× ×	≈ ≈	×
*	×	×	×	×	×	& 	×	×
×	×	×	*	*	8	*	×	×
	*	×	&	R R	×	×		
	×	×	×	×	×	×		
	\$	6	×	×	×	×		
	8	R	×	×	×	×		
*	R	8	* *	8	* *			

The End

*****	* *	***	* *	* *
*	* *	* *	** *	* *
*	*****	*****	* * *	***
*	* *	* *	* **	* *
*	* *	* *	* *	* *
	* * ** * *	*** * * * * * * * *	* * * * * * * * **	

Definition ·

• The mouse picks a deterministic walk (v_0, v_1, v_2, \ldots) , unaware of the transitions of the cat

- The mouse picks a deterministic walk (v_0, v_1, v_2, \ldots) , unaware of the transitions of the cat
- The cat performs lazy random walk $(Y_t)_{t\geq 0}$ from u

- The mouse picks a deterministic walk (v_0, v_1, v_2, \ldots) , unaware of the transitions of the cat
- The cat performs lazy random walk $(Y_t)_{t\geq 0}$ from u
- The expected duration of the game is

- The mouse picks a deterministic walk (v_0, v_1, v_2, \ldots) , unaware of the transitions of the cat
- The cat performs lazy random walk $(Y_t)_{t\geq 0}$ from u
- The expected duration of the game is

$$t_{\text{cat-mouse}} \coloneqq \max_{u, (v_0, v_1, \ldots)} \mathbf{E}_u \left[\min\{t \ge 0 : Y_t = v_t\} \right].$$

- The mouse picks a deterministic walk (v_0, v_1, v_2, \ldots) , unaware of the transitions of the cat
- The cat performs lazy random walk $(Y_t)_{t\geq 0}$ from u
- The expected duration of the game is

$$t_{\text{cat-mouse}} := \max_{u, (v_0, v_1, \dots)} \mathbf{E}_u \left[\min\{t \ge 0 : Y_t = v_t \} \right].$$

- very similar version in Aldous and Fill (Section 4.3)
- we may assume w.l.o.g. that the cat starts from stationarity by simply letting the cat perform t_{mix} steps

Definition

- The mouse picks a deterministic walk (v_0, v_1, v_2, \ldots) , unaware of the transitions of the cat
- The cat performs lazy random walk $(Y_t)_{t\geq 0}$ from u
- The expected duration of the game is

$$t_{\text{cat-mouse}} \coloneqq \max_{u,(v_0,v_1,\ldots)} \mathbf{E}_u \left[\min\{t \ge 0 : Y_t = v_t\}\right].$$

- very similar version in Aldous and Fill (Section 4.3)
- we may assume w.l.o.g. that the cat starts from stationarity by simply letting the cat perform t_{mix} steps

Comments on the Cat-and-Mouse Game:

- Easier to deal with in the sense there is only one random object (the cat!)
- Clearly, $t_{meet} \leq t_{cat-mouse}$ and $t_{hit} \leq t_{cat-mouse}$. But do we have $t_{cat-mouse} \approx t_{hit}$?

