
Speculative Vectorisation with Selective Replay
Peng Sun

University of Cambridge
Cambridge, UK

ps702@cl.cam.ac.uk

Giacomo Gabrielli
Arm Research

Cambridge, UK
giacomo.gabrielli@arm.com

Timothy M. Jones
University of Cambridge

Cambridge, UK
timothy.jones@cl.cam.ac.uk

Abstract—While industry continues to develop SIMD vector
ISAs by providing new instructions and wider data-paths, mod-
ern SIMD architectures still rely on the programmer or compiler
to transform code to vector form only when it is safe. Limitations
in the power of a compiler’s memory alias analysis and the
presence of infrequent memory data dependences mean that
whole regions of code cannot be safely vectorised without risking
changing the semantics of the application, restricting the available
performance.

We present a new SIMD architecture to address this issue,
which relies on speculation to identify and catch memory-
dependence violations that occur during vector execution. Once
identified, only those SIMD lanes that have used erroneous data
are replayed; other lanes, both older and younger, keep the results
of their latest execution. We use the compiler to mark loops
with possible cross-iteration dependences and safely vectorise
them by executing on our architecture, termed selective-replay
vectorisation (SRV). Evaluating on a range of general-purpose
and HPC benchmarks gives an average loop speedup of 2.9×,
and up to 5.3× in the best case, over already-vectorised code.
This leads to a whole-program speedup of up to 1.19× (average
1.06×) over already-vectorised applications.

I. INTRODUCTION

Industry support for SIMD vector ISAs continues apace, with
both Intel and Arm developing and extending their instruction
sets and vector widths. The AVX-512 ISA from Intel [12]
extends operations to work on 512 bits of data at a time while
Arm has developed its Scalable Vector Extension (SVE) archi-
tecture [23] that allows code to be compiled once and run on a
variety of implementations that each choose their own vector
width, up to a maximum of 2,048 bits. Modern compilers
provide support for automatic vectorisation of applications,
with the trend to provide more sophisticated analysis and trans-
formations to increase the amount of code that is vectorised
and better assess the profitability of vectorising [25].

However, despite the presence and history of vectorisation
techniques in both hardware and the compiler, in practice,
aside from in certain domains, they are rarely used to vec-
torise general-purpose applications. This is partially due to
the inability of compilers to perform accurate interprocedural
pointer disambiguation and array dependence analysis, which
limits the application of existing compiler and architectural
vectorisation techniques. Current SIMD ISAs only provide
support for operating on vectors of data when the trans-
formation has been proven to be safe. In other words, the
compiler or programmer must ensure that they do not violate
any data dependences when converting the code from scalar

to vector form, otherwise they risk changing the semantics
of the application. This can be a time-consuming and tedious
process for developers; for compilers, current static analyses
are not able to accurately disambiguate pointers due to their
need to be conservative [4, 10, 18, 19, 27], even though
existing research shows that a pair of memory accesses rarely
alias until and unless aliasing is obvious [8]. Further, the
requirement for all code to be free of memory-dependence
violations when vectorised means that irregular or infrequent
dependences prevent whole regions of code from using the
SIMD hardware, limiting the performance available.

Researchers have addressed this problem in two ways.
Baghsorkhi et al. [2] proposed FlexVec, which adds run-time
checks on memory dependences during vectorised code execu-
tion. When a violation occurs, they predicate off the erroneous
lanes, providing partial vectorisation for only the first few
“safe” lanes. Kumar et al. [13] use a binary translator to
speculatively vectorise sequential code at run time, restarting
at a checkpoint and falling back to the sequential version when
violations occur. Both solutions incur run-time overhead, and
leave performance on the table when the majority of the code
after the dependence violation is parallel.

This paper takes a hardware approach. We speculatively
execute regions of vectorised code and monitor the memory
addresses accessed to identify memory-dependence violations.
At the end of the region we re-execute the code for only
those lanes that have obtained the wrong data. Older and
younger lanes with correct data need not rerun. Using our
selective-replay vectorisation architecture (SRV), which aug-
ments a standard out-of-order pipeline, we limit the overheads
of detecting and correcting dependence violations, allowing
compilers to vectorise freely, even in the presence of unknown
dependences. Evaluation on a system with 16-element-wide
vector operations (agnostic of element size) shows an average
speedup of 2.9×, and up to 5.3× in the best case, across a
range of SPEC CPU 2006 and HPC applications.

II. MOTIVATION

Modern compilers fail to vectorise code in the presence
of unknown or infrequent data dependences. For example,
listing 1 shows a loop with an indirect memory access where
the values of array x are not known at compile time. Therefore,
since the compiler cannot prove that a[i] and a[x[i]]
always refer to different memory locations, this loop is not

1

1 /* Read integers from the standard input. */
2 int *x = read();
3 for (i = 0; i < N; i++) {
4 a[x[i]] = a[i] + 2;
5 }

Listing 1: Example code with read-after-write cross-iteration
dependences every four iterations when read() returns
{3, 0, 1, 2, 7, 4, 5, 6, 11, 8, 9, 10...}.

vectorised. Assuming that the read() function provides val-
ues {3, 0, 1, 2, 7, 4, 5, 6, 11, 8, 9, 10...}, then a read-after-write
memory-dependence violation does indeed occur if vectorising
with four or more lanes, because a[3] reads a value before
a[x[0]] has updated it, obtaining the wrong data. This
pattern repeats every four iterations. In this case, the compiler
is correct in reasoning that it is unsafe to vectorise this loop
unless it knows that fewer than four lanes will be used or
there is a method of detecting and correcting the violations
that occur.

We performed limit studies across the benchmarks used in
this paper (more details of the applications in section V) to
examine how vectorisation of general-purpose and HPC work-
loads are affected by unknown dependences. We instrumented
each workload to record through-memory dependences at run-
time and estimated the optimal performance that vectorisation
could obtain for inner loops if it failed to vectorise only
in the presence of true dependencies. To achieve this, we
emulated vectorisation in groups of 16 iterations at a time
for these loops, assuming that logic would be available to
buffer stores so as to avoid dependence violations from false
(WAW and WAR) dependences, and additional logic to detect
early loop exit (e.g., through a break). Results showed an
average of 2.1× potential whole-program speedup if we could
vectorise all inner loops, but this dropped to an average of only
1.02× speedup if we could not vectorise those with unknown
through-memory dependences. More than 70% of the currently
unvectorised inner loops have these types of dependences,
therefore techniques that can address this issue are critical.

One existing option to achieve this is by using FlexVec [2].
This adds compiler-generated run-time checking instructions
at the start of the loop and vectorises as many lanes as possible,
up to the lane with the dependence violation. In the case of
listing 1, assuming 16 vector lanes, FlexVec first forms a
loop to check the memory dependences between a[i] and
a[x[i]] within each iteration and marks lanes 3, 7, 11,
and 15 to indicate dependence violations. It then partially
vectorises the first 16 iterations into five groups—executing
lanes 0–2 in the first iteration, 3–6 in the second, 7–10 in the
third, 11–14 in the fourth, and 15 in the last.

However, there are two drawbacks to this approach. First,
run-time check instructions, usually arranged in a separate
loop, introduce high run-time overhead. For the example code
in listing 1, FlexVec implements a VPCONFLICTM instruction
to perform explicit memory disambiguation. This instruction
compares each element of a[i] with all enabled previous

elements of x[i] until violation is detected. The overhead
of these comparisons increases when the number of memory
accesses that may alias with each other increases.

Second, partial vectorisation does not fully exploit the
potential of data-level parallelism. For the above example,
ideally we can vectorise and execute this loop in just two
iterations. During execution of the first iteration, we monitor
the memory addresses accessed and dynamically mark the
lanes that cause a dependence violation (3, 7, 11, and 15).
The second iteration re-executes just these lanes and, as there
are no more dependence violations, finishes execution.

We propose SRV to address both of these drawbacks
and resolve unknown or periodic dependence violations from
vectorisation using this mechanism. The following sections
describe how selective-replay vectorisation works, as well
as the hardware and compiler support required, before we
evaluate its performance in section VI.

III. SELECTIVE-REPLAY VECTORISATION

SRV is a hardware vectorisation technique that allows the com-
piler to speculatively vectorise code, catching data-dependence
violations automatically and re-executing affected lanes so as
to maintain the sequential semantics of the program. This
means the compiler can vectorise code even when it cannot
prove the absence of data dependences between the SIMD
lanes. New hardware monitors the memory addresses accessed
by each lane to identify those that have read the wrong data;
these are executed again to obtain their correct values. This
allows the compiler to vectorise code with periodic or rare
dependences so that it can also obtain the benefits of vectorised
execution, safe in the knowledge that the hardware will catch
all violations and resolve them.

Figure 1 shows an overview of a standard out-of-order
superscalar pipeline with shaded blocks where we add logic
for SRV. We assume a baseline architecture similar to Arm’s
SVE, with predicate registers to mask execution of lanes
where necessary. SIMD instructions that execute under SRV
proceed through the pipeline as normal, but have execution on
each lane guarded by an additional predicate register, called
the SRV-replay register, which is initially fully set (so all
lanes execute each instruction). Memory-access instructions
are buffered in the load-store queue to enable memory disam-
biguation, identifying cross-lane data-dependence violations.
Violations are resolved by store-to-load forwarding, selective
memory updates, or recording incorrect lanes in another pred-
icate register, the SRV-needs-replay register, depending on the
type of data-dependence violation. At the end of a sequence
of vector instructions, the SRV-needs-replay register indicates
whether any lanes need to be replayed. If so, it is copied to
the SRV-replay register and execution jumps back to the start
of that vector-instruction sequence.

A. Enabling SRV execution

To support vectorisation using SRV, we introduce two new
instructions: SRV-start and SRV-end. These are placed at the
beginning and end of a vectorised loop body with unknown,

2

Fetch Decode Dispatch Rename Issue Reg Read Execute Memory Writeback

In
stru

ction
C
ach

e

R
eg

ister
File

Data
Cache

IQ

R
A
T

ROB

LSU

To RF

New SRV-start and
SRV-end instructions

New SRV-replay
predicate register

Extended memory-
disambiguation logic

Fig. 1: Logic for SRV added to a standard out-of-order superscalar pipeline.

periodic or rare dependences, as shown in listing 2, pseudo-
code that represents the final compiler-generated code from
listing 1. We term the region bounded by SRV-start and SRV-
end instructions the SRV-region, and it contains only vector in-
structions. SRV could also be used to vectorise non-loop code
with unknown dependences, through the SLP algorithm [14],
for example, although we do not pursue that direction in this
paper. Inside the SRV-region, SRV is enabled; additional logic
that is only required for SRV can be power gated when code
outside an SRV-region is executed.

The SRV-start instruction denotes the start of a speculative
region and the point at which execution should restart if any
lanes violate memory dependences, when they need to roll
back and re-execute. Executing SRV-start involves recording
the PC of the next instruction, fully setting the SRV-replay
register and directing the load-store queue to perform extended
memory disambiguation, described in section III-B. Scalar
operations that may change the architectural state of a loop’s
iteration (e.g., induction variables) are kept outside the SRV-
region by the compiler so that these variables remain non-
speculative. Stored data from speculative lanes cannot leave
the core and enter the cache hierarchy until they become non-
speculative. Note that no checkpoints are taken of architectural
registers (apart from the PC)—any changes made to registers
during the SRV-region persist across re-executions.

Execution in SRV proceeds through the SRV-region in the
same way as through regular code. On completion, when
encountering an SRV-end instruction, if there have been no
memory-dependence violations (indicated by a fully unset
SRV-needs-replay register), then all speculative state can be
committed and execution continues beyond the SRV-region.
However, if there are any incorrect lanes, then execution rolls
back to the point immediately after the previous SRV-start
instruction, using the recorded PC, and only those lanes that
have used incorrect data are replayed. Rollback may occur
multiple times before all lanes are correct, but is bounded by
the number of vector lanes (so for N lanes, roll back can only
happen at most N − 1 times, but in section VI we show it
causes execution of fewer than 1% additional iterations in the
worst case for our workloads). SRV-regions cannot be nested,

1 Loop:
2 srv_start
3 v_load v0, a[i:i+15]
4 v_add v0, 2
5 scatter v0, a[x[i]:x[i+15]]
6 srv_end
7 inc i, 16
8 comp i, N
9 bne Loop

Listing 2: Pseudo-code for listing 1 using SRV.

meaning that a second SRV-start cannot occur before an SRV-
end instruction has been executed.

The SRV-start instruction carries an attribute that indicates
the iteration ordering property of the SRV-region. If the lane
number of a vector register increases when the accessing mem-
ory address increases (e.g., a loop with an increasing induction
variable), the SRV-start instruction carries an UP attribute.
Memory disambiguation works as described in section III-B.
Otherwise, if the lane number of a vector register increases
when the accessing memory address decreases (e.g., a loop
with a decreasing induction variable), the SRV-start instruc-
tion carries a DOWN attribute. In this case, memory-address
comparisons during memory disambiguation are adjusted to
account for the changed direction of data access. This attribute
is passed to the SRV-start instruction from the compiler.

B. Memory disambiguation

To perform memory disambiguation in SRV, we leverage
existing load-store unit (LSU) components within out-of-order
superscalar cores, augmented with modest additional logic,
which is only powered on when required, to capture data-
dependence violations. We focus here on an LSU targeting
a relaxed memory-consistency model aligned to the Armv8-
A with SVE memory model [1]. We assume that the LSU
is split into a load queue (LQ), store-address queue (SAQ)
and store-data queue (SDQ). Contiguous and broadcast vector
load instructions occupy only one entry in the LQ, whereas a
vector gather takes up one entry for each lane that is loaded.
Likewise, contiguous vector stores take up a single entry in

3

the SAQ and SDQ, whereas a vector scatter takes up one entry
for each lane that has data stored.

1) Load execution: When a load instruction issues, it is
compared with all older stores in the SAQ. When executing
scalar code, if the load accesses an address that was written
by an older store in the SAQ, data is forwardable from
the corresponding SDQ to this load instruction. Although
most architectures only allow store-to-load forwarding if an
older store contains all data for the younger load, some
implementations are more aggressive and enable partial store-
to-load forwarding where a younger load obtains forwardable
bytes from multiple entries of the SDQ and the cache [26];
we choose to do this.

However, with SRV, if the address accessed by the issuing
load overlaps with that of an older store in a later lane, then
a write-after-read (WAR) violation occurs. In this case, bytes
with matched addresses are not forwardable from the matching
SDQ entries because they represent data that would have been
stored later in program order, in non-vectorised code. The load
instruction instead must obtain forwardable data only from
earlier lanes (or the same lane) of older SDQ entries. If no
matches are found, it must load from the memory hierarchy,
using a similar mechanism to that described by Witt [26].
Depending on the addresses matched, data can be read from
both SDQ entries and corresponding cache lines concurrently,
then combined to write into the destination vector register. This
disambiguation scheme allows data to be partially loaded from
the memory system and partially forwarded from the SDQ.

2) Store execution: When a store instruction issues, or
when its virtual address becomes known, it is compared
against all LQ entries that contain younger loads. In parallel,
a search of the SAQ is required to detect write-after-write
(WAW) violations.

For scalar code, a read-after-write (RAW) dependence vi-
olation occurs when a younger load has previously read data
from an address that at least partially overlaps with the address
written to by an issuing store. Whenever this happens, a signal
is generated to squash this younger load and all instructions
after it. In addition though, in SRV, RAW violations also occur
when an issuing store writes to an address that at least partially
overlaps with the address read by an older load in a later SIMD
lane. In this case the older load has already read the wrong
data and so it also needs to be squashed. However, there is no
need to squash the whole instruction. Instead, SRV resolves
the violation by recording the lane(s) in each prior load that
violated this dependence. At the end of the SRV-region, only
these lanes are replayed so that the later lanes with older loads
pick up the correct data.

WAW violations occur when an issuing store writes data
to the same address as written by an older store in a later
lane. SRV resolves this issue by once more recording the
violating lanes, then using this information to selectively
update memory once the SRV-region is complete. In other
words, it records all data stored during the SRV region but
only writes the latest version of each address back to memory.

3) Resolving dependences: As described in previous para-
graphs, data dependences may be violated by execution under
SRV. WAR and WAW violations are handled immediately: in
the former case, data is not forwarded from older stores in
later lanes; in the latter case, the SAQ records which lanes
of each store should write data to memory so that the most
recent version (in program order) is eventually written back.
RAW dependences, in contrast, are handled by setting bits in
the SRV-needs-replay register and re-executing violating lanes
when reaching the end of the SRV-region.

C. Control flow
The SRV architecture supports arbitrary forwards control flow
within an SRV-region through if-conversion. This means that
code with if-then-else statements can be executed under SRV
by creating predicates from the branch condition checks,
removing branches, and executing the code under control of
the predicates. However, it does not currently support loops or
function calls due to the difficulties in calculating the number
of LSU entries required when loops do not have a fixed number
of iterations and call graphs contain recursion.

Each memory-access instruction within the SRV-region ob-
tains an identifier, called an SRV-id. Memory instructions with
the same PC are assigned the same SRV-id, (e.g., when split-
ting a scatter). During replay, no further entries are allocated
in the LSU; instead, entries with the same SRV-id are updated.

To ensure this in the presence of predication, on the first
execution of an SRV-region all instructions are fetched and
issued. Lanes where the predicate is on are executed; those
where it is off are unchanged. This creates entries in the LSU
for all possible memory accesses, meaning that on replay,
should one or more lanes execute instructions with a different
predicate to before, they will not have to add entries to the
LSU. This does not affect the number of times code is executed
within the SRV-region, but means that instructions where the
predicate is completely unset must be issued and allocate LSU
entries the first time through the SRV-region.

This process only needs to be performed once when a new
SRV-region is encountered. The microarchitecture records the
LSU entries needed for the last SRV-region seen and, when
it sees that region again, can pre-allocate the entries. The
majority of SRV-regions are contained within a loop body,
so they are likely to be executed many times consecutively.

D. Other architectural changes
This section describes other changes to the architecture as a
result of SRV.

1) Serialisation point: The SRV-end instruction creates a
serialisation point, meaning that it will only be executed
once all previous instructions have completed execution and,
further, no younger instructions are allowed to execute before
them. This is due to the SRV-needs-replay register containing
“sticky” bits; a common method to handle these is to rely on
a completion table, which necessitates serialisation. In order
to achieve this, SRV-end is marked as non-speculative and the
issue logic stalls the issue of younger instructions until this
SRV-end is executed.

4

2) Architectural state: The architectural state of the proces-
sor is augmented with the SRV-replay register and the PC of
the instruction following the SRV-start. Outside an SRV-region
this PC value is set to 0x0 to indicate normal execution; inside,
the oldest lane with its bit set in the SRV-replay register is
non-speculative and will not be re-executed. Thus architectural
state advances with each instruction committed from the SRV-
region and on execution of an SRV-end instruction, when the
SRV-replay register may change or the SRV-region finishes.

When a context switch or processor mode change occurs
within the SRV-region (i.e., through an interrupt or exception),
the current PC, SRV-replay register, and PC of the instruction
following the SRV-start are sufficient to capture the exact
point execution should return to. All non-speculative data
in the LSU is written back to memory at this point (i,e.,
data corresponding to the oldest lane set in the SRV-replay
register—up to the current PC—and all data from older lanes);
speculative content is discarded. On resumption, the two PCs
are restored. However, only the bit corresponding to the
oldest lane in the saved SRV-replay register is restored, with
bits in the SRV-needs-replay register set corresponding to all
younger lanes. This avoids correctness issues that could occur
if resuming execution of speculative lanes in the middle of the
SRV-region by only resuming execution of the non-speculative
lane until the SRV-end instruction is encountered, at which
point all younger lanes will execute the entirety of the SRV-
region.

3) Interrupts and exceptions: Interrupts and context
switches that occur during an SRV-region are handled imme-
diately as described in section III-D2. Exceptions are handled
similarly to interrupts, except we first identify the lane number
that caused the exception and handle it only if that lane
is the oldest lane currently executing. If not, then this and
all subsequent lanes are marked for re-execution, to guard
against exceptions occurring as a result of using erroneous data
after a memory-dependence violation. Through these methods,
precise interrupts and exceptions are maintained.

4) SAQ modification: Each entry of the store queue is
augmented with a speculative flag, which is set by store
instructions within the SRV-region. Stores can commit when
they reach the head of the ROB, but their data remains in
the store queue while the speculative flag is set. Execution of
the SRV-end instruction, if the SRV-needs-replay register is
unset, clears all speculative flags and writes the stored data
back to the L1 cache (subject to the constraints described in
section III-B3).

5) Register renaming: Upon re-execution, instructions have
a “merging” behaviour, in order to preserve the data of inactive
(already executed) lanes. With renaming, this is typically
achieved by reading the old destination register as an extra
source operand to each instruction. When instructions write
into new physical registers, they also need to read the old
destination physical registers as source operands to merge the
new and old data together.

6) In-order architectures: Applying SRV to an in-order
processor is more straightforward than for an out-of-order

machine, since the out-of-order execution of loads and stores
by the baseline microarchitecture does not occur. In many
ways, however, adding SRV is akin to adding a limited form
of out-of-order execution to an in-order CPU, and still needs
logic to detect data-dependence violations. To achieve this, we
simply add an LSU to a standard in-order processor pipeline,
with the SRV extensions described in section III-B.

7) LSU overflow: Memory instructions in the SRV-region
should be kept in LSU entries until they are no longer
speculative. However, the compiler may create an SRV-region
with more loads and stores than available entries. To resolve
this, we take the same approach as industrial transactional-
memory schemes [28] that are supported on a best-effort basis,
whereby transactions may fail at any point. In the context of
SRV, should there be too many memory-access instructions,
then we transparently fall back to sequential execution. Here,
the SRV-region is repeated once for each lane, with only the
oldest executed and committed each time.

Although not knowing the number of LSU entries will not
affect the correctness of execution, blindly applying the code
transformation could lead, in some corner cases, to slowdowns
due to the vector version of the code not being as efficient as
sequential code, especially when dealing with very large loop
bodies. To address this, we propose two different solutions.
First, the compiler could generate a sequential version of the
loop code, to be executed in cases where the microarchitecture
does not have enough LSU entries to support the vectorised
version. Similar run-time checks are already inserted by com-
pilers to circumvent other auto-vectorisation obstacles, e.g., for
determining run-time aliasing of pointers. Second, the number
of LSU entries in the target microarchitecture could be exposed
to the compiler. The compiler would analyse the maximum
number of memory accesses within each loop that it intended
to vectorise with SRV, and only perform vectorisation if it
could guarantee that the number of memory accesses would
not cause overflow. Compilers already perform optimisations
and code generation to target specific microarchitectures, with
this typically specified through a “-mcpu” or a “-mtune”
command-line option.

8) Vector register-file ports: In principle, SRV would re-
quire an additional vector register-file port for each vector-
operation issue slot in order to support merging predication
(i.e., predication that leaves inactive lanes untouched). In fact,
supporting merging predication efficiently in an out-of-order
microarchitecture is usually implemented by propagating the
old value of the destination register onto a new physical
register, implying an additional vector-register read. However,
we can reasonably assume that a balanced baseline microarchi-
tecture supporting latest-generation SIMD extensions, such as
Arm SVE and Intel AVX512, which already supports merging
predication, would already provide an adequate number of
ports for handling merging operations at full throughput. Based
on that assumption, the main additional overhead introduced
by SRV is reduced to combining the general predicate associ-
ated with each vector-merging instruction with the SRV-replay
register using a simple binary logic operation.

5

1 srv_start
2 v_storeb v0, x[i:i+15] // Instruction A
3 ...
4 v_loadb v1, x[i:i+15] // Instruction B
5 ...
6 v_loadb v2, x[i+8:i+23] // Instruction C
7 srv_end

Listing 3: Example pseudo-code to illustrate vertical and
horizontal dependences between instructions. Instruction B has
a vertical dependence with instruction A; C has a horizontal
and vertical dependence with A.

E. Use of transactional memory

Transactional memory detects memory violations between
threads at run time and resolves them through re-execution.
Applying it to vector execution, each SIMD lane could be
viewed as a thread, with a strict ordering between them, similar
to how the IBM Blue Gene/Q operates [20], and transactional
memory used to detect and resolve the conflicts between
lanes. However, unless the transactional memory system kept
versions of each cache line, then it would have to re-execute
lanes on WAR dependence violations, as well as RAW, to
ensure correct execution in all situations.

F. Summary

We have presented SRV, a technique for speculative vectori-
sation, describing how vectorised code executes on an out-of-
order core, how memory-dependence violations are identified,
and techniques to handle corner cases. The next section takes
this forward to outline a detailed SRV microarchitecture.

IV. SRV MEMORY-DISAMBIGUATION
MICROARCHITECTURE

The key component of SRV is the ability to identify memory-
dependence violations and correct them. To achieve this, we
add additional logic into the load-store unit for memory
disambiguation. We start with an example to present our
terminology, before describing what happens on execution of
load and store instructions.

A. Terminology

We extend the concept of conventional, inter-statement data
dependences, first introduced by Banerjee [4], with notations
of lane numbers in vector instructions. In order to distinguish
our definition of the inter-lane dependences from that of the
inter-statement dependences introduced by Banerjee [4], we
name the former horizontal dependencies and the latter vertical
dependencies.

Listing 3 gives an example. Here, we show an SRV-region
with three key instructions—two vector loads and a vector
store, all operating on byte-length data in each lane. The
vector store at line 2, instruction A, writes data to sixteen
contiguous elements of the x array, indexed by the current
iteration number. The vector load at line 4, instruction B,
reads data back from the same elements. This corresponds to
a vertical dependence between the two instructions, as would

be the case in standard execution. However, the vector load
at line 6, instruction C, loads data from sixteen contiguous
elements of the x array, offset by eight elements from the
current iteration number. Therefore, there is a dependence
between different lanes of this load and the store at line 2.
Here, lane 0 in instruction C accesses the same address as
lane 8 in instruction A, lane 1 in C the same as lane 9 in
A, and so on. This corresponds to a horizontal dependence
between the two instructions, which is new to our technique.

Conventional dependence representations do not consider
any lane information since only independent lanes will be
formed into vector statements. However, in SRV operation,
when vector statements may be formed without considering
dependences, lane information is essential for dependence
detection.

In addition to the new horizontal dependences, we define
the address-alignment region as the address space that aligns
with the vector length of a specific vector architecture. For
example, if the vector architecture under consideration has
a vector length of 64 bytes, the address spaces 0x00–0x3F,
0x40–0x7F, etc, are known as alignment regions. The address
space 0x0C–0x4C spans two consecutive alignment regions.
The start address of the alignment region is known as the
address-alignment base.

B. Vertical disambiguation mechanism

To identify vertical data dependences in the baseline microar-
chitecture, as well as in SRV, the LSU contains the logic
shown in figure 2 marked by dashed lines and titled “Vertical
Disambiguation Logic”. This consists of a bit vector per row in
the SAQ and LQ, computed during issue, corresponding to the
bytes accessed by the corresponding SAQ / LQ entry relative
to the address-alignment base (the bytes-accessed bit vector),
and a further bit vector that determines the bytes overlapped
with each issuing load or store (the VOB bit vector or vertically
overlapped bytes bit vector).

Figure 3 shows how this works for our example code in
listing 3. The vector store is in the SAQ and SDQ and
the first vector load (instruction B from line 4) issues. We
assume here that the address-alignment base for the current
dynamic instance of each instruction is 0xAB00 and the data
is found at an offset of 16 bytes. As mentioned previously,
each instruction operates on single bytes in each lane, so the
Elem field is set to 1 and Size set to 16. Type and Lane fields
are not important for this example.

When instruction B issues, the SAQ is consulted and a
match occurs on the entry containing instruction A, since they
have the same address-alignment base. The bytes-accessed bit
vector for both instructions is the same, so the VOB bit vector
consists of all bits set for the overlapping memory addresses.
In this case, that is bits 16 to 31—this is because there is an
offset of 16 bytes from the address-alignment base and then
16 bytes that are common between the two instructions. This
indicates that all data for the load has been written by the prior
store, so is forwardable from it.

6

…

Addr-align base Offset Size

… …

SAQ/LQ

Addr-align baseIssuing load Info

Bytes
Accessed

AND

…

T Lane Elem

T Lane ElemOffset

…… …

V

VOB
Bit Vectors

…

Horizontal
Violation

…

HOB
Bit Vectors

…

Overall
VOB

Bit Vec

Overall
HOB

Bit Vectors

Vertical Disambiguation Logic

Size

Horizontal Disambiguation Logic

OR OR

Fig. 2: Detailed vertical and horizontal disambiguation logic structure. When an issuing instruction searches the SAQ/LQ, bit
vectors are generated to either determine the data that can be forwarded from the SDQ or generate control signals.

Addr-align base Offset Size T Lane Elem

SAQ contents — v_storeb v0, x[i:i+15]

0xAB00 0x10 16 01 0 1

Issuing load — v_loadb v1, x[i:i+15] VOB

0xAB00 0x10 16 01 0 1 063 1531

Fig. 3: Vertical disambiguation for the code in listing 3 when
the vector load at line 4 issues. The red block in the VOB
indicates bits set to 1.

In more detail, when a load instruction issues, its bytes-
accessed bit vector is calculated and ANDed with the bytes-
accessed bit vector of each matching row in the SAQ (i.e., with
the same address-alignment base), with results written into the
VOB bit vectors. All VOB bit vectors are ORed together to
form the overall VOB bit vector, which indicates the bytes
of the issuing load instruction that have been written by
prior stores, whereas unset bits indicate bytes to read from
memory. This action is managed so that younger stores are
given priority to forward data, as described by Witt [26], if
multiple SDQ entries contain data for the load instruction.
Data forwarding from multiple SDQ entries will only occur
when a contiguous load needs to get data from previous
stores under write-after-read violation. We modelled this data
grouping being completed within a single cycle, as explained
by Witt [26]. However, these violations are rare, as we show
in section VI. Therefore, a more conservative implementation
could handle this process with a slow path over multiple
cycles, without incurring measurable performance penalties.

A similar process occurs when a store instruction issues,
when a non-zero overall VOB bit vector indicates a true
vertical memory violation. This is caused by re-ordering a
younger load beyond a store and thus requires a squash, which

happens from the oldest load that has a non-zero VOB bit
vector. The modelled microarchitecture assumes that loads are
reordered with respect to earlier stores in program order based
on the outcome of a store-set predictor [7]; the functionality
of the predictor is largely orthogonal to SRV, and only affects
vertical disambiguation, not horizontal.

C. Horizontal disambiguation mechanism

SRV adds extra horizontal disambiguation logic alongside the
conventional vertical disambiguation logic, and performs hori-
zontal disambiguation in parallel with vertical disambiguation,
as shown in red in figure 2 marked by dashed lines and titled
“Horizontal Disambiguation Logic”. This consists of a bit
vector to identify horizontal memory-dependence violations
(the horizontal-violation bit vector) and another to determine
the bytes overlapped with the issuing load or store (the HOB
bit vector or horizontally overlapped bytes bit vector).

As an illustration, in our example code from listing 3, this
works as shown in figure 4. Here there are two contiguous
vector accesses—the vector store from line 2, instruction A,
and the second vector load, from line 6, instruction C. When
instruction C issues, it sets bits in the VOB bit vector as
described in section IV-B; i.e., bits 24 to 31, corresponding
to the bytes that both instructions access taking into account
the offset from the address-alignment base of each instruction.
However, since the address-alignment offset of C is larger than
that of A, there is a memory-dependence violation (a WAR
violation, since the store has written bytes in later lanes before
the load has read them). This is shown by the horizontal-
violation bit vector, which is set from bit 24 onwards (since
byte 24 is the first violating byte). The HOB bit vector
is created from an AND between the VOB bit vector and
the horizontal-violation bit vector, so bits 24 to 31 are set,
which correctly indicate the bytes that violate the memory
dependence. To deal with this violation, the vector store cannot
forward these bytes to the vector load, and instead the load
has to obtain all bytes from the cache.

7

Addr-align base Offset Size T Lane Elem

SAQ contents — v_storeb v0, x[i:i+15]

0xAB00 0x10 16 01 0 1

Issuing load — v_loadb v2, x[i+8:i+23] VOB Horizontal-violation HOB

0xAB00 0x18 16 01 0 1 063 2331 02363 0233163

Fig. 4: Horizontal disambiguation for the code in listing 3 when the vector load at line 6 issues. Red blocks in the bit vectors
indicate bits set to 1.

The example code gives an indication of how horizontal
dependences can be identified for one particular pair of instruc-
tions. However, in general, identifying horizontal memory-
dependence violations and data that can be forwarded from
older stores to younger loads is complicated by having to
deal with the various types of vector memory access that can
occur (i.e., contiguous, gather/scatter, and broadcast) and the
lane each instruction accesses. In the following sections, we
describe how the logic works for each combination of issuing
load and prior store; the same occurs for issuing stores and
prior loads. For gather and scatter operations, we perform the
actions for each individual load and store from the original
instruction.

1) Both contiguous: If the address-alignment offset of the
issuing load is smaller than or equal to that of a previous store
in the SAQ, the overlapped bytes of the SDQ, indicated by the
VOB bit vector are forwardable. The VOB bit vector is copied
to the HOB bit vector. Otherwise, a horizontal WAR violation
occurs and the issuing load needs to obtain forwardable data
from older stores.

2) Gather-scatter: Here, new lane fields for the memory
accesses are compared. If the load’s lane is larger than or
equal to a previous store’s lane, the VOB bit vector indicates
the forwardable bytes from this SDQ entry and the VOB bit
vector is, again, copied to the corresponding HOB bit vector.
Otherwise, a horizontal WAR violation is detected and the
issuing load ignores the overlapped bytes of this SDQ entry.
If there is no data forwardable from the SDQ, it will be loaded
from the memory.

3) Contiguous-scatter / gather-contiguous: In both these
scenarios each horizontal-violation bit vector is initialised
by setting bits corresponding to the overlapped lanes. For a
contiguous load and prior scatter the mth to the (n − 1)th

lanes are marked, where m comes from the load’s lane field
and n from the store’s. In contrast, for a gather and contiguous
prior store, all bits from the mth lane are marked. The bits are
then shifted so that the horizontal-violation bit vector marks
the bytes of data in the corresponding SDQ entry that will
cause horizontal WAR violations if the issuing load accesses
them. Each VOB bit vector is ORed with its corresponding
horizontal-violation bit vector to indicate forwardable bytes
from the SDQ entries in the HOB bit vectors.

4) Broadcast-contiguous / broadcast-scatter: These scenar-
ios are variants on the situations where both instructions are
contiguous or you have a contiguous load with a scatter store.
The key difference is to treat the broadcast as an access to the
same memory address by each lane, and construct the VOB
bit vector and HOB bit vector accordingly.

D. Execution example

We use listing 2 to provide a worked example of horizontal
RAW-violation detection. We assume that the array a is allo-
cated at address 0xFF00 in an LSU with an address-alignment
region size of 64 bytes. The first iteration of execution is
shown in figure 5. Information about the v load instruction
is recorded in an LQ entry at the top.

Within the pipeline, the scatter instruction at line 5 is split
into sixteen different stores, each one 4-bytes long (integer-
sized) and each taking an entry in the SAQ (and corresponding
entry in the SDQ). When the scatter instruction writes to
element 3 of the a array (step 1), it compares its address with
the v load entry in the LQ. Since the scatter writes data to
a[3] at address 0xFF0C, it has the same address-alignment
base as the v load instruction (i.e., 0xFF00), and matches on
this entry, indicating an overlapped access between the scatter
and the v load. The offsets of the scatter and the v load
instructions indicate that the overlap happens from the 12th

to the 15th bytes, counting from 0. Therefore, the 12th to the
15th bits of the VOB bit vector are set to 1. All but the first
4 bits of the horizontal-violation bit vector are set to 1, since
the horizontal disambiguation logic is only interested in lanes
that are older than the lane of the current scatter instruction.
ANDing the VOB bit vector and the horizontal-violation bit
vector gives the HOB bit vector, as shown in the figure, with
the 12th to the 15th bits set.

Execution of the scatter continues in step 2 with the part
that writes to element 0 of the a array (i.e., a[0]). There is
a match on the address-alignment base of the v load again,
and the VOB bit vector gets its first four bits set only. Once
more, the horizontal-violation bit vector is concerned with
identifying lanes from the v load that are older than that of
the current part of the scatter, which is lanes 2 onward, so all
bits from the 8th inwards are set. However, the AND between
these two bit vectors, to give the HOB bit vector, produces a

8

Addr-align base Offset Size T Lane Elem

LQ contents — v_load v0, a[i:i+15]

0xFF00 0 64 01 0 4

Bits 63–32 omitted for clarity

Issuing store — scatter v0, a[x[i]:x[i+15]] VOB Horizontal-violation HOB

Step 1 &a[3] 0xFF00 0x0C 4 10 0 4

Step 2 &a[0] 0xFF00 0x00 4 10 1 4

Step 3 &a[1] 0xFF00 0x04 4 10 2 4

Step 4 &a[2] 0xFF00 0x08 4 10 3 4

Step 5 &a[7] 0xFF00 0x1C 4 10 4 4

0111531 0331 0111531

0331 0731 031

03731 01131 031

071131 01531 031

02731 01931 02731

Fig. 5: Example of horizontal disambiguation when the load queue is searched during the first iteration of the code in listing 2.

bit vector with no bits set, meaning that although there is a
conflict, no dependence violations occur (because data is read
from and written to memory in the correct order). Continuing
in this way, steps 3 and 4 (writes to array elements 1 and 2)
again produce no memory-dependence violations, but the write
to a[7] in step 5 once more produces a non-zero HOB bit
vector due to the RAW violation. In this example, stores from
lanes 0, 4, 8, and 12 (i.e., writes to a[3], a[7], a[11], and
a[15]) produce non-zero HOB bit vectors.

After all parts of the scatter instruction have executed, all
HOB bit vectors are ORed together to produce the overall
HOB bit vector, with bits 12–15, 28–31, 44–47, and 60–63
set. Reducing its size, based on the element size recorded in
the LSU (in this case, 4 bytes), gives the SRV-needs-replay
register that is consulted at the end of the SRV-region and,
since it is non-zero, causes replay of lanes 3, 7, 11, and 15 so
that the v load can pick up the correct data.

V. EXPERIMENTAL SETUP

We evaluated the performance of SRV using benchmarks
taken from SPEC CPU2006 [9], representing general-purpose
workloads, and applications from the NAS parallel benchmark
(NPB) suite [3], Livermore [16], SSCA2 [11], the HPC
Challenge benchmark suite [17] and the Rodinia benchmark
suite [6], representing the HPC and scientific domains. We ran
the SPEC benchmarks using reference inputs and NPB using
class A inputs, taking only eleven C/C++ benchmarks from
SPEC because others did not compile using our toolchain.

We modelled the SRV architecture within the gem5 sim-
ulator [5], extending a version that already contains Arm’s
Scalable Vector Extensions (SVE). We ran the AArch64 ISA
using an out-of-order core model, fixing the vector length to
16 elements (agnostic of the element size) for all simulations.
Table I describes our simulated processor.

Parameter Configuration

Core Out-of-order, 3GHz
Pipeline Fetch / decode / issue width: 8
LSU 64-entry
IQ 32-entry
ROB 400-entry
Ports SAQ: 6 (2 reads, 2 writes, 2 CAMs)

SDQ: 7 (5 reads, 2 writes)
Vec Reg File: 8 (6 reads, 2 writes)
Cache: 2 (1 read / write, 1 read-only)

Vec-op / cycle Non-mem: 2 integers, 1 others
Mem: 2 loads, 1 store

Branch pred 64-entry local, 1024-entry global, 128-entry-
BTB, 1024-entry chooser, 8-entry RAS

L1 cache 32KiB, 4-way, 2-cycle hit lat
L2 cache 1MiB, 16-way, 7-cycle hit lat

TABLE I: Core and memory experimental setup.

To compile our applications we first extended a version of
LLVM that performs auto-vectorisation with SVE. Although
the application of SRV is not limited to loops only, we cur-
rently only focus on loop-level vectorisation. Within the com-
piler, we modified the analysis passes to enable the compiler
to identify loops that have statically unknown memory depen-
dencies. We then allowed the compiler to bypass the memory-
safety check for these loops using the same mechanism that
an OpenMP hint does, so that a later transformation stage
performs vectorisation regardless of the memory dependences.
Based on this transformation, we amended the pass to bound
these loops within SRV-start and SRV-end instructions. All
workloads were then compiled with optimisation level -O3 to
create the baseline, SVE and SRV binaries.

We simulated SRV-vectorisable loops in the detailed out-
of-order CPU model, fast-forwarding through other code but
maintaining a dynamic instruction count. Due to prohibitively

9

pe
rlb

en
ch

bzi
p2 gcc

go
bm

k

hm
mer

h2
64

ref

om
ne

tpp ast
ar milc

sop
lex

xa
lan

cbm
k cg is

ssc
a#

2

live
rm

ore

ran
da

cc lc
0

1

2

3

4

5

6

7
Sp

ee
du

p
(x

)

Speedup

0

5

10

15

20

25

30

35

40

Dy
na

m
ic

in
st

ru
ct

io
ns

 (%
)

Dynamic instructions

Fig. 6: Per-loop speedup for all SRV-vectorisable loops in each benchmark and their corresponding coverage in dynamic
instructions compared to a baseline out-of-order microarchitecture.

long simulation times for SPEC CPU2006 benchmarks, only
the first invocation of SRV-vectorisable loops were simulated
in the detailed out-of-order CPU model. These loops have a
range of sizes, from 1.3K to 200M dynamic instructions, with
an average of 94.9M dynamic instructions per loop across all
workloads, in the invocations that we simulate. Experiments
we performed on instrumented versions of the SPEC bench-
marks that track memory dependences have shown that there is
less than 1% difference in results when running all invocations
compared with just running the first invocation of each loop.
Based on this, we conclude that, in SPEC benchmarks, later
invocations of a loop have the same behaviour and charac-
teristics as the first one. All invocations of SRV-vectorisable
loops from other benchmarks were simulated in full.

VI. PERFORMANCE EVALUATION

Figure 6 presents the speedup of all SRV-vectorisable loops
(i.e., those that cannot be vectorised without SRV). The results
are normalised to the performance when vectorising with SVE,
which has its performance on a wide range of benchmarks
reported by Stephens et al. [23]. In general, loops achieve
a speedup of 2× or more. Loops in bzip2, gcc, hmmer,
livermore and lc achieve a loop speedup close to 4× and
is achieves a loop of speedup of over 5×. This is because
the majority of the instructions in SRV-vectorisable loops are
already vectorisable using existing techniques, but the com-
piler’s imprecise alias analysis hinders vectorisation. However,
omnetpp, soplex and xalancbmk achieve relatively low loop
speedups (1.49×, 1.29× and 1.78×) since some of the SRV-
vectorisable loops have high memory-to-computation ratios in
which one operation requires multiple gather instructions to
prepare data for it.

Most benchmarks have SRV-vectorisable loops that cover
less than 5% of the total dynamic instructions. The percentage
is low since SRV only vectorises loops with unknown memory
dependences as the sole feature that prevents vectorisation.
Further enhancing the coverage of vectorisation requires more

pe
rlb

en
ch

bzi
p2 gcc

go
bm

k

hm
mer

h2
64

ref

om
ne

tpp ast
ar milc

sop
lex

xa
lan

cbm
k cg is

ssc
a#

2

live
rm

ore

ran
da

cc lc
0.9

1.0

1.1

1.2

1.3

W
ho

le
 B

en
ch

m
ar

k
Sp

ee
du

p
(x

)

Fig. 7: Whole-program speedup for each benchmark compared
to vectorisation with SVE.

advanced compiler techniques to be used together with SRV.
However, astar, milc, xalancbmk, is, randacc, and lc have
a considerable amount of code that can take advantage of
SRV, accounting for 12.7%, 25.7%, 20.8%, 25.3%, 17.3% and
11.4% of the total dynamic instruction count respectively.

Figure 7 presents the whole-program speedup of each
benchmark, calculated based on the dynamic instruction count
of the SRV-vectorisable loops and their coverage. Once again,
these results represent the additional benefit that SRV brings
beyond state-of-the-art vectorisation. These show speedups
of up to 1.09× for SPEC benchmarks and 1.19× for other
applications (geometric mean 1.04× and 1.10×) over SVE
vectorisation.

SRV achieves speedups of up to 1.1× for SPEC bench-
marks and up to 1.26× for other applications. Floating-
point benchmarks in SPEC benefit more from SRV since
SRV-vectorisable loops in these benchmarks cover a larger
percentage of dynamic instructions. bzip2, gcc, gobmk and
h264ref also produce observable speedups (more than 1%)
when more loops are vectorised by SRV. The other SPEC
benchmarks receive negligible performance enhancement since

10

pe
rlb

en
ch

bzi
p2 gcc

go
bm

k

hm
mer

h2
64

ref

om
ne

tpp ast
ar milc

sop
lex

xa
lan

cbm
k cg is

ssc
a#

2

live
rm

ore

ran
da

cc lc

2

4

6

8

10

12
Cy

cle
s s

ta
lle

d
(%

)

Fig. 8: Fraction of execution barrier cycles in SRV-vectorised
loops.

bzip2 SSCA2 Livermore IS

0

5

10

15

20

25

30

In
st

ru
ct

io
ns

 w
ith

 v
io

la
tio

ns
 (%

) RAW WAW WAR

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Re
pl

ay
 it

er
at

io
ns

 (%
)

Replays

Fig. 9: Percentage of different violations and re-execution in
SRV-vectorised loops.

SRV only covers a very small fraction of the whole program.
is gives the most obvious speedup since loops that can be
vectorised by SRV cover a considerable fraction of the whole
program. Moreover, the loop that covers the biggest fraction
of is has all but one operation vectorisable using existing
techniques. SRV enables vectorisation of this operation, thus
realising a speedup of 1.26×. Overall, the geometric mean
speedup is 1.05×.

A. Overhead analysis

SRV introduces two types of performance overhead. The first
is shown in figure 8, which is the number of cycles introduced
by execution barriers as a fraction of the total cycles within
all SRV-vectorisable loops of each benchmark. In other words,
this is the number of cycles each SRV-end instruction stalls the
issue of later instructions until it has executed due to seriali-
sation (see section III-D1). Most benchmarks have execution
barriers that are less than 4% of total execution cycles of
SRV-vectorisable loops. Among them, bzip2, omnetpp, astar,
and milc have negligible performance overhead (0.9%, 0.03%,
0.12%, and 0.05% respectively) caused by execution barriers.
However, execution barriers are more significant in perlbench,
hmmer, h264ref, and xalancbmk. This is because some SRV-
vectorised loops in these benchmarks are small with short trip
counts.

Another source of overhead comes from the occurrence
of memory-dependence violations that require rollback and

2 3 5 6 7 8 10 15 16 20 21 42 54
Number of memory accesses

0

10

20

30

40

SR
V-

ve
ct

or
ize

d
lo

op
s (

%
)

Fig. 10: SRV-vectorised loops, broken down by their number
of memory accesses.

replay. Figure 9 shows the number of memory-dependence
violations of each type as a fraction of the total instruc-
tions within our vectorised loops. We only show the four
benchmarks that actually incur violations at run time. The
others contain loops that the static analysis suggests may have
violations, but at run time none actually occur.

Each benchmark has four bars. The first three represent the
number of different types of memory-dependence violation per
static loop instruction. The fourth bar shows the overhead of
replays as a fraction of the number of vector iterations. In all
cases, lower is better.

RAW dependences cause the most violations. In bzip2, 14%
of the instructions cause RAW dependence violations. These
require replay, meaning 0.07% additional vector iterations. In
contrast is has 29% of its instructions causing RAW depen-
dence violations but this translates into an overhead of only
0.001% iterations. This is because there are few instructions in
these loops, making each instruction with a violation account
for a large percentage in figure 9.

A key advantage of SRV is to provide a guarantee of correct
execution. In the loops we vectorise, the compiler cannot prove
there are no cross-iteration dependences due to their dynamic
nature. Even though, as figure 9 shows, conflicts are rare,
they can happen in the middle of a vector instruction and
need handling. Furthermore, since the compiler cannot prove
their absence in any of the loops we vectorise, none of these
loops are profitably vectorisable using existing hardware and
compiler support.

B. Hardware parameters

Figure 10 shows the number of memory accesses in loops
that were previously unvectorised due to statically undecid-
able dependences, but which SRV can vectorise safely. The
majority of loops (80%) have ten memory accesses or fewer,
although a few have more than 16 memory-access instructions.
Large numbers of accesses occur due to loading from or
storing to multi-dimensional arrays, or pointer chasing, for
example. All loops with ten memory accesses, or fewer,
contain a maximum of three gather-scatter instructions; in fact,
in our workloads, only 5.8% of loads are gathers. We break
these into multiple micro-ops, and each accesses the LSU

11

pe
rlb

en
ch

bzi
p2 gcc

go
bm

k

hm
mer

h2
64

ref

om
ne

tpp ast
ar milc

sop
lex

xa
lan

cbm
k cg is

ssc
a#

2

live
rm

ore

ran
da

cc lc
0.0

0.5

1.0

1.5

2.0
Ch

an
ge

s i
n

di
sa

m
bi

gu
at

io
ns

 (x
) Vertical Horizontal

Fig. 11: Changes in the number of address disambiguations in
SRV-vectorised loops.

independently over a number of cycles, which is the common
method of implementation across commercial designs. Since
the simulation was operated on 16-element vectors with 64
LSU entries, SRV contains enough entries in its LSU to
execute these loops without overflow (16∗3+(10−3) = 55).

SRV enhances the coverage of vectorisation at the cost
of additional horizontal address disambiguation. Vectorisation
reduces the number of dynamic instructions and, therefore,
potentially reduces the number of address disambiguations
required. However, SRV introduces extra horizontal address
disambiguations for each memory-access instruction at every
vector iteration. Figure 11 presents the number of address
disambiguations when executing loops vectorised through SRV
compared sequential execution, broken down by type. As can
be seen, SRV increases the number of address disambiguations
by up to 60%. For benchmarks including bzip2, omnetpp, milc
and xalancbmk, SRV incurs fewer address disambiguations
compared to sequential execution, since vectorisation reduces
the number of dynamic instructions.

Among the total number of address disambiguations, the
horizontal ones take up a large fraction. This is because, in
the SRV-region, horizontal disambiguations replace vertical
ones when executing load instructions, while both horizon-
tal and vertical disambiguations occur when executing store
instructions. Although horizontal disambiguations incur more
comparisons and bit-vector shifts, the SRV hardware is only
powered on when executing SRV-vectorisable loops. Hence the
power overhead of SRV is almost negligible. as we explore in
the next section.

C. Power analysis

We modified McPAT [15] to analyse the power introduced by
SRV. McPAT models the power of CAM lookup operations
to calculate the dynamic power consumption of the processor.
An out-of-order issue of a load instruction is modelled by one
CAM lookup to the store buffer (for store-to-load forwarding)
and one CAM lookup to the load buffer to maintain the order
of load instructions [15]. For an out-of-order issue of a store
instruction, one CAM lookup to the load buffer is modelled
to find younger loads that must be squashed.

pe
rlb

en
ch

bzi
p2 gcc

go
bm

k

hm
mer

h2
64

ref

om
ne

tppast
ar milc

sop
lex

xa
lan

cbm
k cg is

ssc
a#

2

live
rm

ore

ran
da

cc lc
1

0

1

2

3

Dy
na

m
ic

po
we

r c
ha

ng
e

(%
)

Fig. 12: Changes in dynamic power consumption introduced
by SRV.

To model SRV, we doubled the CAM lookup operations
and added an extra CAM lookup to the store buffer for store
instructions, in the SRV-region only, to reflect the extra CAM
lookup caused by the horizontal disambiguation process. CAM
lookups for load instructions are unchanged since horizontal
disambiguation replaces vertical disambiguation when execut-
ing load instructions in the SRV-region. However, given the
limited detail McPAT can model, the extra bit-vector shifts
incurred in horizontal disambiguation are not modelled.

Figure 12 compares the run-time power of the core when
running benchmarks using SRV and without vectorisation. In
general, more CAM lookups cause more power consumption.
However, when considering the run-time power of the whole
core, the changes are negligible. This is because the LSU
only contributes 11% of the total run-time power on average
across the tested benchmarks. For benchmarks including bzip2,
omnetpp, milc and xalancbmk, SRV results in lower power
consumption due to a reduction in address disambiguation.
For other benchmarks, SRV adds no more than 3.2% to the
total run-time power.

D. Comparison with FlexVec

The closest technique to SRV is FlexVec [2], which adds
compiler-generated run-time checks for memory-dependence
violations and limits the vector width to the number of lanes
that do not incur any violation. SRV differs from FlexVec by
using an implicit memory-disambiguation mechanism, which
allows lanes after the first violating lane to execute. This
means that, in cases where there are several violations, SRV
can potentially execute a loop with fewer iterations than
FlexVec, due to its selective replay of only those lanes with
violations, and vectorise a loop more efficiently due to its
implicit memory-disambiguation mechanism.

Unfortunately we are not aware of any compiler that cur-
rently implements FlexVec and the authors did not open-
source their tools. We therefore compare against FlexVec
by faithfully reproducing their technique for dealing with
loops whose memory-dependence information is unknown at
compile time. We model FlexVec and SRV in an emulator
that was validated against our gem5 implementation of SRV.

12

pe
rlb

en
ch

bzi
p2 gcc

go
bm

k

hm
mer

h2
64

ref

om
ne

tpp ast
ar milc

sop
lex

xa
lan

cbm
k cg is

ssc
a#

2

live
rm

ore

ran
da

cc lc
0

20

40

60

80

100
No

rm
al

ize
d

dy
na

m
ic

in
st

ru
ct

io
ns

Fig. 13: Dynamic instruction count required by SRV compared
to those required by FlexVec.

When emulating, we broke the VCONFLICTM instruction
into several instructions, with each one comparing one element
of a source vector with all enabled previous elements of a
target vector, to account for FlexVec’s address-disambiguation
mechanism. Partial vectorisation was already modelled for
SRV. FlexVec’s evaluation only executed samples of code
surrounding and including vectorised loops that have been
shown to be profitable through use of a profiler. In contrast,
we execute all loops that are vectorisable, as described in
section V, to show the full impact of vectorisation.

Figure 13 compares the dynamic instruction count of target
loops for both techniques. This shows that SRV requires fewer
than 60% dynamic instructions to vectorise loops, compared
with FlexVec, for most benchmarks. This is mainly because
SRV does not incur extra instructions to perform run-time
checks. Moreover, fewer vector iterations required by SRV
also reduce the required dynamic instruction count.

E. Summary

We have presented the performance improvement introduced
by SRV, and analysed SRV’s performance overheads before
comparing it with FlexVec, the closest existing technique
from the literature. The SRV architecture demonstrates that
judicious use of speculation can unleash data-level parallelism
performance and bring the benefits of SIMD execution to a
wider range of codes.

VII. RELATED WORK

Speculative vectorisation techniques have been proposed for
both compilers and architectures. Sujon et al. [24] vectorise
loops when the source of a cross-iteration dependence is
guarded by a conditional statement that is rarely true. Code
is generated to check the condition for all lanes of a vector
iteration in advance. The vector code is only executed if the
condition is false for all vector lanes, otherwise the fallback
scalar code is executed. Application of such speculative vec-
torisation is limited as the conditional statement itself cannot
be part of any cross-iteration dependence cycle. Moreover,
many partially vectorisable loops are not vectorised using this
technique.

Another approach uses a combination of an inspector and
executor to parallelise loops [22]. The compiler generates in-
spector code that analyses cross-iteration dependences within
the loop at run time. An executor program then employs
specific optimisations to the loop iterations using the depen-
dence information produced by the inspector. Techniques such
as this are often associated with high overhead since they
generally require large additional data structures and extra
memory operations.

Baghsorkhi et al. [2] proposed FlexVec, which partially
vectorises loops by generating code to perform run-time alias
checking. However, the overhead of this technique is highly
dependent on the frequency of the pointer aliases or memory-
dependence violations. Moreover, FlexVec does not attempt
to vectorise any further once a pointer alias or memory
dependence is detected. This reduces the effectiveness of wide
vector registers, leaving them underutilised.

On the architecture side, hardware approaches [13, 21]
are proposed in order to detect pointer aliases or memory-
dependence violations. However, all these prior works focus
on violation detection and, once a violation has been detected,
execution rolls back to sequential mode. Therefore, application
of such techniques is limited and the potential for exploiting
data-level parallelism is not realised.

VIII. CONCLUSION AND FUTURE WORK

We have presented selective-replay vectorisation, a technique
to safely vectorise code with periodic or unknown memory
data dependences. Our hardware monitors memory addresses
accessed within a compiler-annotated loop and replays only
those SIMD lanes that experience memory-dependence vio-
lations. Evaluation shows loop speedups of up to 5.3× and
whole-program speedups of up to 1.19× across a range of
general-purpose and HPC applications over already-vectorised
code. In conclusion, our SRV architecture demonstrates that
judicious use of speculation can unleash data-level parallelism
performance and bring the benefits of SIMD execution to a
wider range of code. Future work will consider advanced com-
piler techniques that take advantage of SRV to further enhance
the coverage of vectorisation, and develop optimisations, such
as removing the serialisation barrier in SRV-end, to improve
performance and power efficiency.

ACKNOWLEDGEMENTS

This work was supported by the Engineering and Physical
Sciences Research Council (EPSRC), through grant references
EP/K026399/1 and EP/P020011/1, and Arm Ltd. Additional
data related to this publication is available in the data reposi-
tory at https://doi.org/10.17863/CAM.68206.

REFERENCES

[1] Arm. Arm architecture reference manual. https://
developer.arm.com, 2019.

[2] S. S. Baghsorkhi, N. Vasudevan, and Y. Wu. FlexVec:
Auto-vectorization for irregular loops. In PLDI, 2016.

13

https://doi.org/10.17863/CAM.68206
https://developer.arm.com
https://developer.arm.com

[3] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning,
R. L. Carter, L. Dagum, R. A. Fatoohi, P. O. Freder-
ickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. The NAS
parallel benchmarks—summary and preliminary results.
In Supercomputing, 1991.

[4] U. Banerjee. Speedup of Ordinary Programs. PhD thesis,
University of Illinois at Urbana-Champaign, 1979.

[5] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,
S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,
M. D. Hill, and D. A. Wood. The gem5 simulator.
SIGARCH Comput. Archit. News, 39(2), 2011.

[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
S.-H. Lee, and K. Skadron. Rodinia: A benchmark suite
for heterogeneous computing. In IISWC, 2009.

[7] G. Z. Chrysos and J. S. Emer. Memory dependence
prediction using store sets. In ISCA, 1998.

[8] B. Guo, Y. Wu, C. Wang, M. J. Bridges, G. Ottoni,
N. Vachharajani, J. Chang, and D. I. August. Selective
runtime memory disambiguation in a dynamic binary
translator. In CC, 2006.

[9] J. L. Henning. SPEC CPU2006 benchmark descriptions.
SIGARCH Comput. Archit. News, 34(4), 2006.

[10] J. Holewinski, R. Ramamurthi, M. Ravishankar,
N. Fauzia, L.-N. Pouchet, A. Rountev, and
P. Sadayappan. Dynamic trace-based analysis of
vectorization potential of applications. In PLDI, 2012.

[11] HPC. HPC graph analysis. http://www.graphanalysis.
org/benchmark, 2017.

[12] Intel. Intel advanced vector extension 512 (Intel
AVX512). https://www.intel.co.uk/content/www/uk/
en/architecture-and-technology/avx-512-overview.html,
2018.

[13] R. Kumar, A. Martı́nez, and A. González. Assisting
static compiler vectorization with a speculative dynamic
vectorizer in an HW/SW codesigned environment. ACM
Trans. Comput. Syst., 33(4), 2016.

[14] S. Larsen and S. Amarasinghe. Exploiting superword
level parallelism with multimedia instruction sets. In
PLDI, 2000.

[15] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi. McPAT: An integrated power,
area, and timing modeling framework for multicore and
manycore architectures. In MICRO, 2009.

[16] Livermore. Livermore loops coded in C. http://www.
netlib.org/benchmark/livermorec, 1992.

[17] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner,
R. F. Lucas, R. Rabenseifner, and D. Takahashi. The HPC
challenge (HPCC) benchmark suite. In Supercomputing,
2006.

[18] S. Maleki, Y. Gao, M. J. Garzarán, T. Wong, and D. A.
Padua. An evaluation of vectorizing compilers. In PACT,
2011.

[19] A. Nicolau. Parallelism, Memory Anti-aliasing and
Correctness for Trace Scheduling Compilers (Disam-

biguation, Flow-analysis, Compaction). PhD thesis, Yale
University, 1984.

[20] M. Ohmacht, A. Wang, T. Gooding, B. Nathanson,
I. Nair, G. Janssen, M. Schaal, and B. Steinmacher-
Burow. IBM Blue Gene/Q memory subsystem with
speculative execution and transactional memory. IBM
J. Res. Dev., 2013.

[21] A. Pajuelo, A. González, and M. Valero. Speculative
dynamic vectorization. In ISCA, 2002.

[22] J. Saltz, K. Crowley, R. Mirchandaney, and H. Berryman.
Run-time scheduling and execution of loops on message
passing machines. J. Parallel Distrib. Comput., 8(4),
1990.

[23] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole,
G. Gabrielli, M. Horsnell, G. Magklis, A. Martinez,
N. Premillieu, A. Reid, A. Rico, and P. Walker. The ARM
scalable vector extension. IEEE Micro, 37(2), 2017.

[24] M. H. Sujon, R. C. Whaley, and Q. Yi. Vectorization
past dependent branches through speculation. In PACT,
2013.

[25] VPlan. Vectorization plan. https://llvm.org/docs/
Proposals/VectorizationPlan.html, 2018.

[26] D. Witt. System for store to load forwarding of individual
bytes from separate store buffer entries to form a single
load word. United States patent number 6141747, 2000.

[27] M. J. Wolfe. Optimizing Supercompilers for Supercom-
puters. PhD thesis, University of Illinois at Urbana-
Champaign, 1982.

[28] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Perfor-
mance evaluation of Intel transactional synchronization
extensions for high-performance computing. In HPCSA,
2013.

14

http://www.graphanalysis.org/benchmark
http://www.graphanalysis.org/benchmark
https://www.intel.co.uk/content/www/uk/en/architecture-and-technology/avx-512-overview.html
https://www.intel.co.uk/content/www/uk/en/architecture-and-technology/avx-512-overview.html
http://www.netlib.org/benchmark/livermorec
http://www.netlib.org/benchmark/livermorec
https://llvm.org/docs/Proposals/VectorizationPlan.html
https://llvm.org/docs/Proposals/VectorizationPlan.html

	Introduction
	Motivation
	Selective-replay vectorisation
	Enabling SRV execution
	Memory disambiguation
	Load execution
	Store execution
	Resolving dependences

	Control flow
	Other architectural changes
	Serialisation point
	Architectural state
	Interrupts and exceptions
	SAQ modification
	Register renaming
	In-order architectures
	LSU overflow
	Vector register-file ports

	Use of transactional memory
	Summary

	SRV memory-disambiguation microarchitecture
	Terminology
	Vertical disambiguation mechanism
	Horizontal disambiguation mechanism
	Both contiguous
	Gather-scatter
	Contiguous-scatter / gather-contiguous
	Broadcast-contiguous / broadcast-scatter

	Execution example

	Experimental setup
	Performance evaluation
	Overhead analysis
	Hardware parameters
	Power analysis
	Comparison with FlexVec
	Summary

	Related work
	Conclusion and future work

