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Abstract—Modern processors often face the memory wall as a significant
bottleneck, a problem that becomes particularly severe when using stall-on-use
in-order cores. Despite this limitation, there is growing demand for energy-efficient
in-order cores due to privacy and sustainability concerns. Scalar Vector Runahead
(SVR) provides an elegant solution by extracting high memory-level parallelism
through piggybacking on existing instructions executed on the processor that lead
to future irregular memory accesses. SVR speculatively executes multiple
transient, independent, parallel instances of memory accesses and their
instruction chains, by initiating memory accesses from many different values of a
predicted induction variable. This approach moves mutually independent memory
accesses next to each other to hide dependent stalls. With a hardware overhead
of only 2KiB and without the need for hardware vector extensions, SVR delivers
3.2x higher performance than a baseline 3-wide in-order core inspired by an Arm
Cortex A510, and 1.3x higher performance than a full out-of-order core, while
halving energy consumption.

processors, which use a reorder buffer (ROB) to find
Index Terms: microarchitecture (CPU), data  independent work. However, even today’s largest
prefetching, runahead, graph processing out-of-order cores,! with increasingly large ROBs,
struggle to find enough independent work to achieve
good performance on these challenging workloads.
Moreover, traditional prefetchers struggle with these

raph  analytics, database and high-  \okioads due to their irregular memory access
performance computing workloads exhibit  aterng,

chains of dependent instructions containing
irregular indirect memory accesses. To execute these
workloads efficiently, one has to overlap as many
of their cache misses as possible to hide memory
access latency. The traditional method of overlapping
execution relies on out-of-order (Oo0O) superscalar

In-order cores suffer from indirect load stalls even
more than their out-of-order counterparts. A typical
stall-on-use in-order superscalar core stalls on the first
instruction that depends on a long-latency load, block-
ing all future memory accesses. Figure 1 illustrates
this issue: although an out-of-order core suffers from
low performance for these benchmarks, the in-order
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FIGURE 1. An in-order core spends on average 8.17 cycles
per instruction (CPI) on DRAM, compared to 3.3 CPI on an
out-of-order core.

The goal of Scalar Vector Runahead (SVR) is to
generate high memory-level parallelism on in-order
cores for applications with complex chains of memory
accesses. SVR achieves this by creating transient
replicas of instructions at issue, such that complex
addresses can be speculatively evaluated on the fly
for many future chains of dependent loads. These
transiently executed replica loads serve as prefetches
for future normal execution. The replicated instructions
execute in parallel, which increases memory-level par-
allelism (MLP) and thereby performance. SVR includes
several optimizations to keep hardware and run-time
overhead under control while retaining simple, strictly
in-order execution.

There have been solutions to improve the performance
of applications with indirect memory accesses on out-
of-order cores. However, they are an overkill for power-
efficient in-order cores, requiring resources such cores
do not have.

Vector Runahead (VR)? takes chains of instruc-
tions, and speculatively vectorizes them in parallel. It
starts by vectorizing the first striding load it encounters
after the ROB is filled with instructions, followed by
vectorizing all the stride load’s dependents. However,
VR has three limitations. First, it requires a full ROB
in order to activate, which is increasingly rare with the
growing size of ROBs seen in modern-day OoO cores.
Second, VR stalls normal execution when in runahead
prefetching mode. Third, it prefetches a fixed number
of future iterations of a loop (for example, 64) at a
time. This often results in either overfetching, which
pollutes the caches, or underfetching, which leaves
performance on the table.

Decoupled Vector Runahead (DVR)' is a solution
to those issues. First, it introduces a subordinate hard-
ware thread that runs decoupled and concurrently with
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the main thread. Second, DVR predicts the number
of prefetches and therefore generates only accurate
prefetches; it performs a discovery pass over the first
iteration of a loop to predict the number of its upcoming
iterations. Third, decoupling enables the subordinate
thread to manage its own control flow by allowing it to
execute divergent paths before reconvergence. Fourth,
it can generate prefetches for multiple nested loops.

Unfortunately, VR and DVR are impractical for
power-efficient in-order cores as they rely on expensive
wide vector execution units, hundreds of pre-existing
physical vector registers, and a dedicated execution
context (for DVR), which are infeasibly large.

SVR eliminates the need for vector units and dedi-
cated execution contexts by introducing a piggybacking
technique: SVR executes the vectorized instructions as
sets of replica scalar instructions executed in lockstep
with each original instruction, hence the name scalar
vector runahead. Once a striding load is marked to
be vectorized, SVR replicates that instruction n times
(n =16 in our default SVR-16 configuration), sets the
appropriate stride for each replicated instruction, mod-
ifies its operands to point to a register in a speculative
register file, and issues them speculatively. Instructions
that depend on the striding load (directly or indirectly)
also get vectorized as scalar-vector instructions. This
effectively vectorizes multiple chains of dependent in-
structions for parallel execution; the dependent loads
in each of these chains can hence be prefetched in
parallel. Furthermore, speculatively generated instruc-
tions are executed concurrently with the main thread
to minimize run-time overhead, i.e., normal program
execution continues while the speculatively generated
scalar vectors prefetch data for future instances of the
dependent instruction chain.

SVR includes three key optimizations to further re-
duce run-time overhead and carefully mitigate incorrect
prefetches.

Optimization #1: Loop-Bound Detection. To avoid
out-of-bounds, incorrect prefetches, a loop-bound de-
tection technique is used to determine the degree of
vectorization or the number of prefetches. Unlike DVR
that requires an expensive discovery pass, SVR pas-
sively observes the in-order program behavior to de-
termine the number of future prefetches. Additionally,
the prefetches are generated while the main thread is
executing: when the main thread generates a memory
access, SVR simultaneously predicts and generates a
number of future memory accesses. SVR predicts the
number of prefetches using a tournament predictor,
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FIGURE 2. SVR’s microarchitecture with a stall-on-use in-order core as the baseline.

which compares a register-based and an exponen-
tially weighted moving average (EWMA) prediction.
This new prediction technique handles the commonly
observed cases of contiguous loops as well, which
occur when a loop starts at the next striding address
where the previous loop stopped. The tournament pre-
dictor rewards the technique that is the closest to the
maximum that could have been accurately prefetched.

Optimization #2: Register Recycling. Unlike VR and
DVR, which assume a large pre-existing vector register
file to keep track of multiple renamings per scalar
register, SVR maintains a dedicated small register file,
called the speculative register file (SRF), to track desti-
nation values of just the most recent vectorized scalars.
Each register in the SRF can hold as many scalars
as the maximum width of the SVR implementation (16
scalars by default). Incorporating the same number
of registers in SRF as the number of architectural
registers would be quite expensive. Therefore, to incur
low area and energy overheads in SVR, we maintain a
small number of registers (8 in our setup) in the SRF
and use a least-recently used (LRU) policy to remap
registers to new scalars.

Optimization #3: Last Indirect Load. There is no
performance benefit from vectorizing instructions that
depend on the last indirect load in the chain. The last
indirect load typically accesses memory, and waiting
for it to return to enable the vectorization of its (non-
memory) dependents only slows down the execution.
Therefore, in SVR, once the last indirect load in the
chain has been issued, the process of vectorization
stops. A bit in the stride detector detects the last
indirect load in the chain (see Figure 2).

SVR has three distinct modes of execution. In normal
mode, the core executes the program and is eligible
for initiating SVR. Upon detecting a striding load, the
core initiates SVR and enters piggyback runahead
mode (PRM), which vectorizes the dependency chain
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of the striding load. Once the entire dependency chain
has been vectorized, the core enters waiting mode,
which prevents the core from generating overlapping
prefetches and thus wasting expensive scalar compute
resources. Waiting mode terminates either when a pre-
determined number of loop iterations—based on loop
bound detection—have passed the issue stage of the
pipeline, or the core detects another striding load for
which it can generate more timely prefetches. Figure 2
provides an overview of the SVR microarchitecture,
and we now briefly discuss the working of its different
components and their interactions.

Initiating SVR. The stride detector identifies loads
with striding memory access patterns. It scans all the
instructions passing through the issue stage of the in-
order pipeline. Upon detecting a load instruction, the
stride detector compares its currently accessed ad-
dress to the previous address; a stride is the difference
between the two addresses. A load is marked as strid-
ing if the same stride repeats more than a threshold
number of times. At issue, a striding load initiates SVR,
which generates prefetches for the striding load and
the chain of its dependent instructions.

The head striding load register (HSLR) keeps track
of the current striding load instruction. Its main purpose
is to detect when SVR has completed the vectorization
for one iteration of the loop. Therefore, vectorization
stops upon encountering the same striding load again;
an earlier termination of vectorization is possible if the
core encounters the last indirect load.

SVR marks every striding load encountered so far
using a seen bit in the stride detector, and resets this
bit when it finds the load in the HSLR again. However,
the core is potentially executing a more inner loop
if it finds a striding load for which the seen bit is
already set. Re-targeting SVR to such an inner loop
for vectorization offers opportunity for generating more
timely prefetches than the (outer) loop that started with
the HSLR. Therefore, SVR switches to the more inner
loop for vectorization when this occurs.

Tracking memory-access chains. Once SVR is ini-
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tiated, the destination register of the striding load is
mapped to a vector register in the SRF through the
taint tracker (TT) which incurs two main responsibili-
ties. First, it keeps track of the dependency chain of the
striding load for vectorization. This can be detected by
examining the source registers of a new instruction: if
at least one of the registers is marked, then the instruc-
tion is part of the chain, and its destination register is
marked as well. Second, the TT manages the mapping
between architectural registers and vector registers,
recycling registers when all vector registers have been
mapped to an architectural register. Specifically, the
TT uses the LRU policy to remap a vector register to
a new architectural register, unmapping the previously
mapped architectural register in the process. However,
if an unmapped register is later used as a source, the
TT does not vectorize that instruction further, as the
source values have been discarded.

Loop bound prediction. The last compare register
(LC) and loop bound detector (LBD) structures deter-
mine n or the loop bound. They track the last compare
instruction before a striding load, which usually holds
information about the upcoming number of iterations
of the loop. The LC stores details about the latest
compare instruction, including its instruction pointer,
register identifiers, and register values. The LBD mir-
rors this information but updates only when a branch
instruction jumps back to an earlier instruction pointer
than the striding load.

When predicting n, the LC holds values from the
previous iteration of the loop while the current values
are in the LBD. By comparing LC and LBD, SVR can
estimate the number of future iterations of the loop.
Each time a striding load is issued, the tournament pre-
dictor refines its estimate. Simultaneously, the EWMA
updates by taking seven-eighths of its previous value
and adding one-eighth of the expected value.

Speculatively vectorizing the instruction stream.
The job of the scalar vector unit (SVU) is to replicate
and execute instructions marked by the TT. During
replication, the source registers are checked to see
whether they are mapped to a vector register. If so, the
corresponding architectural register will be substituted
with the mapped vector register at the correspond-
ing index for the replicated instruction. Similarly, the
destination registers are substituted. For each marked
instruction, the SVU generates n replicas, n being the
size of the vector. These new instructions are sent to
the execution units, and a counter in the scoreboard
keeps track of their completion. A marked instruction
is retired from the in-order pipeline only when all its
replicas have finished their execution.
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FIGURE 3. Average speedup (harmonic mean of IPC) and
whole-system (CPU plus memory) energy for various lengths
of SVR (16 default) versus a 3-wide in-order core baseline,
and a 3-wide out-of-order core.

Terminating SVR. The stride detector keeps track of
the expected last memory address to be issued by the
striding load. In waiting mode, the core checks that the
memory addresses accessed by the normal execution
of the striding load do not surpass the expected last
address. The core terminates waiting mode, and SVR
in turn, in case the real execution digresses from the
predicted execution.

Figure 3 reports harmonic-mean speedups (left) and
energy (right), both normalized to a 3-wide stall-on-use
in-order baseline. Relative to the OoO core, the low
performance on the in-order core is due to its stall-on-
use nature. The dependent of a memory access in one
iteration of a loop blocks the (possibly) independent
striding memory accesses in future iterations. The
000 core, on the other hand, can issue independent
striding accesses until its ROB fills up. This allows
generating a small amount of MLP on the OoO core
by launching a limited number dependent-memory-
access chains once the strides return. SVR can issue
an even higher number of memory accesses than
can fit in the ROB of the OoO core. Overall, SVR
performs better than both the in-order and the OoO
cores, by 3.2x and 1.3x, respectively. The performance
of SVR increases with increasing vector size, and SVR-
128 extends speedup versus an OoO core to 1.7x
(4.2x relative to in-order), demonstrating that SVR is
scalable.

While providing a substantial performance
speedup, SVR-16 also decreases energy consumption
by 53%. Moreover, energy consumption stays this
low even when larger vector sizes are used. SVR
achieves this while incurring a hardware overhead of
only 2.17KiB (SVR-16) and 9KiB (SVR-128).
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FIGURE 4. Accuracy: proportion of prefetched cache lines
accessed by the core within any cache before eviction from
the last-level cache. SVR-Maxlength shows SVR without loop-
bound prediction.
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FIGURE 5. Coverage: proportion of loads that reach the
DRAM controller from different origins, normalized to the in-

order core; what exceeds 100% is caused by inaccurate
prefetches.
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Figures 4 and 5 present the effectiveness of the
loop-bound prediction technique. The key observa-
tion is that loop-bound prediction improves accuracy
from 88% to almost 100%, emphasizing that SVR
performance is not degraded by incorrect prefetches.
Furthermore, SVR covers 83% of all loads on average,
demonstrating its wide effectiveness.

Sensitivity analysis also shows that SVR does not
require a large number of resources to perform well.3
Merely 8 to 16 miss-status holding registers, two page
table walkers, and 25GB/s of memory bandwidth is
sufficient to achieve near-optimal performance that
SVR can offer for a vector size of 16.

Issuing loads one by one, instead of relying on
existing vector units, does not impact the performance
of SVR significantly. Increasing the execution capacity,
to allow eight loads per execution unit, only yields an
uplift of 3.9%. This is because SVR already saturates
memory bandwidth with prefetch requests, so the com-
pute throughput has little impact on performance.

Since SVR does not have a discovery pass as in
DVR, the first iteration of the loop-bound prediction
might fail, as the LBD and LC do not have up-to-
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date information. When such an edge case is detected,
we evaluate multiple policies: waiting for one iteration,
using the maximum length of a vector, or reading the
current values of the architectural registers instead of
those stored in the LBD. The latter policy yields the
best average performance but falls short for bench-
marks where a more aggressive technique performs
better, such as PageRank (PR) and Connected Com-
ponents (CC). The EWMA technique can take care
of those cases by performing more prefetching across
different inner-loop invocations.

SVR Targets Emerging Workloads. SVR targets an
important and increasingly prevalent class of work-
loads that consist of multiple chains of dependent
loads. Such execution patterns are prevalent in graph
analytics and database workloads, which are ubig-
uitous in social media applications, recommendation
systems, key-value stores, etc. Chains of dependent
loads are notoriously hard to prefetch for two key
reasons: (1) loads that depend on each other serialize
execution and hence cannot be issued in parallel to
hide their memory access latency, and (2) chains of
dependent loads typically lead to irregular memory
access patterns, which are hard to prefetch with tra-
ditional prefetching proposals. This is why hardware
prefetchers are advised to be turned off for these
types of workloads as they are ineffective and even
detrimental to performance by creating cache pollution
and memory bandwidth congestion.*

Enabling Vector Runahead on Low-Power In-Order
Cores. SVR greatly lowers the complexity threshold for
taking advantage of the new forms of reorder-based
runahead introduced by VR? and DVR," which funda-
mentally rely on expensive hardware structures only
present in high-end out-of-order cores to speculatively
vectorize chains of dependent loads for prefetching.
SVR provides a pathway and fundamental insights
towards introducing vector runahead concepts in low-
power in-order cores. Piggybacking and intersecting
speculative vector instructions with the main execu-
tion thread, issued as scalar instructions, enables the
vector runahead concept to deliver a substantial per-
formance boost without requiring expensive hardware
structures such as vector execution units and large
vector register files, as is the case for VR and DVR.
Furthermore, adding loop-bound detection, register re-
cycling and last-indirect load determination minimizes
run-time overhead and maximizes the performance
benefit SVR can achieve. This leads to an overall
substantial performance boost over an in-order base-
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line. Moreover, SVR on top of an in-order core even
significantly outperforms an out-of-order core. Finally,
SVR halves energy consumption compared to both
in-order and out-of-order cores, making it an energy-
efficient optimization.

SVR as a Sustainable Design Option. With a growing
demand to run graph analytics and database work-
loads, we believe there is overwhelming temptation for
yet another accelerator to be added. In fact, various
graph analytics accelerators have been proposed.>®”
However, SVR provides the opportunity for small cores
to do the heavy lifting themselves. The small overhead
of SVR allows it to be more area-efficient than a
hypothetical accelerator, while still being flexible to
run other applications. This is especially important
because chip area has a direct correlation to embod-
ied emissions which account for the biggest part of
the total environmental footprint of mobile low-power
devices.® Despite the small hardware overhead, SVR
still provides a high performance boost for graph an-
alytics and database workloads running on small in-
order cores. The performance gain allows the in-order
core to reduce the execution time, much more than
the increase in power consumption, resulting in a net
reduction in energy consumption, which means much
longer battery lifetimes and/or more analysis for the
same budget.

SVR Enables Data Privacy-Preserving Edge Com-
puting. Today, the only feasible way for low-power
devices to run graph and database workloads is to
offload to the cloud. This comes with quality-of-service
challenges due to communication delays and interrup-
tions. In addition, there is a growing concern regarding
data privacy when interacting with the cloud. Edge
computing provides a solution by maintaining and
processing data locally. One of the key impediments
to running graph and database processing on edge
processors though is its limited performance, which
SVR overcomes while preserving data privacy.

Potential for Commercial Adoption. Because of
the substantial performance, energy and sustainability
benefits while incurring minor hardware changes, we
expect SVR integration into commercial edge proces-
sors to be an easy decision. While this work demon-
strated SVR on top of an in-order core, we believe it
can as easily be deployed on top of out-of-order cores,
to deliver simple yet effective prefetching opportunities
for the most challenging memory-bound workloads —
doing so will finally bring runahead techniques to be
part of the large family of increasingly specialized
prefetching mechanisms in modern cores.® We hope
this work further sparks research into a wide range of
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similar, low-complexity techniques designed to target
all kinds of memory-bound workloads through finding
diverse forms of latent memory-level parallelism that
can be easily discovered through new, subtle ways of
interpreting the instructions inside programs.

SVR produces speculative prefetches, by piggybacking
scalar vector instructions on top of the main execution
thread. These scalar-vector instructions are replicas of
the issued instructions, and are executed sequentially
as scalars to eliminate the need for complex vector ex-
ecution units. SVR introduces three key optimizations
to enhance its efficiency on an in-order core. First,
it predicts loop bounds using a tournament predictor
instead of relying on a discovery pass, simplifying loop-
bound prediction. Second, it minimizes the amount of
state required to execute scalar vectors by aggres-
sively recycling vector (physical) registers. Third, it
terminates the process of generating scalar-vectors at
the last indirect load in a chain, therefore improving
performance by waiting for the dependents of the
last indirect loads to execute. SVR yields significant
speedups on low-power in-order cores and reduces
energy consumption by more than half. Overall, we
believe that SVR offers a foundational and compelling
solution for the growing demand of graph and database
workloads at the edge.
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