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Abstract

The need to increase performance and power efficiency in
modern processors has led to a wide adoption of SIMD vec-
tor units. All major vendors support vector instructions and
the trend is pushing them to become wider and more power-
ful. However, writing code that makes efficient use of these
units is hard and leads to platform-specific implementations.
Compiler-based automatic vectorization is one solution for
this problem. In particular the Superword-Level Parallelism
(SLP) vectorization algorithm is the primary way to auto-
matically generate vector code starting from straight-line
scalar code. SLP is implemented in all major compilers, in-
cluding GCC and LLVM.

SLP relies on finding sequences of isomorphic instruc-
tions to pack together into vectors. However, this hinders the
applicability of the algorithm as isomorphic code sequences
are not common in practice. In this work we propose a solu-
tion to overcome this limitation. We introduce Padded SLP
(PSLP), a novel vectorization algorithm that can vectorize
code containing non-isomorphic instruction sequences. It in-
jects a near-minimal number of redundant instructions into
the code to transform non-isomorphic sequences into iso-
morphic ones. The padded instruction sequence can then be
successfully vectorized. Our experiments show that PSLP
improves vectorization coverage across a number of kernels
and full benchmarks, decreasing execution time by up to
63%.

1. Introduction

Single Instruction Multiple Data (SIMD) instruction sets as
extensions to general purpose ISAs have gained increasing
popularity in recent years. The fine-grained data parallelism
offered by these vector instructions provides energy effi-
cient and high performance execution for a range of appli-
cations from the signal-processing and scientific-computing
domains. The effectiveness of vector processing has led all
major processor vendors to support vector ISAs and to reg-
ularly improve them through the introduction of additional
instructions and wider data paths (e.g., 512 bits in the forth-
coming AVX-512 from Intel).

Making use of these vector ISAs is non-trivial as it re-
quires the extraction of data-level parallelism from the appli-
cation that can be mapped to the SIMD units. An automatic
vectorization pass within the compiler can help by perform-
ing the necessary analysis on the instructions and turning the
scalar code to vectors where profitable.

There are two main types of vectorization algorithm.
Loop-based algorithms [20, 21] can combine multiple itera-
tions of a loop into a single iteration of vector instructions.
However, these require that the loop has well defined induc-
tion variables, usually affine, and that all inter- and intra-loop
dependences are statically analyzable.

On the other hand, algorithms that target straight-line
code [13] operate on repeated sequences of scalar instruc-
tions outside a loop. They do not require sophisticated
dependence analysis and have more general applicability.
However, vectorization is often thwarted when the original
scalar code does not contain enough isomorphic instructions
to make conversion to vectors profitable.

To address this limitation, we propose Padded SLP, a
novel automatic vectorization algorithm that massages scalar
code before attempting vectorization to increase the number
of isomorphic instructions. The algorithm works by building
up data dependence graphs of the instructions it wishes to
vectorize. It then identifies nodes within the graphs where
standard vectorization would fail and pads each graph with
redundant instructions to make them isomorphic, and thus
amenable to vectorizing. The end result of our pass is higher
vectorization coverage which translates into greater perfor-
mance.

The rest of this paper is structured as follows. Section 2
gives an overview of a straight-line automatic vectorization
technique, showing where opportunities for vectorization are
missed. Section 3 then describes our automatic vectorization
technique, PSLP. In Section 4 we present our experimental
setup before showing the results from running PSLP in Sec-
tion 5. Section 6 describes prior work related to this paper,
and puts our work in context, before Section 7 concludes.

2. Background and Motivation

Automatic vectorization is the process of taking scalar code
and converting as much of it to vector format as is possi-
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ble and profitable, according to some cost model. We first
give an overview of the vectorization algorithm that PSLP is
based on, then identify missed opportunities for vectoriza-
tion that PSLP can overcome.

2.1 Straight-Line Code Vectorization

Straight-line code vectorizers, the most well-known of which
is the Superword-Level Parallelism algorithm (SLP [13]),
identify sequences of scalar instructions that are repeated
multiple times, fusing them together into vector instructions.
Some implementations are confined to code within a single
basic block (BB) but others can follow a single path across
multiple BBs, as long as each group of instructions to be
vectorized belongs to the same BB. LLVM’s SLP vectorizer,
and PSLP, follow this latter scheme. The SLP algorithm
contains the following steps:

Step 1. Search the code for instructions that could be seeds
for vectorization. These are instructions of the same type
and bit-width and are either instructions that access ad-
jacent memory locations, instructions that form a reduc-
tion or simply instructions with no dependences between
them. The most promising seeds are the adjacent memory
instructions and therefore they are the first to be looked
for in most compilers [28].

Step 2. Follow the data dependence graph (DDG) from the
seed instructions, forming groups of vectorizable instruc-
tions. It is common for compilers to generate the graph
bottom-up, starting at store seed instructions instead of
starting at loads. This is the case for both GCC’s and
LLVM’s SLP vectorizers [28]. Traversal stops when en-
countering scalar instructions that cannot form a vector-
izable group.

Step 3. Estimate the code’s performance for both the orig-
inal (scalar) and vectorized forms. For an accurate cost
calculation the algorithm takes into account any addi-
tional instructions required for data movement between
scalar and vector units.

Step 4. Compare the calculated costs of the two forms of
code.

Step 5. If vectorization is profitable, replace the groups of
scalar instructions with the equivalent vector code.

2.2 Missed Opportunities for Vectorization

Although SLP performs well on codes that contain multiple
isomorphic sequences of instructions, there are often cases
where it cannot actually perform vectorization because the
graphs are only similar, not completely the same as each
other. These are either directly written by the programmer
or, more usually, the result of earlier optimization passes that
have removed redundant subexpressions. Figure 2 shows an
example and solution to this problem.
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Figure 1. Overview of the PSLP algorithm. The highlighted
boxes refer to the structures introduced by PSLP.

In Figure 2(a) we show the original code. The value
stored in BJi] is the result of a multiplication of A[i] and
then an addition of a constant. The value stored in B[ + 1]
is only A[i 4 1] added to a constant.

We now consider how SLP optimizes this code, shown in
Figure 2(c-d). As described in Section 2.1, we first locate the
seed instructions, in this case the stores into B|i] and B[i+1]
which are to adjacent memory locations. These form group
0 (the root of the SLP graph in Figure 2(c)). This group is
marked as vectorized in Figure 2(d). Next the algorithm fol-
lows the data dependences upwards and tries to form more
groups from instructions of same type. The second group
(group 1), consisting of addition instructions, is formed eas-
ily. However, a problem arises when the algorithm tries to
form group 2. The available nodes in the graph are a multi-
plication (x) from the first expression and a load (L) from the
second. Since these are not of the same type, vectorization
is halted at this point and the algorithm terminates having
formed just two groups. Applying the cost model to the two
forms of code shows that the packing overheads (associated
with inserting the scalar values into the vector registers for
the first vector instruction - the addition) outweigh the costs.
Therefore this code remains scalar and is compiled down
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Figure 2. Limitation of state-of-the-art SLP algorithm (c-e) and PSLP solution (f-i). Loads are represented by (L) nodes and

stores by (S).

to the Xx86/AVX2 assembly code' shown in Figure 2(e), the
same code as is produced with SLP disabled.

The graphs in this example are not isomorphic, but they
are similar enough to each other that the smaller graph (in
lane 1) is actually a subgraph of the larger. If we were able to
match the multiplication from lane 0 (left) with another mul-
tiply instruction in lane 1 (right), then vectorization would
continue further and would vectorize all the way up to the
loads at the leaves of the graph. We can achieve this by
padding the smaller graph with redundant instructions—the
ones missing from it.

Consider Figure 2(g) where we have performed this
padding by copying the multiplication instruction (and its
input constant) from lane O to lane 1. In addition, to ensure
semantic consistency, we have added a new select instruction
into each graph between the multiplication and addition (or-
ange node marked with the symbol of the electrical switch).
In lane O the select chooses its left input (the switch points
left), which is the result from the multiplication. In lane
1, the select chooses its right input (the switch points right),

'In modern x86 processors scalar floating point operations use the vector
register (e.g. %xmm¥). In the example all v{mul,add,mov}sd are scalar
instructions operating on the first element of the vector %xmm?* registers.

which uses the result from the load, ignoring the result of the
multiplication instruction. This, in effect, makes the multi-
plication in lane 1 dead code whose result is never used, and
it is therefore redundant. However, the overall outcome of
this padding is to make the two graphs isomorphic, so that
vectorization can succeed.

Figure 2(h) shows how SLP would operate on these two
graphs. In total, 5 groups of instructions are created and the
whole sequence is fully vectorized, producing the x86/AVX?2
assembly code shown in Figure 2(i).

The select instructions get compiled down to vector select
operations (like vpblendv+ in x86/AVX2). In some simple
cases, especially in x86/AVX2, they may get compiled down
to operations that are semantically equivalent to the selection
performed. For example this happens in Figure 2(i) where
the vector multiplication along with the vector select (which
would filter out the high part of the vector register) have
both been replaced by the scalar instruction vmulsd (this
performs scalar multiplication only on the low part of the
vector register). Another possibility is that they could be
turned into predicates for the instructions that they select
from in case of a target that supports predication and a
predication-capable compiler. The select instructions can be



further optimized away to reduce under certain conditions,
as explained in Section 3.3.4.

3. PSLP

PSLP is an automatic vectorization algorithm that achieves
greater coverage compared to existing straight-line code al-
gorithms by padding the data dependence graph with redun-
dant instructions before attempting vectorization. We first
give an overview of the algorithm and then describe how the
padding is performed.

3.1 Overview

An overview of the PSLP algorithm is shown in Figure 1.
The sections that belong to the original SLP algorithm are in
white boxes while the PSLP-specific parts are highlighted in
orange.

PSLP requires a graph representation of the code for each
lane (Step 2), each one rooted at a seed instruction (the
graphs are similar to those of Figure 2(f)). These graphs
allow PSLP to find padding opportunities and to calculate
the minimum number of redundant instructions required to
make the graphs isomorphic (Step 3).

In comparison the vanilla SLP algorithm builds a single
graph in which each node represents a group of vectoriz-
able instructions, and actually performs vectorization while
building the graph. There is no need to build a separate graph
for each lane because they would all be identical. The fun-
damental assumption is that SLP will only vectorize isomor-
phic parts of the dependence graphs, giving up on the first
instruction mismatch and not attempting to fix it.

In PSLP, once the padding has been added to the graph
for each lane, we must run the cost model to determine how
to proceed. We have to calculate the performance of the
original scalar code alongside that of the vectorized code
with and without padding (Step 4). If the performance of
the padded code (after vectorization) is found to be the best
(Step 5), then the algorithm emits the padded scalar code
(Step 6). This includes all select instructions and additional
redundant instructions that make the graphs isomorphic. If
the padded code does not have the best performance, the in-
struction padding does not proceed and the algorithm de-
cides whether to generate vectors or not, as in vanilla SLP
(Step 7). Finally, if vectorization seems beneficial, and re-
gardless of whether padded instructions have been emitted
or not, the algorithm will generate the SLP internal graph
representation as in Figure 2(c) (Step 8) and will perform
vectorization on the groups of scalars (Step 9).

3.2 PSLP Graphs Construction

The PSLP graphs (Figure 1, Step 2) are constructed bottom-
up, each of them starting from the seed instructions. For
each instruction or constant we create an instruction node
and for each data dependence an edge from the definition
to the use. An instruction can only be part of a single PSLP

graph. The graphs get terminated (i.e., do not grow further
upwards) once an instruction is reached that would be shared
among graphs. Nodes representing constants are not shared;
instead they get replicated such that each graph has its own
constants.

3.3 Minimal Graph Padding

At the heart of the PSLP algorithm lies the graph padding
function (Step 3 of Figure 1). This function returns a set
of isomorphic graphs which have the same semantics as
the original graphs but include new select instructions and
additional redundant instruction nodes. This ensures that the
graphs can be vectorized at a later stage (Steps 8 and 9 of
Figure 1).

To obtain optimal performance from the padded code we
must find the minimum set of redundant instructions re-
quired to get isomorphic graphs. In essence, this is equiv-
alent to finding the minimum common supergraph (MinCS)
of a set of graphs. Bunke et al. [5] state that the problem of
finding the MinCS of two graphs can be solved by means of
maximum common subgraph (MaxCS) computation.

3.3.1 Maximum Common Subgraph

Finding the maximum common subgraph of two graphs gl
and g2 is an isomorphism problem and is known to be NP-
hard. An optimal solution can be achieved with an algorithm
such as McGregor’s [18], but for any practical usage the
graphs should be very small (up to 15 nodes). To address
this we propose a faster backtracking algorithm which is
very close to the optimal (in this context) and is shown in
Algorithm 1. In the example of Figure 3, the input to the
MaxCS algorithm are the graphs in 3(b) and the output in
3(c).

Algorithm The two graphs to operate on are given as input
to the algorithm. The first thing the algorithm does is to
sort the graph nodes so that the graph is traversed bottom-
up (line 8), to ensure that children are visited before their
parents. This matches the direction of traversal in the later
vectorization pass. Next it calls the main recursive function
of the algorithm (line 9). The main function starts with
iterating over the nodes of g1 and attempts to find a node
from g2 to match with (lines 14 to 33). While searching we
skip nodes that:

i.  Are already matched (line 17);

ii.  Are of incompatible types (line 18);

iii. Will cause cycles in the graph if allowed (line 19);
iv. Are in different basic blocks (line 20); or

v.  Cannot be scheduled in parallel (line 21).

Once we find the first two nodes that match we consider
them as likely candidates and insert them into a map of
nodes from g1 to g2 and its reverse (line 23 and 24). Then
we search for other likely matches within a given radius
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(line 26) and spawn a new search from that point (line 30).
This ensures that we do not get trapped in a local optimal
point. These pairs of likely nodes are calculated by the func-
tion get_next_node_pairs() (line 53). A full-search approach
would try out all possible pairs. In our algorithm, however,
to keep the complexity low we only consider pairs of nodes
that are most likely to lead to a good result. To that end we
ignore nodes that have a mobility? difference higher than a
threshold (line 55). We also apply a cap on the maximum
number of pairs that we generate (line 56). The process con-
tinues until all nodes pairs are considered by all spawned
searches.

When the algorithm exits the loop, the node maps are
populated and the algorithm creates two edge maps (map-
ping common subgraph edges that are in g1 to those in g2
and vice-versa). This is performed by inspecting each pair
of corresponding nodes (lines 35 to 41) and mapping their
attached edges one to one. The corresponding edges are
the ones that are connected to the corresponding instruction
operand of the node. Next, with both node and edge maps we
can create the maximum common subgraphs by filtering out
nodes and edges that are not present in the maps (lines 43
and 44). Finally, we compare the subgraphs with the best
found so far in order to find the maxima (lines 46 to 49).

2 The mobility of a node in a data dependence graph is calculated as ALAP-
ASAP as in [12]

Algorithm 1. Backtracking Maximum Common Subgraph

1 /x##rxkxx4+ Max Common Subgraph Algorithm #xx#x*%*%x/
2 /+ Input : Graphs Gl and G2 */
3 /% Output: Subgraphs SG1 and SG2 */
4 maxcs (gl, g2) {

5 Initialize node maps: n_mapl2, n_map2l

6 Initialize the best subgraphs: best_sgl, best_sg2
7 /# Sort nodes to do the matching Bottom-Up x/

8 Sort gl, g2 nodes by Reverse List Schedule

9 maxcs_rec (gl,g2,gl.root,g2.root,n_mapl2,n_map21l)

10 (best_sgl, best_sg2)

11 1}

12

13 maxcs_rec (gl,g2,nl_begin,n2_begin,n_mapl2,n_map2l) {
14 (nl in gl.nodes starting from nl_begin) {
15 (n2 in g2.nodes starting from n2_begin) {
16 /# Skip incompatible nodes */

17 (n2 already in n_map21l)

18 (nl and n2 of different types)

19 (n2 is successor of paired nodes)

20 (nl.BB != n2.BB)

21 (can’t schedule nl, n2 in parallel)

22 /* Found compatible nl and n2 =/

23 n_mapl2 [nl] = n2

24 n_map2l [n2] = nl

25 /+ Look ahead for good node pairs =/

26 node_pairs = get_next_node_pairs(nl,n2)

27 node_pairs += get_next_node_pairs(n2,nl)

28 (pair in node_pairs) {

29 /* Recursion for backtracking =*/

30 maxcs_rec(gl,g2,pair.nl,pair.n2,n_mapl2,n_map21l)
31 }

32 }

33}

34 /+ Get the edge maps */

35 (nl in n_mapl2) {

36 n2 = n_mapl2 [nl]

37 el,e2 = corresponding out edges of nl and n2
38 /+ Set the corresponding edge maps */

39 e_mapl2 [el] = e2

40 e_map2l [e2] = el

41 1}

42 /% Generate the subgraphs */

43  sgl = subgraph(gl,n_mapl2,n_map2l,e_mapl2,e_map2l)
44 sg2 = subgraph(g2,n_mapl2,n_map2l,e_mapl2,e_map2l)
45 /% Keep the best subgraph so far x/

46 (sgl > best_sgl and sg2 > best_sg2) {

47 best_sgl = sgl

48 best_sg2 = sg2

49 3

50

51 /* Return pairs {nl,x} that will likely lead to a
52 good solution. The more the pairs the slower */
53 get_next_node_pairs(nl, n2) {

54 (n2x in n2.nodes starting at n2) {

55 (In2x.mobility - n2.mobility| < m_threshold
56 && pairs.size() < p_threshold)

57 pairs.append ({nl, n2x})

58 }

59 pairs

60 }

3.3.2 Minimum Common Supergraph

The MaxCS graph is used to calculate the minimum com-
mon supergraph. The MinCS is the graph obtained from
adding the MaxCS and the differences between the origi-
nal graphs and the MaxCS graphs [5]. To be more precise, if
gl and g2 are the original graphs and MazCS is the max-
imum common subgraph of gl and g2, then MinCS1 =
MazxCS + diff1 + diff2 where diffi = g1 — MaxCS and
diff2 = g2 — MaxCS.



Example Figures 3(a) to 3(e) show an example of calculat-
ing the MinCS. The input code and initial graphs are shown
in Figures 3(a) and 3(b) respectively. The MaxCS algorithm
(Section 3.3.1) gives us the maximum common subgraphs
of Figure 3(c). Following the process of Section 3.3.2, we
calculate the differences diff! and diff2 (Figure 3(d)) and
add them to MaxCS1 and Maxz(CS2, resulting in the final
MinCS graph of Figure 3(e).

The instructions padded into MinCS1 are those in diff2
and the instruction padded into MinCS2 are from diff1.
Instruction padding involves creating copies of existing in-
structions and emitting them into the code stream before
their consumers. Almost all padded instructions can be di-
rectly vectorized along with their corresponding original
instructions from the neighboring graphs. The exceptions
are load instructions which cannot be vectorized along with
identical copies of themselves, since they point to the same
memory location—not consecutive addresses. Therefore
padded loads also get their addresses modified to point to
consecutive addresses.

3.3.3 Select Node Insertion

The MinCS graphs do not represent valid code. Node “+”
of MinCS|1 in Figure 3(e) has 3 input edges, 2 of which flow
into its left argument. This is clearly not correct. Therefore
PSLP emits select instructions to choose between the edges
flowing into the same argument of an instruction node. The
selects should always choose the diff that belongs to the
original code. In this way the semantics of the code do not
change with the newly injected code. Given the placement of
the diff subgraphs on the graph, the selects inserted into the
left graph choose the left edge while those inserted into the
right graph select the right edge. In Figure 3(f) the left select
chooses the multiplication while the right select chooses the
load (highlighted edges).

Even though the graphs have been padded with several
instructions, it is important to note that the semantics of the
computations performed by the graphs is unaffected. The left
graph of Figure 3(f) is still B[i] = A[i] * 7+ 1 and the right
graph is still B[i 4 1] = A[i 4+ 1] 4 5.

As a subsequent phase in PSLP we could convert the se-
lect instructions into predication to achieve the same goal.
Predication has two advantages over using select instruc-
tions:

1. There is no need to emit and to execute select instruc-
tions. This results in fewer instructions and could lead to
better performance.

2. It is possible to safely enable/disable instructions with
side-effects (e.g., stores) or instructions which could
cause an exception (e.g., loads). This may further in-
crease the coverage of PSLP.
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Our target instruction set is Intel’s AVX2 which does not
support predicated execution, therefore we leave the evalua-
tion of PSLP with predication for future work.

3.3.4 Removing Redundant Selects

The final stage of graph padding is to remove any select
instructions that can be optimized away. This is counter-
intuitive, since the MinCS algorithm finds a near-optimal
solution. However, MinCS is designed for generic graphs,
treating each node equally, whereas we are applying it to
PSLP graphs where nodes are instructions or constants and
edges represent data-flow. We can use this semantic infor-
mation to optimize certain select nodes away. Removing a
select across all lanes is always beneficial since it will lead
to code with fewer instructions.

We have implemented four select-removal optimizations,
shown in Figure 4. These remove:

1. Selects choosing between constants through replacement
with the selected constant (e.g., Figure 4(a));

2. Select nodes with the same predecessor for each edge
(e.g., Figure 4(b));



3. Selects that choose between an instruction that has an
identity operation (e.g., add 0 or mul 1) reading a con-
stant and a node which is common to both the select and
that instruction (see Figure 4(c)); and

4. Cascaded select nodes (Figure 4(d)).

The effect of these optimizations is to remove redundant
select instructions from the vectorized code, improving its
performance.

3.3.5 Multiple Graph MinCS

Until now we have only shown how to derive the MinCS
graph from a pair of graphs. However, SIMD vector units
have many more than just 2 lanes. In PSLP we compute the
MinCS of a sequence of more than 2 graphs in a fast but sub-
optimal way, by calculating the MinCS for pairs of graphs
and using the computed MinCS as the left graph for the next
pair.

For example if we have 3 graphs: g1, g2 and g3 (Fig-
ure 5(a)), we compute the MinCS12 of gl and g2 (Fig-
ure 5(b)), and then the MinCS123 between MinCS12_R
and g3 (Figure 5(c)). In this left-to-right pairwise process
we get the rightmost MinCS123_R supergraph which is the
largest of them all®. This process introduces redundant se-
lects (for example, the two select nodes in MinCS123_R).
These get optimized away by our fourth select removal opti-
mization from Section 3.3.4.

Having obtained the final MinCS, we use this supergraph
as a template to recreate the semantics of each of the original
graphs*. This is performed in two steps. First we map the
instructions from each graph to the nodes of this rightmost
supergraph and, second, we set the conditions of the select
nodes correctly. The end result is from our example is shown
in Figure 5(d). After applying select removal optimizations
we obtain the padded vectorizable graphs in Figure 5(e).

3.4 Cost Model

Having padded the input graphs, we must make a decision
about whether to proceed with vectorization of the padded
graphs or the original graphs, or whether to simply keep the
code scalar. To do this without degrading performance PSLP
requires an accurate cost model for estimating the latency of
each case. We largely reuse the cost model of the LLVM
SLP pass with minor modifications. The cost is computed
as the total sum of all individual instruction costs. Each
instruction cost is the execution cost of that instruction on
the target processor (which is usually equal to the execution
latency). If there is scalar data flowing in or out of vector
code, or vector data flowing in or out of the scalar code, then

3 This is not always true. In the pair-wise process of generating MinCSs we
may discard some nodes leading to a smaller graph.
41f the rightmost supergraph is not a superset of all the graphs, it is impos-
sible to guarantee that all nodes of the input graphs can map to the nodes
of the final supergraph. We therefore keep graphs acquired only from the
left-to-right pairwise calculation of the supergraphs.
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Figure 5. Generation of the MinCS of a sequence of graphs.

there is an extra cost to be added: the cost of the additional
instructions required to perform these data movements.

This cost model is simple to derive, but effective. A more
precise model, especially for simpler in-order architectures,
would involve instruction scheduling on the target pipeline.
The schedule depth would then provide a better estimate of
the execution cost. In this way the scalar cost on wide-issue
architectures would be estimated more accurately. How-



Kernel Description

conjugates Compute an array of conjugates
su3-adjoint Compute the adjoint of an SU3 matrix (in 433.milc)
make-ahmat Take the traceless and anti-hermitian part of an SU3

-slow matrix and compress it (in 433.milc)
jdct-ifast Discreet Cosine Transform (in cjpeg)
floyd-warshall ~ Find shortest paths in a weighted graph (Polybench)

Table 1. Description of the kernels.

ever, for our out-of-order target architecture the existing cost
model already gives good accuracy; improving it further is
beyond the scope of this work.

3.5 Summary

We have presented PSLP, a straight-line code vectorization
algorithm that emits redundant instructions before vectoriz-
ing. These additional instructions help in transforming the
non-isomorphic dependence graphs into isomorphic. The al-
gorithm relies on calculation of the maximum common sub-
graph to derive the minimum common supergraph which
contains the new instructions. Select operations are inserted
to keep the program semantics intact. A cost model is then
applied to determine how vectorization should proceed. This
ensures that enough code is vectorized to offset the over-
heads from the insertion of additional instructions that PSLP
requires (e.g., selects and redundant operations).

4. Experimental Setup

We implemented PSLP in the trunk version of the LLVM
3.6 compiler [14] as an extension to the existing SLP pass.
We evaluate PSLP on several kernels extracted from vari-
ous benchmarks of the SPEC CPU 2006 [31], MediaBench
II [7] and Polybench [26] suites. A brief description of them
is given in Table 1. We also evaluated PSLP on full bench-
marks from the C/C++ benchmarks of SPEC CPU 2006 and
MediaBench II suites. We compiled all benchmarks with the
following options: -O3 -allow-partial-unroll -march=core-
avx2 -mtune-core-i7 -ffast-math. The kernels were compiled
with more aggressive loop unrolling: -unroll-threshold=900.
We only show the benchmarks that i) trigger PSLP at least
once and ii) show a measurable performance difference due
to PSLP; we skip the rest.

The target system was an Intel Core i5-4570 at 3.2GHz
with 16GB of RAM and an SSD hard drive, running Linux
3.10.17 and glibc 2.17.

We ran each kernel in a loop for as many iterations as re-
quired such that they executed for several hundred millisec-
onds. We executed the MediaBench II benchmarks 10 times
each, skipping the first 2 executions. We executed the SPEC
CPU 2006 benchmarks 10 times each, using the reference
dataset.
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Figure 6. Execution time of our kernels and benchmarks,
normalized to O3.

tmpl = quantval[0]*16384
tmp2 = quantval[1l]*22725
tmp3 = quantval([2]*21407
tmp4 = quantval[3]*19266
b[0].real = a[0].real tmpl = quantval[0]<<14
b[0].imag = - a[0].imag tmp2 = quantval([1]*22725
b[l].real = a[l].real tmp3 = quantval([2]*21407
b[l].imag = - a[l].imag tmp4 = quantval[3]*19266

(a) Non-isomorphic source code (b) Non-isomorphism caused by
(conjugates) high-level optimizations (jdct-ifast)

Figure 7. Opportunities for PSLP.

5. Results
5.1 Performance

Execution time, normalized to O3, is shown in Figure 6. We
measure O3 with all vectorizers disabled (O3), O3 with only
SLP enabled (SLP) and O3 with PSLP enabled (PSLP).

The results show that when PSLP is triggered it always
improves performance over SLP. This is to be expected as
PSLP will generate code only if the cost-model guarantees
that its performance is better than both the scalar code (03)
and that vectorized by SLP (see Figure 1, steps 4, 5 and 7).

The kernels conjugates and jdct-ifast contain two differ-
ent types of code that benefit from PSLP (see the simpli-
fied kernel codes in Figure 7). On one hand, conjugates
contains a sequence of non-isomorphic computations in its
source code (Figure 7(a)), similar to the motivating example
in Section 2.2. On the other hand, jdct-ifast contains isomor-
phic computations in the source code which become non-
isomorphic after high-level optimizations (Figure 7(b)), in
this case strength reduction. The computation in the jdct-
ifast source code performs a sequence of multiplications
against an array of constants. Some of the constant values
in the array of constants happen to be a power of two. The
multiplication instructions against these specific values get
strength-reduced down to logical left shifts, thus breaking
the isomorphism. Therefore SLP fails, while PSLP is able to
restore the isomorphism and vectorize the code.

In some cases, vectorization can cause performance
degradation (not shown in the results). It is not uncommon



No Vec | PSLP extends SLP

Figure 8. PSLP allows vectorization either when SLP
would have failed (shown by “PSLP-only”), or when SLP
would have succeed but not to the depth that it does with
PSLP (shown by “PSLP extends SLP”).
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Figure 9. The static coverage of each technique.

for vectorizing techniques to generate code that is slower
than the scalar code. This problem can be caused by:

e [ ow accuracy of the cost model;

® Poor description of the target micro-architecture pipeline
in the compiler; or

e The compiler back-end generating very different and
slower code from the code at the high-level IR.

So there could be cases, particularly when the target is
a powerful wide-issue superscalar processor, where a se-
quence of scalar instructions is faster than their vectorized
counterparts and the cost model could do a bad estimation.
This problem, though, does not affect the cost comparison
between PSLP and SLP considerably because it is a relative
comparison between vector code and vector code. PSLP can
avoid the slowdowns compared to SLP, but not compared to
scalar code.

5.2 Vectorization Coverage

The main goal of PSLP is to increase the vectorization cov-
erage. More vectorized code usually translates to better per-
formance. To evaluate the coverage, we count the number
of times each of the techniques are successful (that is, how
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Figure 10. The total static code cost saved by each vector-
izer over scalar, according to the cost model.

many times they generate code). SLP and PSLP complement
each other. As shown in Figure 8, there are four possible
cases: “No vectorization”, “SLP”, “PSLP extends SLP”” and
“PSLP only”. The intersection “PSLP extends SLP” refers to
the scenario where SLP would succeed even without PSLP,
but it performs better with the help of PSLP (i.e., vectoriza-
tion succeeds deeper in the SLP graph). We measure each of
these cases (except for “No vectorization™) across the bench-
marks and we show the numbers in Figure 9.

These coverage results cannot be directly correlated to
the performance results as they represent static data, not dy-
namic. The overall performance improvement achieved is a
function of the frequency that the vectorized code gets ex-
ecuted (i.e., how “hot” it is) and the savings achieved com-
pared with the original scalar code (i.e., the improvement es-
timated by the cost model). For example, Figure 9 shows that
the kernels conjugates and su3-adjoint trigger PSLP a simi-
lar number of times, but conjugates takes 0.37 x the baseline
time, whereas su3-adjoint takes 0.97 x. This is because the
average cost savings for each vectorization success in conju-
gates is 3.4 x that of su3-adjoint (Figure 10).

In addition, the coverage results are affected by the
amount of unrolling performed. As mentioned in Section 4,
the kernels are compiled with more aggressive unrolling
which causes the techniques to succeed more times com-
pared to the whole benchmarks. Nevertheless, the coverage
results clearly show that PSLP improves the coverage of
vectorization across the majority of codes shown.

5.3 Static Instruction Savings

The cost model of the vectorization algorithm (Section 3.4)
makes sure that vectorization is only applied if it leads to
code with lower cost. As already mentioned, the cost cal-
culated by the cost model is very close to the actual count
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Figure 11. Number of select instructions emitted for the
vectorized region, before and after select removal optimiza-
tions. Also the number of Selects removed by each optimiza-
tion.

of instructions (it is usually weighted by the instruction la-
tency). Therefore the vectorizer is only triggered if it leads to
faster code with fewer instructions. The total cost saved by
each of the vectorizers is shown in Figure 10. These savings
are measured at the intermediate representation (IR) level.
By the time the final code gets generated at the back-end the
target code might look significantly different and the savings
might differ.

5.4 Select Instructions

To get more insight on how PSLP performs, we measured
how many select instructions are emitted in regions of code
that get successfully vectorized by PSLP (Figure 11). To be
more precise, the regions include all the instructions that
form the PSLP graphs. We measured the number of se-
lects originally emitted by PSLP just to maintain correct-
ness (“Original-Selects”), the number of Selects that remain
after all the select-removal optimizations described in Sec-
tion 3.3.4 (“Optimized-Selects”) and the number of Selects
removed by each of the optimizations (OptA to OptD corre-
spond to the descriptions in Figure 4).

According to Figure 11, the number of select instructions
introduced by PSLP is significant (about 21% of the code
in the PSLP graphs, on average). The select-removal opti-
mizations manage to remove about 28% of the total selects
originally emitted by PSLP, bringing them down to 15%.
The most effective of these optimizations removes selects
between constants (OptA).

5.5 Summary

We have evaluated PSLP on a number of kernels and full
benchmarks, showing that it can reduce the execution-time
down to 0.37 x. It achieves this by increasing the amount of
code that would have been vectorized by SLP anyway, as
well as enabling SLP to vectorize code that it would have
otherwise left as scalar.

6. Related Work
6.1 Vector Processing

Various commercial (for example [24, 29]) and experimental
(e.g., [11]) wide vector machines have been built in the past.
These machines were used to accelerate scientific vector
code, usually written in some dialect of Fortran.

More recently short SIMD vectors have become a stan-
dard feature of all commodity processors for most desktop
and mobile systems. All major processor manufacturers (In-
tel, AMD, IBM and ARM) support some sort of short-vector
ISA (e.g., MMX/SSE*/AVX/AVX2 [10], 3DNow! [23],
VMX/AltiVec [9] and NEON [3] respectively). These ISAs
are constantly under improvement and get updated every few
years with more capable vector instructions and/or wider
vectors.

Modern graphics processors (GPUs), like old vector ma-
chines, implement hardware vectorization [15]. They do so
by executing groups of 32 (on Nvidia) or 64 (on AMD)
adjacent threads in warps in lock-step. Such large vector
widths are possible thanks to data-parallel input languages
like CUDA or OpenCL, where the programmer explicitly
exposes the available parallelism to the hardware. This ef-
fectively overcomes intrinsic limitations of compiler-based
analysis, leading to substantial runtime and energy improve-
ments over traditional CPU execution for suitable work-
loads.

6.2 Loop Vectorization

Loops are the main target of vectorization techniques [32].
The basic implementation strip-mines the loop by the vector
factor and widens each scalar instruction in the body to work
on multiple data elements. The works of Allen and Kennedy
on the Parallel Fortran Converter [1, 2] solve many of the
fundamental problems of automatic vectorization. Numer-
ous improvements to the basic algorithm have been proposed
in the literature and implemented in production compilers.
Efficient run-time alignment has been proposed by Eichen-
berger et al. [6], while efficient static alignment techniques
were proposed by Wu et al. [33]. Ren et al. [27] propose a
technique that reduces the count of data permutations by op-
timizing them in groups. Nuzman et al. [21] describe a tech-
nique to overcome non-contiguous memory accesses and a
method to vectorize outer loops without requiring loop rota-
tion in advance [20].

An evaluation of loop vectorization performed by Maleki
et al. [17] shows the limits of current implementations. State-



of-the-art compilers, like GCC and ICC, can vectorize only
a small fraction of loops in standard benchmarks like Me-
dia Bench. The authors explain these poor results as (1) lack
of accurate compiler analysis, (2) failure to perform prelim-
inary transformations on the scalar code and (3) lack of ef-
fective cost models.

6.3 SLP Vectorization

Super-word level parallelism (SLP) has been recently intro-
duced to take advance of SIMD ISAs for straight-line code.
Larsen and Amarasinghe [13] were the first to present an au-
tomatic vectorization technique based on vectorizing paral-
lel scalar instructions with no knowledge of any surrounding
loop. Variants of this algorithm have been implemented in
all major compilers including GCC and LLVM [28]. This is
the state-of-the-art SLP algorithm and in this paper we use
its LLVM implementation as a baseline for comparison and
as a starting-point for our PSLP work.

Shin et al. [30] introduce an SLP algorithm with a
control-flow extension that makes use of predicated execu-
tion to convert the control flow into data-flow, thus allowing
it to become vectorized. They emit select instructions to
perform the selection based on the control predicates.

Other straight-line code vectorization techniques which
depart from the SLP algorithm have also been proposed in
the literature. A back-end vectorizer in the instruction se-
lection phase based on dynamic programming was intro-
duced by Barik et al. [4]. This approach is different from
most of the vectorizers as it is close to the code generation
stage and can make more informed decisions on the costs
involved with the instructions generated. An automatic vec-
torization approach that works on straight-line code is pre-
sented by Park et al. [25]. It succeeds in reducing the over-
heads associated with vectorization such as data shuffling
and inserting/extracting elements from the vectors. Holewin-
sky et al. [8] propose a technique to detect and exploit more
parallelism by dynamically analyzing data dependences at
runtime, and thus guiding vectorization. Liu et al. [16]
present a vectorization framework that improves SLP by
performing a more complete exploration of the instruction
selection space while building the SLP tree.

None of these approaches identify the problem of mis-
matching instructions while attempting to build vectors, nor
do they try to solve it in any way. The PSLP approach of
introducing selectively-executed padded code to solve this
mismatching problem is unique, to the best of our knowl-
edge.

6.4 Vectorization Portability

Another relevant issue for vectorization is portability across
platforms. The various types of SIMD instructions available
on different architectures require the definition of suitable
abstractions in the compiler’s intermediate representation.
These must be general enough to embrace various vector-
ization patterns without sacrificing the possibility of gener-

ating efficient code. Nuzman et al. targeted this problem by
proposing improvements to the GIMPLE GCC intermediate
representation [19] and through JIT compilation [22].

7. Conclusion

In this paper we presented PSLP, a novel automatic vec-
torization algorithm that improves upon the state-of-the-art.
PSLP solves a major problem of existing SLP vectorization
algorithms, that of purely relying on the existence of iso-
morphic instructions in the code. Our technique transforms
the non-isomorphic input code graphs into equivalent iso-
morphic ones in a near-optimal way. This is performed by
careful instruction padding while making sure that the pro-
gram semantics remain unchanged. The end result is padded
code which gets successfully vectorized when the state-of-
the-art techniques would either fail or partially vectorize it.
The evaluation of our technique on an industrial-strength
compiler and on a real machine shows improved coverage
and performance gains across a range of kernels and bench-
marks.
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