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Abstract—Recently, researchers have proposed the use of the
open RISC-V standard as a basis for GPGPU instruction sets,
enabling development of unencumbered GPGPU hardware while
reusing extensive general-purpose instruction-set, compiler, and
software infrastructure where appropriate. In this paper, we
identify and overcome a major deficiency in existing SIMT-
style RISC-V GPGPUs: the inability to exploit value regularity
whereby threads executing in lockstep often compute the same or
similar intermediate values. As a solution, we propose advanced
dynamic scalarisation, a set of new microarchitectural features
to exploit value regularity without requiring any extensions to
the instruction set or compiler. These features include register-file
compression to reduce on-chip storage requirements in heavily-
threaded designs and parallel scalar and vector pipelines to
increase instruction throughput, and are fully implemented and
evaluated in a new, open-source, synthesisable RISC-V GPGPU
called SIMTIGHT. Our results show a reduction in register-
file storage requirements of 68%, saving 178KB of fast on-
chip memory per 2048-thread streaming multiprocessor, and an
increase in run-time performance of 20% at low hardware cost.

Index Terms—RISC-V, GPGPU, SIMT, value regularity, scalar-
ization, register-file compression
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I. INTRODUCTION

Computer architecture research on GPGPUs often relies on
the use of software simulators to model proprietary hardware
at the intermediate-language level [1, 2]. However, this makes
it difficult to evaluate important effects on microarchitecture,
synthesis quality, and translation to machine code, which can
be easily overlooked [3]. It also focusses engineering effort on
the development of abstract simulators that cannot be directly
deployed in the field.

Over the last decade, open-source GPGPU hardware has
emerged as a promising alternative. While early designs were
based either on proprietary instruction sets [4], preventing free
deployment of hardware, or custom instruction sets [5, 6, 7],
with no access to a mature software stack or compiler, recent
designs have started to employ RISC-V [8, 9, 10], avoiding
both problems. This is, however, a relatively new initiative
and existing SIMT-style RISC-V GPGPUs have limitations.
Most notable, in our view, is that they do not exploit value
regularity whereby threads executing in lockstep (a warp)
often compute the same or similar intermediate values. This
is a major omission. A seminal study [11] reports that 27%
of register reads in SIMT workloads yield the same value for
each thread in a warp — so-called uniform vectors. Similarly,
44% of reads yield values separated by a constant stride — so-
called affine vectors. Unoptimised, this leads to a large amount
of wasted storage, computation, and energy.

Value regularity can be exploited using a technique known
as scalarisation, which either operates statically in the com-

piler with instruction-set support [12, 13, 14, 15, 16, 17, 18] or
dynamically in the microarchitecture [11, 19, 20, 21, 22, 23,
24]. For RISC-V GPGPUs, dynamic scalarisation is particu-
larly attractive because it avoids the need to heavily modify the
standard RISC-V instruction set and compiler toolchain. On
the other hand, dynamic scalarisation has thus far been unable
to reduce register-file storage requirements, a key strength
of static scalarisation, and has been limited in its ability to
improve instruction throughput.

In this paper, we advance the technique of dynamic scalar-
isation through the following features.

• Register-File Compression. We present a compressed
register file design in which uniform and affine vec-
tors are detected at run-time and stored compactly in
a small scalar register file (SRF) while general vectors
are allocated on-demand in a larger, size-constrained
vector register file (VRF). The size of the VRF can be
set arbitrarily and overflow is handled by dynamically
spilling registers to main memory. Our results show that
a compressed register file with a quarter-sized VRF has a
minimal impact on instruction throughput while reducing
register-file storage requirements by 68%, a saving of 178
kilobytes per 2048-thread streaming multiprocessor.

• Parallel Scalar and Vector Pipelines. An instruction
with uniform or affine inputs is said to be scalarisable
if it produces a uniform or affine result. We observe
that several features of the general SIMT pipeline are
unnecessary to process scalarisable instructions, including
active thread selection, the vector register file, and the
vector data path, motivating separate scalar and vector
pipelines. To allow these pipelines to operate in parallel,
we maintain a separate warp queue for each. After
executing an instruction in either pipeline, scalarisable
instruction prediction is used to determine whether the
next instruction is likely to be scalarisable or not, and
to place the currently executing warp in the appropriate
queue. Our results show an average execution-time re-
duction of 20% in a 32-lane configuration while requiring
only a single additional execution unit.

These features are fully implemented and evaluated in a
new, prototype, open-source, synthesisable, RISC-V GPGPU
called SIMTIGHT. Our contributions are as follows.

• Despite significant recent interest in SIMT-style RISC-V
GPGPUs, none currently exploit value regularity. We
show how this can be achieved and the savings that
are possible, without requiring any modifications to the
RISC-V instruction set or its compilers.



• We advance the technique of dynamic scalarisation to
achieve reduced register-file storage requirements and
efficient execution of scalarisable instructions in parallel
with the general vector data path.

• We demonstrate high IPC and performance density in a
SIMT-style RISC-V GPGPU, a significant improvement
upon the state-of-the-art VORTEX design [9].

II. BACKGROUND

Single Instruction, Multiple Threads (SIMT) is a parallel
execution model, popularised by NVIDIA and AMD GPGPUs,
that combines the flexibility of a multi-thread programming
model with the efficiency of SIMD hardware. The main idea
is to execute multiple hardware threads in lockstep with the
aim of exploiting regularity between them. Known collectively
as a warp (or wavefront), these threads can exhibit three main
kinds of regularity [19]:

• control-flow regularity, where threads in a warp follow
the same path through the program;

• memory-access regularity, where threads in a warp access
neighbouring addresses in memory; and

• value regularity, where threads in a warp compute the
same or similar intermediate values.

While SIMT processors rely on inter-thread regularity to
achieve optimal performance, they nevertheless permit general
scalar computation within each thread. Indeed, researchers
have argued that a general-purpose scalar instruction set such
as RISC-V is well-suited to SIMT execution [8], offering
an alternative to today’s proprietary and bespoke GPGPU
ISAs. One of the main challenges of this approach is how
to handle thread divergence and convergence: when threads in
a warp take different paths of a branch, it is desirable to join
these threads back together at the earliest opportunity. Existing
RISC-V GPGPUs have already addressed this problem, either
microarchitecturally [8] or with a small extension to the
instruction set [9]. Furthermore, researchers have shown how
to extend RISC-V to support graphics processing, and have
demonstrated full OpenCL and OpenGL software stacks on
top of SIMT-style RISC-V GPGPUs [9, 10].

Collange et al. first identified the prevalence of value regu-
larity in SIMT workloads [11], introducing the term uniform
vector to refer to a variable that has the same value in every
thread in a warp, and affine vector to refer to a variable whose
value is of the form base + t × stride for each thread t in a
warp with a fixed base and stride. A uniform vector is a special
case of an affine vector with a zero stride. The authors report
that, on average over a range of CUDA benchmarks running
in simulation, 27% of vectors read from the register file, and
15% of vectors written, are uniform. These numbers rise to
44% and 28% respectively for affine vectors.

Several SIMT designs, including some of today’s commer-
cial offerings, exploit value regularity statically through a
technique known as scalarisation [12, 13, 14, 15, 16, 17, 18].
Generally, this comprises three main parts: (1) compiler sup-
port for identifying register values that are scalar (uniform
or affine) across threads executing in lockstep; (2) a separate

architectural register file for holding such values more com-
pactly; and (3) special instructions to process these registers
more efficiently. However, on RISC-V GPGPUs, all three parts
would require major instruction-set and compiler modifica-
tions. Ideally, such modifications should be avoided, where
possible, to maximise reuse of existing RISC-V infrastructure.

In this paper, we therefore focus on the use of dynamic
scalarisation to optimise value regularity microarchitecturally.
Although there is already a significant body of research on
this topic [11, 19, 20, 21, 22, 23, 24], most of it aims to lower
energy usage by reducing the number of register banks that
get activated during operand collection and writeback. Existing
dynamic approaches do not reduce register file storage require-
ments, a big challenge for modern GPGPUs with hundreds of
thousands of hardware threads [25, 26]. They have also had
limited success in improving instruction throughput by freeing
up the general vector data path. We discuss these limitations
further in Section V.

III. SIMTIGHT

In this section, we introduce the SIMTIGHT GPGPU,
starting with the baseline design and then adding register-file
compression followed by parallel scalar and vector pipelines.

A. Baseline

SIMTIGHT is a new, prototype, open-source, synthesisable
RISC-V GPGPU designed for high performance density on
‘classic’ GPGPU workloads, i.e., workloads sympathetic to
memory-access coalescing rules, and which utilise scratchpad
memory for efficient parallel random access and inter-thread
communication. It implements RISC-V’s RV32IMAZfinx pro-
file, i.e., a 32-bit machine with integer, multiply, atomics, and
single-precision floating-point support, with a merged integer
and floating-point register file.

Our focus in this paper is on the design of the streaming
multiprocessor (SM) component of SIMTIGHT, as depicted
in Figure 1. It is parameterised by the number of threads per
warp, which is equivalent to the number of vector lanes (Num-
Lanes) as all threads in a warp can execute in a single cycle.
It is also parameterised by the number of warps (NumWarps),
supporting up to NumLanes×NumWarps hardware threads in
total. It employs a 6-stage processor pipeline fed by a barrel
scheduler that switches between warps on every clock cycle.
At most one instruction per warp is present in the pipeline
at any time, avoiding data and control hazards. Multi-cycle
instructions are suspended in the execute stage and resumed
in the writeback stage without blocking the pipeline, toler-
ating high-latency operations such as memory loads, integer
division, and floating-point operations. Below, we outline each
of the main components of the SM: the six pipeline stages,
the coalescing unit, and scratchpad memory.

Stage 1: Warp Scheduling (2 cycles). The pipeline main-
tains a suspension bit for each hardware thread denoting
whether or not that thread is awaiting the result of a multi-
cycle operation, such as a response from memory. The warp
scheduler fairly removes a warp ID from the warp queue that
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Fig. 1. Diagram of the SIMTIGHT streaming multiprocessor (SM), incuding the pipeline, coalescing unit, and scratchpad memory. Double boxes represent
components containing logic or storage that is replicated per vector lane, and double lines represent per-lane wiring.

contains no suspended threads and inserts it into the next stage
of the pipeline.

Stage 2: Active-Thread Selection (2 cycles). The pipeline
also maintains thread state for each hardware thread, including
a PC and a nesting level. The current warp ID is used to
lookup the thread-state memory, and active-thread selection
picks a set of threads from the warp that share the maximum
nesting level and a common PC. The idea is that each thread’s
nesting level is incremented when entering a conditional block
of code and decremented when leaving it, and prioritising the
most deeply nested threads leads to early convergence. This
is a simplified version of a stack-less reconvergence design
proposed by Collange [8, 27]. Software control of nesting
levels is discussed in Section IV.

Stage 3: Instruction Fetch (1 cycle). The common PC
shared by the active threads in the warp is used to lookup a
tightly coupled instruction memory (TCIM).

Stage 4: Operand Fetch (2 cycles). The register file
is implemented as an on-chip memory with two read ports
and one write port. The source register IDs in the current
instruction together with the warp ID are used to lookup the
register file, delivering two 32-bit operands to every lane in
a single cycle. These operands are then latched to improve
timing. The instruction is also fully decoded in this stage.

Stage 5: Execute / Suspend (1 cycle). The decoded
instruction, current PC, and register operands are passed to the
per-lane execution units, and the current warp ID is inserted
back into the warp queue. Memory load and store instructions
issue memory requests to the coalescing unit in this stage.
If the instruction is a memory load then each active thread’s
suspension bit is set.

Stage 6: Writeback / Resume (1 cycle). The per-lane
results of the instruction are written to the register file for each
active thread in the warp. If no such write is required, then the
pipeline opportunistically consumes per-lane responses from
the coalescing unit, writes them to the register file, and clears
the suspension bit for each corresponding thread. Memory
responses for threads in the same warp do not need to arrive at
the same time, nor do memory responses need to be in-order
with respect to memory requests.

Coalescing Unit. The coalescing unit consumes up to
NumLanes memory requests per cycle from the pipeline and
tries to pack them into a smaller set of wider main memory

accsses. It selects the first unsatisfied request (the leader) in
the warp and applies two selection strategies:

1) the same-address strategy selects all requests whose
addresses match the leader’s; and

2) the same-block strategy selects all requests whose ad-
dresses are lane-aligned and reside in the same contigu-
ous block of memory as the leader’s.

All selected requests are then resolved with a single, wide,
burst access to main memory, and the process iterates until all
requests are satisfied. This is similar to the coalescing rules
from early NVIDIA Tesla devices [28]. For efficient stack
access, each thread’s stack is interleaved at machine-word (32
bit) granularity such that threads in the same warp accessing
the same stack offset will have their accesses coalesced. This
interleaving is microarchitectural and invisible to the ISA.

Scratchpad Memory. Any requests that address data in
scratchpad memory rather than main memory are forwarded
to a set of on-chip SRAM banks via a fast switching network.
This network routes requests to the appropriate bank and
returns responses back to the originating lane, providing a
form of parallel random access. To save area, we use half the
number of banks compared to the number of lanes allowing
NumLanes requests to be satisfied every two cycles in the best
case. Large numbers of bank conflicts will reduce throughput
significantly, but requests satisfying the same-address strategy
(a common case) are coalesced to a single bank access.

B. Register-File Compression

Our register-file compression scheme aims to reduce on-
chip storage requirements by exploiting the property that
registers will often hold uniform or affine vectors that can be
stored compactly. It is parameterised by the amount of space
available for storing registers. If this space is ever exhausted,
the scheme falls back to main memory by dynamically spilling
and fetching registers as required. In this paper, we define
the space parameter statically at synthesis time, but it can
also be controlled dynamically. Some modern GPUs use
unified on-chip memories for register file, scratchpad memory,
and cache adjusting the space available to each on a per-
application basis [25]. Our compression scheme could be used
to dynamically shrink or grow the space available for registers
depending, for example, on how much scratchpad memory a



(a) Compressed Register File Write Pipeline

1: Scalar Lookup. The ID of the register being written
is used to lookup the SRF to determine if its old value
is compressed, and if so, its base (old.base) and stride
(old.stride), and if not, its address (old.addr) in the VRF.
The value of the first active element (leader) in the vector
being written (new) is determined using a multiplexer.

2: Affine Detection. Each element of new is compared
against leader. If exactly equal then the vector is compress-
ible (uniform). Alternatively, if new satisfies the equations

newi % (NumLanes× s) = i× s

bnewi/(NumLanes× s)c = bleader/(NumLanes× s)c

for every lane i and any stride s ∈ {1, 2, 4} then the vector
is compressible (affine). Speculatively, the old compressed
value (if it exists) is expanded to a full vector exp such
that expi = old.base + i× old.stride.

3a: Vector Deallocation. If new is compressible then it is
written to the SRF. In this case, if old was not compressed
then old.addr is pushed onto the free slot stack.

3b: Vector Allocation. If new is not compressible and
old was compressed then new is written to the VRF at
an address popped from the free slot stack. In this case,
if new represents a partial write then its inactive elements
are replaced with the corresponding elements of exp before
being written to the VRF. The SRF is updated to point to
the newly allocated vector. The dynamic spill mechanism
(Figure 3) ensures that the free slot stack will never be
empty.

3c: Vector Update. If new is not compressible and old was
not compressed then new is written to the VRF at address
old.addr.

(b) Compressed Register File Read Pipeline

1: Scalar lookup. The ID of the register being read
is used to lookup the SRF to determine if its current
value is compressed, and if so, its value current.base and
current.stride, and if not, its address current.addr in the
VRF.

2: Vector lookup. If the register is compressed then it is
expanded to the vector current.base+ i×current.stride for
each vector lane i. Otherwise, the VRF is looked up at
address current.addr.

Fig. 2. The compressed register file uses a 3-stage write pipeline (a) and a
2-stage read pipeline (b).

particular application is using or how effective the compression
is in a particular application.

Our compressed register file comprises a scalar register
file (SRF) and a size-constrained vector register file (VRF).
For every architectural vector register, the SRF either holds a
compressed vector (base and stride) or a pointer to a register

in the VRF. We encode the stride using two bits, allowing
representation of the four most common stride values (0,
1, 2, and 4) at low hardware cost. Vectors in the VRF are
allocated and deallocated dynamically using a free-slot stack
that tracks unused locations in the VRF. Subject to some minor
constraints discussed below, the size of the VRF can be set
arbitrarily.

Read / Write Pipelining. We introduce a 3-stage pipeline
on the write path of the compressed register file to compress
vectors and to allocate/deallocate vectors in the VRF, as
detailed in Figure 2(a). We also introduce a 2-stage pipeline
on the read path to decompress vectors in the SRF and to
follow the indirection to the VRF when required, as detailed
in Figure 2(b). Both the write and read pipelines require
read access to the SRF for two register operands so the SRF
requires four read ports in total. We achieve this using two
on-chip memories, each with two read ports. Writes to the
SRF go to both memories so the two always contain identical
data. This provides the necessary bandwidth at the cost of
doubling the SRF size, but this cost is expected to be small
in comparison to the size of the VRF.

Dynamic Spilling. Our dynamic spill mechanism ensures
that the VRF never overflows. When the number of unused
vector registers falls below the number of warps, the SIMT
processor pipeline enters spill mode. This threshold guarantees
that there are enough available registers for every in-flight
instruction to write a vector result if required, given that
only one instruction per warp can be in-flight at any time.
In spill mode, the pipeline operates largely as normal except
for the modifications detailed in Figure 3(a). Subsequently, if
a fetched instruction requires access to a spilled register, it
passes through the pipeline but does not execute; instead, it
unspills the required register and tries again to execute the
next time the warp is scheduled. The pipeline modifications
for unspilling are detailed in Figure 3(b).

Compressed Stack Cache. Information about compressed
vectors can be passed from the register file to the memory
subsystem for further storage savings. As a proof of concept,
we have added a small component to our coalescing unit to
cache writes of compressed vectors. The RISC-V architecture
is constrained to 32 general-purpose integer registers, or 16
under the E extension, and the compiler will insert code to spill
registers to memory if these limits are exceeded. We reduce
memory bandwidth by caching many of these spills at low
hardware cost. The component is tailored to caching small
GPU-thread stacks: it only applies to loads and stores to stack
memory and it does not cache load misses.

C. Parallel Scalar and Vector Pipelines

An instruction is said to be scalarisable if its result can be
computed on a single execution unit rather than being issued
to all vector lanes. Many instructions with uniform or affine
inputs are scalarisable. In this section, we are interested in
how we can execute scalarisable instructions in parallel with
non-scalarisable ones, potentially doubling throughput at the
cost of only one additional vector lane / execution unit.



(a) Pipeline Modifications for Spilling

1: Warp Scheduling. When the number of unused vector
registers falls below the spill threshold (equal to the
number of warps), the pipeline enters spill mode.

4: Operand Fetch. The pipeline selects a register to spill
using either a round-robin or pseudo-least-recently-used
spill policy. The chosen register is then fetched from the
register file, instead of the fetched instruction’s operands.
For correct operation, the chosen register is never one of
the source or destination registers needed by the fetched
instruction; this guarantees that the processor cannot enter
a livelock whereby registers get spilled and immediately
unspilled without executing any instructions. As a result,
the smallest permitted size for the VRF is three vector
registers per warp plus the spill threshold — a maximum
compression factor of 8× for the VRF. The chosen register
must also hold an uncompressed vector.

5: Execute. In spill mode, the pipeline does not actually
execute the fetched instruction. Instead, it issues a memory
write request for the register to spill. Spilled registers are
stored in a region of main memory big enough to hold the
entire uncompressed register file.

6: Writeback. The register is marked as spilled in the SRF.
The VRF is now known to contain one additional unused
vector register.

(b) Pipeline Modifications for Unspilling

4: Operand Fetch. When any of the source or destination
registers for the current instruction are marked as spilled,
one of those registers is selected for unspilling.

5: Execute. If a register has been selected for unspilling,
the current instruction is not executed. Instead, a memory
read request is issued for the desired register. The warp is
suspended, just as it would be for a normal load instruction.
The next time the warp is scheduled, the instruction will
have one fewer registers that need to be unspilled, ensuring
forward progress.

Fig. 3. SIMT processor pipeline modifications to support dynamic register
spilling (a) and unspilling (b).

For an instruction to be scalarisable, we require all threads
in the warp to be active. This is a common though not strictly
necessary requirement (an alternative is explored by Liu et
al. [22]) but it captures the common case and permits a
cheap implementation. Consequently, the active-thread selec-
tion stage of the SIMT pipeline is unnecessary for processing
scalarisable instructions as the active threads are implied.
Furthermore, scalarisable instructions do not require access
to the vector register file or the vector data path. We therefore
opt for completely separate scalar and vector pipelines. Each
pipeline is fed by a separate warp queue, and warps are moved
between the two using scalarisable-instruction prediction.

Separate Pipelines. We introduce a dedicated scalar
pipeline that runs in parallel with the main vector pipeline.
This requires two additional read ports and one additional
write port to the SRF. The additional write port is already
available as the SRF is implemented using an on-chip memory
with two read ports and two write ports, and the additional read
ports are provided by replication of the relatively small SRF.
We also make use of a TCIM with two read ports to enable
parallel instruction fetch.

Prediction Table. We introduce a scalarisable-instruction
prediction table that maps each instruction address to a single
bit denoting whether that instruction was scalarisable the last
time it executed. This table is written to in the operand latch
stage of the main vector pipeline, when the current instruction
and all its operands are known. In the execute stage, when
the address of the next instruction to execute is known, the
prediction table is looked up. If the table returns true then
the warp is inserted into a scalar warp queue rather than the
general vector warp queue.

The scalar pipeline is similar to a standard five-stage
pipeline, except for an initial scheduling stage that selects
warps from the scalar warp queue. When the current instruc-
tion and all its operands are known, the scalar pipeline checks
whether or not the scalarisable prediction was correct. If not,
execution is aborted and the warp is moved back to the main
vector warp queue. If so, the instruction is executed and, once
we know the address of the next instruction, the prediction
table is again looked up. Depending on the result of the lookup,
the warp is either moved back to the main vector warp queue,
or reinserted into the scalar warp queue.

Conditions for Scalarisation. To move a warp from the
vector warp queue to the scalar warp queue, we require not
only that the next instruction is predicted as scalarisable but
also that all lanes are active and that the current instruction
does not diverge the warp. This avoids partial writes to the
register file, ensuring that the scalar pipeline only requires
write access to the SRF and not the VRF. We also require that
the operands for the current instruction are stored in the SRF
and satisfy one of the following criteria: (1) all operands are
uniform; or (2) the instruction is an add instruction with one
uniform operand and one affine operand. In our experience
affine addition is by far the common case, but this could be
generalised in future. We do not yet support load and store
instructions in the scalar pipeline, which is another avenue for
future improvement.

IV. EVALUATION

In this section, we introduce our experimental setup and
then evaluate the performance of SIMTIGHT and its main
features over a range of benchmark kernels. All artefacts used
for evaluation are available online [29].

Benchmarks. We have developed a thin software layer
called NOCL that supports writing CUDA-style compute ker-
nels in plain C++ (no special compute language is required).
This allows CUDA and OpenCL benchmarks to be easily
ported to SIMTIGHT. An example NOCL kernel is shown in



0 struct Histogram : Kernel {
1 int len; unsigned char* in; int* out;
2

3 void kernel() {
4 // Allocate bins in shared local memory
5 int* bins = shared.alloc<int>(256);
6 // Initialise bins
7 for (int i = threadIdx.x; i<256; i += blockDim.x)
8 bins[i] = 0;
9 __syncthreads();

10 // Accumulate bins
11 for (int i = threadIdx.x; i<len; i += blockDim.x)
12 atomicAdd(&bins[in[i]], 1);
13 __syncthreads();
14 // Write bins to global memory
15 for (int i = threadIdx.x; i<256; i += blockDim.x)
16 out[i] = bins[i];
17 }
18 };

Fig. 4. NOCL kernel to compute the histogram of a given byte array. Lines
6–16 are identical compared to the CUDA version of the same kernel.

Configuration Use DSP Fmax Area Area
Blocks? (MHz) (ALMs) (DSPs)

Baseline - FP Yes 207 48K 66
Baseline Yes 204 94K 297
Baseline + RFC Yes 196 100K 297
Baseline + RFC + PP Yes 194 103K 299
Baseline - FP No 205 69K 0
Baseline No 205 176K 0
Baseline + RFC No 191 181K 0
Baseline + RFC + PP No 189 188K 0

Fig. 5. Synthesis results for a single 32-lane 64-warp SIMTIGHT SM on
an Intel Stratix 10 FPGA with and without floating-point (FP), register-file
compression (RFC), and parallel scalar and vector pipelines (PP).

Figure 4. The main area where NOCL differs from CUDA is
that it requires the programmer to explicitly mark divergence
and convergence points in the program. This amounts to
incrementing and decrementing the per-thread nesting level
(Section III-A) before and after each conditional block using
NOCL primitive functions. Details can be found in the NOCL
manual [29].

The majority of benchmarks used for evaluation have
been transcribed to NOCL from existing kernels published
by NVIDIA. To capture the strengths and weaknesses of
SIMTIGHT, we have obtained a range of benchmarks with
varying levels of inter-thread regularity.

Experimental Setup. Following modern NVIDIA devices,
we use 64 warps and 32 threads per warp providing 2048
hardware threads in total per SM. We obtain all results on a
Terasic DE10-Pro development board with an Intel Stratix-10
FPGA holding a single SIMTIGHT SM connected to a single
DDR4 DIMM. On the software side, we use version 12.2 of
the standard GCC compiler targeting RISC-V.

Baseline. Figure 6 shows the instruction throughput of a
single 32-lane 64-warp SIMTIGHT SM. In several bench-
marks, the IPC approaches the number of vector lanes, which
is the upper bound on run-time performance. As expected,
performance suffers in benchmarks involving significant thread
divergence and/or non-coalesceable memory access patterns,
notably SPMV and VecGCD.
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Fig. 6. Instruction throughput for a single 32-lane SIMTIGHT SM. Many
workloads achieve an IPC approaching the number of vector lanes, and surpass
it using parallel scalar and vector pipelines.
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A useful comparison point for the SIMTIGHT baseline
is the recently published RISC-V VORTEX GPU [9], which
is also evaluated on a Stratix-10 FPGA. On the VecAdd
benchmark, VORTEX achieves an IPC of 20 using 32 × 4-lane
4-warp SMs (128 execution units) running at 200MHz. This
amounts to 4 billion instructions per second (BIPS) compared
to 5.4 BIPS from a single SIMTIGHT SM (32 execution
units) on the same benchmark. Excluding functionality that
SIMTIGHT does not support, this VORTEX configuration is
over 4.5× larger than SIMTIGHT, so the performance density
of SIMTIGHT on the VecAdd benchmark is over 6× higher.

Register File Compression. The uncompressed register file
in a 32-lane 64-warp RV32I SM contains 2,048 32-element
vector registers. Figure 7 shows the proportion of these reg-
isters that actually get stored as vectors, i.e., in the VRF,
when using register-file compression. The remaining registers
are all stored compactly as scalars in the SRF. Over all
benchmarks, the geometric mean of the maximum proportions
of registers stored in the VRF is just 12%. Figure 8 shows
the storage savings and performance overheads of register-
file compression for various VRF size limits. In particular, a
quarter-sized VRF containing just 512 vector registers reduces
register-file storage requirements by 68% with only a 1%
impact on execution cycles and main-memory accesses. For
comparison, we run RV32E-compiled benchmarks on the
baseline, halving the number of architectural registers per
thread statically from 32 to 16 at the cost of increased register
spilling. This reduces register-file storage requirements by only



VRF Size Total Storage Compression Cycle Main Memory
(Vector Registers) (Kilobits) Ratio Overhead Access Overhead

1024 1202 1 : 0.57 0.8% 0.0%
512 672 1 : 0.32 1.0% 1.3%
256 407 1 : 0.19 9.5% 47.9%

Fig. 8. Storage savings and geometric-mean overheads due to register-file compression (without the compressed stack cache) for a half-size, quarter-size, and
eighth-size VRF relative to the baseline (which has 2048 vector registers occupying 2097 kilobits of storage).
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Fig. 9. Overall, parallel scalar and vector pipelines enable 31% of instructions
to be scalarised for a 24% reduction in execution time (clock cycles).

50% yet incurs greater overheads: a 7% increase in execution
cycles along with a 61% increase in main-memory accesses.

Compressed Stack Cache. We find that a 12KB com-
pressed stack cache reduces main memory traffic by a ge-
omean of 52%, suggesting that a significant amount of main
memory accesses arise from static register spilling. Note that,
in many benchmarks, the majority of memory accesses are to
scratchpad memory rather than main memory.

Parallel Scalar and Vector Pipelines. Figure 9 shows the
impact of parallel pipelines on execution time. In many cases,
the reduction in cycles closely follows the number of scalarised
instructions, suggesting that both pipelines are well utilised.
The two main exceptions are VecAdd and SPMV, where
memory-access latency is a limiting factor due to high DDR4
bandwidth utilisation and non-coalesceable access patterns
respectively. Overall, the geometric-mean reduction in clock-
cycle execution time is 24%. Accounting for the small dip in
Fmax compared to the baseline (Figure 5), the geometric-mean
reduction in wall-clock execution time is 20%.

Logic Area. To measure logic-area overhead, we disable the
use of DSP blocks on the FPGA to obtain a single ALM count
representing all logic used, as shown in 5. This gives a logic
area overhead 7% per SM for advanced dynamic scalaristion.

V. RELATED WORK

We review existing work on dynamic scalarisation and GPU
register-file compression, contrasting it with our own work.

Detecting Value Regularity. Existing dynamic scalarisa-
tion techniques use one of two methods to detect scalar
values: inference or comparison. Approaches based on in-
ference [11, 19, 20] use a set of axioms to introduce uni-
form/affine vectors along with a set of inference rules that
propagate uniform/affine operands to uniform/affine results.
In contrast, approaches based on comparison [21, 22, 23, 24]
detect uniform/affine vectors using an array of comparators
in the writeback stage of the pipeline. Inference has the

advantage of requiring less logic and energy by avoiding the
comparison network, while comparison has the advantage of
detecting more uniform/affine vectors, such as those loaded
from memory. Both approaches are effective, and SIMTIGHT
takes the comparison approach for simplicity: it allows the
entire detection subsystem to be abstracted out of the pipeline
and into the register file. Our main focus is on how to exploit
value regularity rather than how to detect it, which we explore
in the remainder of this section.

Redundant Register Accesses. Several dynamic scalarisa-
tion efforts aim to exploit uniform/affine vectors by storing
them more compactly in the register file, reducing the energy
consumption of register loads and stores. This is achieved
either by introducing an additional, narrower, more power-
efficient scalar register file alongside the main vector register
file [19, 20, 21], or by activating fewer banks in the vector
register file on lookup [22, 23, 24]. However, in all these
approaches the register file still contains one physical register
for every architectural register; there is no storage reduction.

Redundant Storage. Only prior work by Collange and
Kouyoumdjian [30] exploits dynamic scalarisation to reduce
on-chip storage requirements. They propose to add an affine
vector cache alongside the general L1 vector cache to achieve
a 59% larger usable cache capacity for the same amount of
onchip storage. The approach is particularly affective at opti-
mising compiler-inserted register spills of affine vectors and
inspired us to develop SIMTIGHT’s compressed stack cache.
As future work, the authors suggest moving affine compression
into the register file to increase compression benefits, which is
precisely what we have done in SIMTIGHT. Our register-file
compression design also enables other optimisations such as
parallel scalar and vector pipelines.

Redundant Computation. An instruction that has unifor-
m/affine operands can in many cases be executed on a single
execution unit, saving power [19, 20, 21, 22]. Furthermore, in
SIMT microarchitectures where the number of vector lanes is
smaller than the warp size, and hence where each warp must
be serialised over multiple cycles, scalarisable instructions
can be reduced to a single cycle of execution, improving
throughput [19, 20]. However, this technique does not apply
to SIMT cores that support single-cycle execution of warps,
and does not exploit parallelism.

Gilani et al. [21] propose to use the dual-issue feature of
their baseline GPGPU model to execute scalarisable and vector
instructions in parallel. However, their design has a major
limitation: their baseline serialises warps over multiple clock
cycles and they do not lift this restriction for scalarisable in-
structions, i.e., scalarisable instructions require multiple cycles
to complete, even though they execute in parallel with vector



instructions. Using the dual-issue feature of the SIMT pipeline
for dynamic scalarisation is also rather wasteful as scalarisable
instructions permit a simpler processing path. Resources such
as active-thread selection, the vector register file, and the
vector data paths are wasted on scalarisable instructions.

GPU Register File Compression. GPU register-file com-
pression has been explored outside the context of value
regularity and dynamic scalarisation. A common observa-
tion [31, 32, 33] is that while the compiler assigns each thread
the maximum number of registers that are ever simultaneously
live, only a subset of these may be live for long periods
of execution. By incorporating liveness information from the
compiler into the instruction stream, hardware can allocate reg-
isters on demand, reducing the average register-file occupancy.
If register storage becomes exhausted, a mechanism called
warp throttling is used, whereby some warps get suspended
and swapped out to main memory, freeing space for the
remaining warps.

Our dynamic register spilling scheme may provide some
of the benefits of these approaches without the need for
compiler-inserted liveness information: our least-recently-used
spill policy will naturally evict registers that have not been
used for period of time, if the limits of the VRF are reached.

Warp throttling is an interesting alternative to dynamic
register spilling. On the one hand, it may suffer from less
memory thrashing in highly space-constrained configurations.
On the other hand, it would lower the latency tolerance of the
core due to fewer active warps. Warp throttling also requires
an advanced run-time system that is capable of saving and
restoring warp contexts at arbitrary points during execution.

VI. CONCLUSION

Value regularity occurs extensively in SIMT-style RISC-V
GPGPUs, and advanced dynamic scalarisation is highly ef-
fective at exploiting it. We have demonstrated significant on-
chip storage savings, memory-access reductions, and run-time
performance improvements, all at low hardware cost and with-
out modifications to the instruction set or compiler. Emerging
RISC-V GPGPUs can therefore exploit value regularity while
continuing to benefit from substantial infrastructure reuse
across the RISC-V ecosystem.
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