
Decoupled Vector Runahead
Ajeya Naithani
Ghent University

Belgium

Jaime Roelandts
Ghent University

Belgium

Sam Ainsworth
University of Edinburgh

United Kingdom

Timothy M. Jones
University of Cambridge

United Kingdom

Lieven Eeckhout
Ghent University

Belgium

ABSTRACT
We present Decoupled Vector Runahead (DVR), an in-core prefetch-
ing technique, executing separately to the main application thread,
that exploits massive amounts of memory-level parallelism to im-
prove the performance of applications featuring indirect memory
accesses. DVR dynamically infers loop bounds at run-time, recog-
nizing striding loads, and vectorizing subsequent instructions that
are part of an indirect chain. It proactively issues memory accesses
for the resulting loads far into the future, even when the out-of-
order core has not yet stalled, bringing their data into the L1 cache,
and thus providing timely prefetches for the main thread. DVR can
adjust the degree of vectorization at run-time, vectorize the same
chain of indirect memory accesses across multiple invocations of
an inner loop, and efficiently handle branch divergence along the
vectorized chain. DVR runs as an on-demand, speculative, in-order,
lightweight hardware subthread alongside the main thread within
the core and incurs a minimal hardware overhead of only 1139
bytes. Relative to a large superscalar 5-wide out-of-order baseline
and Vector Runahead — a recent microarchitectural technique to
accelerate indirect memory accesses on out-of-order processors —
DVR delivers 2.4× and 2× higher performance, respectively, for a
set of graph analytics, database, and HPC workloads.

CCS CONCEPTS
• Computer systems organization → Superscalar architec-
tures; Single instruction, multiple data.

KEYWORDS
CPU microarchitecture, prefetching, runahead, speculative vector-
ization, graph processing

ACM Reference Format:
AjeyaNaithani, Jaime Roelandts, SamAinsworth, TimothyM. Jones, and Lieven
Eeckhout. 2023. Decoupled Vector Runahead. In 56th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO ’23), October 28-
November 1, 2023, Toronto, ON, Canada. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3613424.3614255

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0329-4/23/10. . . $15.00
https://doi.org/10.1145/3613424.3614255

1 INTRODUCTION
Out-of-order cores are bigger than ever, with the latest processors
featuring reorder buffers of many hundreds of entries [33]. And
yet, although modern-day out-of-order (OoO) processors are given
more than ample resources, and thus their out-of-order queueing
resources are rarely filled to capacity, they are still memory-bound
especially for workloads that feature chains of dependent memory
accesses, or indirect memory accesses. One recent proposal, Vector
Runahead [67, 68], presents a potential method for doing better.
Rather than work-skipping as earlier runahead proposals do [29,
40, 62, 66] to keep uncovering memory-level parallelism, Vector
Runahead reformulates the transient execution performed within
runahead mode to be primarily based on loop-level parallelism,
following independent groups of many different dependent chains
of memory accesses from future loop iterations in the program,
and running them in a vectorized manner to reduce front-end and
back-end pipeline resource requirements.

Vector Runahead (VR) can successfully follow and prefetch the
complex memory-access patterns in modern graph analytics, data-
base and high-performance computing (HPC) workloads. However,
like the underlying out-of-order core, even with a large reorder
buffer (ROB), Vector Runahead is still memory-bound. Because the
large reorder buffer rarely fills up, the resource starvation that trig-
gers Vector Runahead rarely occurs, and so its benefits over even
resource-bountiful out-of-order execution are not allowed to shine.

We propose Decoupled Vector Runahead (DVR), which innovates
over prior runahead proposals in several key ways. First, it com-
pletely decouples the runahead process from the main computation
thread, by running it within a lightweight, in-order subthread con-
text of its own, allowing initiation even when the core is not stalled
on a full ROB, and allowing the main thread to continue to make
progress on its intended computation. Second, building on VR, it
implements GPU-style divergence and reconvergence on the many
dynamically generated ‘lanes’ produced from the many future loop
iterations within the speculative runahead context. Third, it per-
forms a discovery mode within the main computation’s thread to
precisely predict how many loops into the future will be accessed,
to limit inaccurate prefetches. When it has too few locations to
prefetch from discovery mode alone, it performs nested vector runa-
head to generate inputs for many inner loop invocations frommany
different outer loop iterations simultaneously, which can then all
be efficiently vectorized together to achieve extreme memory-level
parallelism, even for workloads with complex data- and control-
flow dependencies.

Decoupled Vector Runahead proactively prefetches cache-missing
loads far in advance, meaning such loads do not sit in the reorder

https://orcid.org/0000-0002-8291-4230
https://orcid.org/0000-0001-8937-6888
https://orcid.org/0000-0002-3726-0055
https://orcid.org/0000-0002-4114-7661
https://orcid.org/0000-0001-8792-4473
https://doi.org/10.1145/3613424.3614255
https://doi.org/10.1145/3613424.3614255

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Ajeya Naithani, Jaime Roelandts, Sam Ainsworth, Timothy M. Jones, and Lieven Eeckhout

for(i=0; i<NUM_KEYS; i++) {

C[hash(B[hash(A[i])])]++;

}

Figure 1: Example indirect memory access pattern [67].

buffer stalling commit or preventing branches from being resolved,
let alone stall the reorder buffer entirely. Performance improves sub-
stantially as a result of its accurate, timely prefetches. DVR means
runahead is no longer an alternative to very large instruction win-
dows for out-of-order processors [66]. In fact, it is much better by
offering huge performance benefits even in addition to such a large
instruction window. Our simulation results using a broad set of
graph analytics, database, and HPC workloads report that DVR
yields 2.4× and 2× higher performance on average (and up to 6.4×
and 5.2×) compared to a baseline OoO core (with a 350-entry ROB)
and Vector Runahead, respectively. We further demonstrate that
the performance boost DVR offers is maintained when increasing
ROB sizes, in contrast to Vector Runahead, thanks to its high accu-
racy, high coverage and timeliness, when prefetching many future
dependent load chains in parallel and decoupled from the main
thread.

2 BACKGROUND
2.1 Runahead Execution
Runahead execution [29, 40, 62, 66] prefetches future memory ac-
cesses into on-chip caches after the instruction window or reorder
buffer of an out-of-order core fills up and stalls with a memory
access at the head of the buffer. To avoid a long-latency memory
access from stalling the core, it will evict the instruction from its
reorder buffer, but continue with instructions after it. While these
instructions will no longer be strictly correct, and will be rolled
back later, the prefetches generated as a result are accurate, as it
speculatively pre-executes the application’s own future instruction
stream. The processor stays in runahead mode for its runahead in-
terval: the number of cycles from the full-ROB stall to the return
of the long-latency memory access. Following this, it returns to
normal (correct) execution mode.

Precise Runahead Execution (PRE) [69, 70] improves the perfor-
mance of prior runahead techniques in three ways: (1) in runahead
mode, it improves prefetch coverage by only executing chains of
instructions that lead to full-ROB stalls, (2) it does not flush the
reorder buffer when exiting runahead mode, therefore saving the
penalty for flushing and refilling the pipeline, and (3) it can prefetch
future memory accesses even for short runahead intervals. One
key characteristic of all runahead techniques, including precise
runahead, is that they depend on the processor front-end for deliv-
ering future instructions for the duration of a runahead interval.
Consequently, the number of instructions executed in the runahead
mode depends on the front-end width and runahead interval.

2.2 Indirect Memory Accesses
Many modern applications feature dependent memory accesses

with complex address-calculation patterns and multiple levels of
indirection. A simple example of such patterns is shown in Figure 1.

Here, array A is accessed sequentially. However, the index to access
array B is calculated by hashing the value at a particular index of
A, and the index to array C is calculated by hashing the access to
B. That is, accesses to C depend on accesses to B, which in turn
depend on accesses to A. Accesses to B and C are termed the first
and second levels of indirect memory accesses, respectively, and
the chain of instructions between the access of array A and the
access to array C is termed the indirect chain.

For workloads with indirect memory accesses, traditional runa-
head techniques fail to prefetch the majority of future memory
accesses for two main reasons. First, even in the presence of a stride
prefetcher, PRE cannot prefetch memory accesses beyond the first
level of indirection [67]. For the example in Figure 1, depending on
the work-skipping technique, the inputs to array C will either be in-
validated [29], or fail to return before runahead terminates [69, 70].
Second, even for the first level of indirect memory accesses, the
number of instructions (or the number of iterations of the loop)
covered in runahead mode is limited by the width of the processor
front-end and the runahead interval.

2.3 Vector Runahead
Vector Runahead (VR) [67] reinvents runahead execution — and
alleviates the previously mentioned shortcomings — in three ways.
First, it automatically generates instructions at different indices of
an indirect chain, therefore eliminating the dependence of prior
runahead techniques on the processor front-end for instruction
supply in runahead mode. It then reorders those instructions such
that many of them at a particular offset can be executed in parallel.
This leads to all the load instructions at a particular offset being
issued to thememory system simultaneously. Consequently, instead
of waiting for one memory access to return — as typical runahead
techniques like PRE do — the core waits for many memory accesses
at the same time. Second, it groups a large number of reordered
scalar instructions into vectors; this reduces the pressure on back-
end resources, like the issue queue and execution units, to process
instructions. Third, VR performs delayed termination, which only
leaves runahead once memory accesses for an entire indirect chain
have been generated, because it is faster at generatingmemory-level
parallelism (MLP) than normal-mode execution.

In VR, the core enters runahead mode after a full-ROB stall. The
process of reinterpreting scalars as vectors, or speculative vectoriza-
tion, begins when the core encounters a striding load marking the
beginning of an indirect chain. The processor vectorizes the stride
load and its dependents to generate prefetches.

For the example in Figure 1, VR simultaneously generates ac-
cesses for multiple iterations of A (for example, from i=0 to 63) by
reinterpreting the scalar load instruction accessing A[0] to a set
of vector-gather instructions that access A[0–63]. Once this first
set of loads returns, it begins the vectorization of the arithmetic in-
structions comprising the hash() function to calculate the indices
B[hash(A[0–63])]. The gather instruction accessing B[. . .] accesses
many different cachelines due to the indirect nature of accesses to
array B, and therefore, instead of waiting for one memory access,
the processor concurrently waits for 64 non-contiguous memory
accesses. When these return, it generates memory accesses for all

Decoupled Vector Runahead MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

0

20

40

60

80

100

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

1
2

8
1

9
2

2
2

4
3

5
0

5
1

2

1
2

8
1

9
2

2
2

4
3

5
0

5
1

2

1
2

8
1

9
2

2
2

4
3

5
0

5
1

2

1
2

8
1

9
2

2
2

4
3

5
0

5
1

2

1
2

8
1

9
2

2
2

4
3

5
0

5
1

2

1
2

8
1

9
2

2
2

4
3

5
0

5
1

2

1
2

8
1

9
2

2
2

4
3

5
0

5
1

2

bc bfs cc pr sssp hpc-db H-mean/
Avg

P
ro

es
so

r
St

al
l T

im
e

(%
)

IP
C

 N
o

rm
al

iz
ed

 t
o

 t
h

e
O

o
O

B

as
el

in
e(

R
O

B
=3

5
0

)

OoO VR Processor Stall Time

Figure 2: Performance of an OoO core and VR, normalized to
a baseline 350-entry ROB OoO core (left axis), and processor
stall time due to a full ROB (right axis), as a function of ROB
size. The performance gain of VR diminishes with increasing ROB
size, and for some benchmarks overall performance even decreases.

64 non-contiguous accesses to C. The processor then terminates
runahead mode, as it has reached the last indirect load in the chain.

3 MOTIVATION
While Vector Runahead [67] is the first runahead technique to
target indirect memory accesses and deliver substantially higher
performance than prior runahead techniques, it is limited by the
following factors:
(1) Performance Boost Diminishes with Bigger ROBs. Like all
prior runahead techniques, VR waits for the reorder buffer to fill up.
However, the size of the reorder buffer has consistently increased
over recent years, and it therefore takes more cycles to fill up. As
a result, the opportunity to enter runahead mode decreases with
increasing ROB size, as reported in Figure 2. Indeed, processor stall
time due to a full ROB reduces from 51% to 5% for an ROB size of
128 to 512 entries, respectively.

Reduced opportunity to enter runahead mode leads to a com-
mensurate reduction in the performance boost VR offers. Figure 2
also reports performance for an OoO core and VR as a function of
ROB size from 128 to 512 entries, normalized to our 350-entry ROB
baseline OoO core (see Section 5 for the full experimental setup).
While VR improves performance for all ROB sizes, and is faster
than any out-of-order baseline no matter how small the ROB is,
the performance benefit offered by VR diminishes with increasing
ROB size. For some benchmarks this is so dramatic that absolute
performance actually decreases with increasing ROB size. This is
particularly the case for sssp, as well as bc, bfs and cc to a lesser
extent. A smaller ROB triggers VR more often, which is faster than
OoO execution and thus enables prefetching further down the fu-
ture instruction stream. Decoupling from a full-ROB stall has the
opportunity to trigger vector-runahead execution more frequently
and hence deliver higher performance.
Key Insight #1: To maximize prefetching opportunity, VR must not
wait for a full-ROB stall.

(2) Delayed Termination Stalls Commit. VR terminates runa-
head mode only after vectorizing the last load instruction in the
indirect chain and generating prefetches for it. Meanwhile, it is
likely that the load instruction that originally blocked the head of
the ROB, and caused the ROB to fill up, has returned from memory.

Although the OoO core can now commit instructions from the ROB,
the processor does not return to normal mode, so as to allow the
vectorized chain to complete first. This delayed termination stalls
the commit stage on average 7.1% (and up to 11.8%) of the total
execution time in VR across our set of benchmarks. This is a missed
opportunity for the main pipeline to progress.
Key Insight #2: The process of vectorization and generating prefetches
in runaheadmode under VRmust be decoupled from the main pipeline,
so that the main core can also make forward progress while prefetching
along the speculatively vectorized indirect chain.

(3) Cannot Adapt to Run-time Characteristics. Vector Run-
ahead attempts to generate as many gathers for each scalar load as
possible. The goal is to achieve high memory-level parallelism by
keeping all the miss status holding registers (MSHR) occupied by
the outstanding memory accesses. However, this assumes that the
workload’s induction-variable access, from which we spawn future
dependent chains, continues to steadily increase far into the future.
When we look at more complicated workloads, this assumption
begins to falter, and yet they still exhibit memory-level parallelism.

Algorithm 1: Breadth-first search. There are two strides (at
lines 4 and 8) from which we can start Vector Runahead,
resulting in a chain length of 4 or 2 respectively, and a highly
data-dependent branch at line 9.

1 Queue workList = {startNode}
2 Array visited[startNode] = true
3 while worklist ≠ ∅ do
4 Vertex V = workList.pop()
5 Edge E1 = Vertices[V]
6 Edge E2 = Vertices[V+1]
7 for Edge E=E1;E<E2;E++) do
8 Vertex W = edgeTo[E]
9 if !visited[W] then
10 workList.push(W)
11 visited[W] = true

Breadth-first search is a widely used graph-traversal algorithm
that is used both in its own right and also as a kernel for find-
ing connected components, maximum flows by the Edmonds-Karp
algorithm [31], betweenness centrality [16], and many more. Al-
gorithm 1 shows pseudocode matching the behavior of both the
top-down step of GAP [12] and Graph500 [6]. In this workload,
there are two possible points from which we can start Vector Runa-
head (two striding loads) at lines 4 and 8. Typically we will wish to
vectorize from the latter, as it is an inner loop and so the accesses
will be more timely. However, the length of this inner loop will be
extremely data-dependent: not just on the size of the graph, but also
its structure. Often, the loop will be far shorter than the amount we
wish to vectorize by, and so Vector Runahead will fetch a significant
amount of data the true execution will never access, polluting the
cache and wasting DRAM bandwidth.
Key Insight #3: VR needs to (i) learn the data-dependent, dynamic
number of iterations of each loop it runs, to avoid fetching useless

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Ajeya Naithani, Jaime Roelandts, Sam Ainsworth, Timothy M. Jones, and Lieven Eeckhout

data, and (ii) update this each time it runs to respond to the latest
run-time values.

(4) Inability to Vectorize Multiple Invocations of the Same
Loop. If one iteration of a loop does not have enough loads to
prefetch, the MLP exposed by VR is limited. It can begin the specu-
lative vectorization of multiple invocations as they pass the main
core but each time it only generates a small number of memory
accesses, which are often generated by the core in the very near
future anyway. To be able to fetch ahead far enough, VR must in-
crease the degree of vectorization by discovering the correct values
for multiple future versions of the same inner loop. In the breadth-
first search example, this means we must be able to generate many
stride accesses from line 4, and follow their dependencies through
to line 8, in order to run not just many loads from within the loop,
but many different versions of the inner loop from different outer
loops simultaneously.
Key Insight #4: VR needs to look ahead to many future iterations of
the same loop, if a single loop is dynamically determined to be too
small to saturate the memory system, by skipping ahead to discover
inputs to the same code from different outer loop iterations that will
execute in the near future.

(5) Inability to Handle Control-Flow Divergence. Vector Runa-
head follows the control flow of the first scalar-equivalent instruc-
tion in the set of vectorized lanes, invalidating lanes with control-
flow divergence. In the breadth-first search example, this is fine
provided that the first edge in the sequence does not end in a previ-
ously visited vertex. Otherwise, we fail to execute prefetches for the
operations inside the if-statement within the loop. In other work-
loads, such as betweenness centrality, there may be much broader
divergence, with completely different memory accesses down each
path.

Ideally, we should follow the true control flow of every single
vector lane — and yet we still want to execute instructions as vec-
tors whenever possible, getting the maximal use, and maximal
parallelism, from each scalar-equivalent operation. To do this, we
should take inspiration from GPUs, allowing threads to diverge and
reconverge [54] when necessary.
Key Insight #5: VR should remove the constraint of control-flowmatch-
ing between lanes, by supporting full SIMT GPU-style divergence and
reconvergence.

4 DVR MICROARCHITECTURE
Decoupled Vector Runahead overcomes the shortcomings listed
in the previous section as follows. When the core discovers that
it is executing a loop with dependent loads, based on a striding
load that can be used to predict future loop iterations, a special-
ized vector-runahead subthread is activated on the same core as
the currently executing main thread. This subthread is dynami-
cally generated to prefetch many memory accesses into the fu-
ture, but without affecting the semantics of the main thread. The
vector-runahead subthread runs alongside the main thread on the
same core, much like how threads co-execute in simultaneous mul-
tithreading (SMT) [91], except that the subthread is microarchi-
tecturally generated, transient (to prefetch into the cache rather
than achieve real computation), speculative, reordered to achieve

extremely high memory-level parallelism, and significantly sim-
pler, i.e., the subthread executes in-order. The vector-runahead
subthread is also closely related to simultaneous subordinate mi-
crothreading [20], which also aims at improving performance of
the main thread. Whereas a subordinate microthread is written in
microcode featuring specialized machine-specific instructions, the
vector-runahead subthread is dynamically generated and derived
from the main application thread.

To achieve high memory-level parallelism from this in-order
vector-runahead subthread, even while following chains of de-
pendent loads that stall the subthread, we use single-instruction
multiple-thread (SIMT) data-level parallelism [54], to execute large
numbers of each instruction from the front-end, each represent-
ing a different loop iteration, simultaneously, thereby prefetching
far into the future. Since this happens continuously, and overlaps
with the execution of the main thread, most of the main out-of-
order thread’s memory accesses hit in the L1 by the time it reaches
them — thus even for very large processors with massive windows,
significant speedups can be achieved.

Figure 3 provides a schematic of a processor’s microarchitecture
enhanced to support DVR. We explain the various components in
the following sections.

4.1 Discovery Mode
To discover an induction-variable load that multiple future copies
of a loop can be spawned from, as in the original Vector Runahead
proposal [67], we use a stride detector to identify a striding load and
its stride, i.e., a load that follows a regular address sequence. Once
we have this information, we enter Discovery Mode to perform a se-
ries of new analyses. The purpose of Discovery Mode is to (i) check
whether the striding load is the most suitable candidate for DVR,
by being the innermost striding load, (ii) derive the loop bounds, to
determine how many speculative vector prefetches to generate, and
(iii) discover whether there are any dependent loads based on the
striding load that can be suitably prefetched by the vector-runahead
subthread. Discovery Mode follows the main thread’s execution
through one iteration of the loop, until it reaches the striding load
again, at which point it exits Discovery Mode.

4.1.1 Innermost Striding-Load Detection. Once an initial striding
load is detected and Discovery Mode is engaged, we follow the
main thread’s execution to detect other striding loads that could
be better candidates for initiating vector runahead. In particular,
we may discover a striding load that is part of a more inner loop,
and thus whose future iterations will be more timely if we prefetch
them during vector-runahead mode. Striding load detection is done
using the Reference Prediction Table (RPT) [22, 63], which keeps
track of all striding loads and their strides. We keep a register
initialized to zero with one bit per RPT entry. Stride loads set their
bit to 1. If already set, then we have seen the same stride-load PC
twice during Discovery Mode before seeing the current target stride
again. This means the new stride is more inner, so we switch to
performing Discovery Mode on it instead, resetting this register,
the VTT and FLR (Section 4.1.2). We can vectorize multiple strides
in the same loop (e.g., caused by loop unrolling), and this process
simply chooses one to be the trigger, preferring innermost strides.

Decoupled Vector Runahead MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

PC
(Calculation +

Prediction)

Fetch Decode Rename Dispatch Issue Execute Commit

ROB

Loop Bound Detector

VectorizerVRAT

Decision Logic

NDM
Logic

Buffer

Reconvergence
Stack

Vector Issue
Register

Existing Structures Decoupled Vector Runahead Nested Discovery ModeDiscovery Mode Branch Reconvergence

Stride
DetectorPCv

Taint
Tracker

Stride
Detector

Figure 3: DVR processor pipeline. The stride detector obtains information about loads from the dispatch and execute stages of the pipeline.
Once a stride is detected, DVR enters Discovery Mode, which uses the Taint Tracker and Loop-Bound Detector to discover information for the
subsequent runahead. The Nested Discovery Mode logic will be used if Discovery Mode finds too few elements of the loop to vectorize. Once
Discovery Mode is complete, the vector program counter (𝑃𝐶𝑣) will be populated with the PC of the striding load, the VRAT will be populated
with the striding load addresses and a copy of the main thread’s scalar registers, and the decoupled vector-runahead subthread will initiate. The
Reconvergence Stack will engage upon divergence in control-flow between the vector lanes.

4.1.2 Dependent-Load Checking. For DVR to be worth triggering,
it must bring useful data into the cache beyond that of a simple
stride prefetcher [22], which we always assume such a system will
have (and always leave enabled). This means there must be further
loads dependent on the value identified via the stride detector for
it to be worth initiating vector runahead. We use a small Vector
Taint Tracker (VTT), featuring a single bit per architectural integer
register, to identify instructions that will later be vectorized. At the
start of Discovery Mode, the VTT is initialized to all zeroes, except
for the destination architecture register of the initiating striding
load, which is set to one. This taint then propagates via instructions
whose source register is tainted, transitively. If an instruction writes
to a register whose taint bit is set but whose source registers are not,
the taint bit of the target is reset. Whenever an input to a load is
tainted in the VTT, the Final-Load Register (FLR) (initialized to zero
at the start of Discovery Mode) is updated with the load PC. The
FLR is a register that holds a single load PC, and its purpose is to
identify the last load in the dependence chain originating from the
striding load. The idea is then to vectorize all (tainted) instructions
in the dependence chain starting from the striding load up until
this last dependent load in the FLR. A non-zero FLR at the end of
Discovery Mode indicates a load-dependence chain.

4.1.3 Loop-Bound Inference. The next step is to determine how
many iterations are left for the inner loop to execute. This enables
determining howmany speculative vector prefetches to initiate dur-
ing vector runahead. Doing so avoids generating wasteful and/or
counterproductive loads that are out-of-bounds of the loop we
expect to execute. During Discovery Mode, we look for the first
branch with a backward edge, indicating a loop. The compare in-
struction that provides the source operand to this backward branch
is used to determine the loop bound. In particular, we have both a
Last-Compare Register (LCR) and a Seen-Branch Bit (SBB), which
are zeroed whenever we update the Final-Load Register. If we see a

compare instruction and the SBB is zero, we set the LCR with the
compare’s source and destination architectural register IDs. If we
see a branch whose source matches the LCR destination and whose
branch-taken destination is less than or equal to the striding load’s
PC,1 then we set the SBB, to indicate that we should not alter the
LCR unless we see a new final load.

We also take two checkpoints of the architectural register file:
one upon entering Discovery Mode, and one upon leaving it. We
then check the register mappings of the inputs to the identified
compare instruction. If one stays constant for the whole Discovery
Mode, and the other changes, we use (i) the constant value as the
loop bound, and (ii) the difference in the changing value as the
loop increment. This provides enough information to determine
the remaining iterations of the loop. If we fail to produce a match,
then we run for 128 elements, the limit for any invocation of DVR.2

4.2 Vector-Runahead Subthread Operation
Once Discovery Mode has identified a striding load, its stride, its
dependence chain and the remaining iterations of the inner loop,
the vector-runahead subthread is spawned once the main thread
reaches the candidate striding load again. The subthread starts from
the striding load and ends at the PC stored in the FLR, with the
goal of speculatively prefetching a large number (up to 128 in our
setup) of vectorized copies. In particular, the Vectorizer replaces the
striding load by vectorized copies generated using its stride. Any
instruction in the future instruction stream that depends on the
striding load also gets vectorized.

1If we see other branches between the FLR and the LCR, we ignore the FLR and allow
each runahead lane to continue onto the next stride PC, to allow it to fully explore
any divergent paths that may manifest. The FLR is still used in Discovery Mode to
help identify the loop, which must always encapsulate both the stride load and the
FLR load.
2Runahead is transient execution and does not need to be correct, and so the goal for
using more complex heuristics is only to reduce under/overfetching.

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Ajeya Naithani, Jaime Roelandts, Sam Ainsworth, Timothy M. Jones, and Lieven Eeckhout

Vreg Preg(s)
R1 S45 S45 S45 S45 S45 S45 S45 S45
R2 V34 V35 V36 V37 V38 V39 V68 V69

Figure 4: An example VRAT allocation considering 8 physical
registers (one per vector lane) for brevity rather than 16 as
in our setup. Architectural register R1 points to the same scalar
physical register (S45) for all lanes. Architectural register R2 has been
vectorized to 8 different vector physical registers, because either one
of its sources was tainted, or control-flow divergence occurred.

The subthread uses the same fetch, decode and execute units
as the main thread. Subthread instructions are generated from the
front-end buffer, which decouples the fetch stage from the rest
of the pipeline by holding decoded micro-ops (eight in our setup).
While subthread instructions use the same execution units, they use
a different Vector Issue Register (VIR) — rather than an out-of-order
instruction queue, as it is in-order — to handle execution of the
vector instruction copies. An instruction in the vector-runahead
subthread’s issue register is issued whenever there is no instruction
ready from the main thread for the same execution port.

4.2.1 Vector Register Allocation Table. The vector register alloca-
tion table (VRAT) stores the subthread’s current mapping from
architecture scalar registers to physical registers. Even though the
subthread is in-order, we still need to rename its architectural reg-
isters because it shares the physical scalar and vector register files
with the main thread. The VRAT stores multiple physical (scalar or
vector) registers for each scalar architectural integer register. As
illustrated in Figure 4, a scalar architectural register can be renamed
to (i) the same scalar physical register in all vector lanes, in the case
where the architectural register is not vectorized and there is no
control-flow divergence across lanes, or (ii) multiple vector physical
registers, where the architectural register has been vectorized or
there is control-flow divergence.

To initialize the VRAT, all architectural registers from the main
thread are allocated a fresh physical scalar register to decouple the
subthread from its main thread. When the striding load is issued
to the VIR, we allocate 16 vector (e.g., AVX-512) physical registers
to map the load’s target architectural register to. Unlike in an out-
of-order processor, physical registers are not remapped with every
new instruction, since the renaming is not trying to remove WAW
nor WAR dependencies, i.e., the subthread executes in program
order. Instead, we allocate new physical registers in only two cases.
First, when one of the source registers has been vectorized (because
it depends on the striding load), but the destination register has not
yet been vectorized — at which point we must select 16 free vector
physical registers to map to. Second, if the destination register
is a vectorized register, but is about to be overwritten by a scalar
instruction— this may occur as a result of aWAWdependence in the
original program code — it is renamed to a scalar physical register
from the free list. When only a subset of lanes are being executed,
due to branch divergence, only some registers are renamed, as
described in Section 4.2.3.

Physical registers are returned to the free list once they are
overwritten. Overwritten registers are freed immediately, provided
they are not used as a source register for the instruction to be

Figure 5: The Vector Issue Register showing 4 AVX-512 vector
instructions (instead of 16 as in our setup for brevity). Fine-
grained masking has turned some scalar-equivalent lanes in AVX-512
instructions 0 and 2 into no-ops. The first AVX-512 instruction has
been issued and executed, and the last three have neither been issued
nor executed. Source register src1 is scalar register S3 and is shared
among all lanes (none of which have diverged), which may be for
example the base address of an array, whereas source register src2 has
been vectorized (for example the index into the array). The destination
registers are also vectorized, to the same location as src2 as they were
the same architectural scalar register.

issued — otherwise they are freed after execute, and tracked in the
Vector Issue Register via the ‘dead-source’ bits (since it occurs after
the overwriting occurs within the VRAT), as discussed in the next
section.

4.2.2 Vector Issue Register. To achieve a significantly higher degree
of memory-level parallelism than a single vector register (8 64-bit
loads, as for AVX-512), we overlap the execution of multiple vector
copies of the same instruction, with the target of achieving 16
AVX-512 vectors (or 16 × 8 = 128 scalar-equivalent loops) in-flight
simultaneously. Instead of using a scalar issue queue, we use a
single Vector Issue Register (VIR), responsible for the issuing of
each vector copy of the scalar instruction (Figure 5).

If all inputs to the instruction are scalars, then just a single scalar
instruction is issued. If the instruction is marked as a striding load,
we use the stride detector to fill in all 128 values, and issue these
as 16 vectorized AVX-512 loads. If the instruction depends on at
least one vectorized input, we likewise issue 16 vectorized copies
of the instruction in sequence to the execution units. Vectorized
instruction copies are issued to the execution units whenever a
suitable unit is free (not being used by the main thread). Within
one AVX-512 instruction, we have 8 mask bits, to indicate lanes
where one of the sources has been marked invalid, either through
a fault, through use of floating-point registers, or through control-
flow divergence. Some lanes may start as masked out, if Discovery
Mode’s loop-bound inference predicts that there will be less than
128 scalar-equivalent loops it can fetch. Once all instruction copies
have issued and executed, if the ‘dead-source’ bit is set on any of
the sources, the physical registers are freed. Then, we fetch the next
instruction, and repeat.

Vectorized load instructions are treated like vector gather opera-
tions [87]: they are split into scalar loads in the LSQ and sent to the

Decoupled Vector Runahead MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

PC (48 bits) Mask (128 bits)
0x1234 111111100000
0x12a0 000000011111

Figure 6: An example reconvergence stack. The top of the stack
stores the current PC and mask. Once the reconvergence point is
reached, the stack head is popped and execution proceeds with the
next PC and mask.

cache hierarchy individually. The memory system handles them
concurrently with other regular scalar loads, allocating a different
MSHR.

4.2.3 Branch Reconvergence. Dependent loads may be conditional,
i.e., they appear down some control-flow paths and not others inside
the inner loop.We allow each scalar-equivalent lane to diverge from
the others. We therefore use a GPU-like reconvergence stack [54].
The results of the branches in all active lanes are compared against
each other. If the next PC for any lane diverges from the others,
we split the lanes based on their new destination, generate masks
based on common groups, and place the masks and target PCs onto
a reconvergence stack (Figure 6). We follow the first lane all the way
to the reconvergence point, which we set to the vector-runahead
termination point (Section 4.2.4), to avoid special tracking. Once
we reach the termination point for a set of matching lanes, we pop
the head off the reconvergence stack, reset the masks, and proceed
from the next PC in the stack.

Each lane is simultaneously mapped in the VRAT. If we have di-
vergence in scalar renaming (because we use different scalars), and
this divergence occurs neatly across AVX-512 instruction bound-
aries, then we overwrite each scalar according to which of the 16
AVX-512 instructions use it. If we have divergence in scalar re-
naming within an AVX-512 instruction, we convert the destination
to an AVX-512 physical register, and copy the scalar values being
replaced.

4.2.4 Termination. The vector-runahead subthread terminateswhen
the lanes reach the final indirect load in the sequence (identified
by the FLR), or the next iteration of the stride PC in the case of
divergence, with a 200-instruction timeout (in case we leave the
loop entirely in a way not picked up by the loop bound detector,
e.g., via a break).

Themain thread executes concurrently with the vector-runahead
subthread. Once the subthread has terminated, the main thread
again becomes eligible for entering Discovery Mode the next time
it executes a striding load, and thus for re-initiating DVR. The main
thread will have made significant progress by this point, andmost of
its cache accesses will become L1 hits, provided the DVR subthread
was accurate and timely.

4.3 Nested Vector Runahead
Loop-bound inference (Section 4.1.3) provides an accurate count of
how many iterations each loop will execute, and thus how many
scalar-equivalent lanes DVR can fill with useful prefetches. This
may well be significantly lower than the 128-element maximum
we can achieve, if each inner loop is relatively short, hurting the

total memory-level parallelism, and thus limiting the benefits of
the latency overlapping achieved by DVR.

The goal of the Nested Vector Runahead is to find iterations from
multiple invocations of a loop when the loop bound detector does
not find enough upcoming iterations of the innermost striding load
(Section 4.1.1). The Nested Vector Runahead benefits benchmarks
with patterns shown in Algorithm 1. If the for loop at line 7 has a
small number of iterations, vectorizing the chain starting from the
inner striding load at line 8 cannot generate high MLP. Therefore,
it is critical to prefetch indirect chains from many invocations of
the for loop. Nested Vector Runahead works in two steps. First, it
performs a Nested Discovery Mode (NDM) to vectorize the chain of
instructions from the outer striding load to the inner striding load,
and discover loop bounds and data inputs to multiple invocations
of the inner loop. Second, upon reaching the inner striding loop, it
expands vectorization further to cover the inner loop as well.

4.3.1 Nested Discovery Mode. The goal of the NDM is to find the
starting striding addresses and loop bounds for many different invo-
cations of the inner loop at the same time. During a discovery mode
(Section 4.1), the loop-bound detector may find fewer than 64 up-
coming iterations of a loop. In this case, once the vector-runahead
subthread is spawned, instead of performing vector runahead imme-
diately, we alter the direction of the branch with the backward edge
(see Section 4.1.3) and begin NDM on the in-order subthread by
setting PCv to the instruction following the branch (not-taken path
instruction). The subthread runs concurrently with the main thread.
We still save both the source registers in the LCR. The constant
loop increment and address of the striding load are saved in two
new registers called Increment Register (IR) and Inner Load Register
(ILR), respectively.

The NDM subthread begins executing scalar operations, but
skips all the upcoming iterations of the inner loop due to the altered
branch direction, and executes instructions outside the inner loop.
When it finds an outer striding load with an address smaller than
the address in the ILR (e.g., line 4 versus line 8 in Algorithm 1), it
performs its first vectorization step: it vectorizes the striding load
(by a factor of 16, to attempt to find at least 128 viable inner loop
iterations) and marks the load’s destination in the taint vector.

The process of vectorization continues for the dependents of
each outer striding load — until it reaches the first iteration of each
inner striding load. In Algorithm 1, the outer striding load at line
4 has dependents at both line 5 and line 6.

When it it reaches the inner striding load (at line 8), it reads
the values of the vectorized copies of the source registers in the
LCR, and uses these and the value in IR to calculate the number
of invocations of the inner loops for each of our vectorized outer
loops. If no outer striding load with an address lower than the
inner striding load appears within 200 instructions after entry to
the NDM, the subthread re-calculates the loop bound based on the
values in LCR and IR, and vectorizes the inner striding load by the
loop bound. That is, the subthread resorts back to the number of
iterations calculated by the loop bound detector during the initial
discovery mode.

4.3.2 Further Vectorization. Based on the loop bounds detected,
the NDM subthread then collects as many striding inner addresses
as possible with a maximum limit of 128. Addresses beyond the first

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Ajeya Naithani, Jaime Roelandts, Sam Ainsworth, Timothy M. Jones, and Lieven Eeckhout

Table 1: Baseline configuration for the OoO core.

Core 4.0 GHz, out-of-order
ROB size 350
Queue sizes issue (128), load (128), store (72)
Processor width 5-wide fetch/dispatch/rename/commit
Pipeline depth 15 front-end stages
Branch predictor 8 KB TAGE-SC-L
Functional units 4 int add (1 cycle), 1 int mult (3 cycles),

1 int div (18 cycles), 1 fp add (3 cycles),
1 fp mult (5 cycles), 1 fp div (6 cycles)

Vector units 3 ALU, 2 shift, 2 add, 2 mul, 2 shuffle
Register file 256 int (64 bit)

256 fp (128 bit)
128 vector (512 bit)

L1 I-cache 32 KB, assoc 4, 2-cycle access
L1 D-cache 32 KB, assoc 8, 4-cycle access,

24 MSHRs, stride prefetcher (16 streams)
Private L2 cache 256 KB, assoc 8, 8-cycle access
Shared L3 cache 8 MB, assoc 16, 30-cycle access
Memory 50 ns min. latency, 51.2 GB/s bandwidth,

request-based contention model

128 are discarded. The NDM subthread then performs vectorization
from the inner striding load, by populating its vector registers with
these 128 targets, with all other registers set based on which of
the 16 outer-loop lanes it was spawned from (scalar for currently
untainted registers, and vector for registers tainted in NDM). It
taints the destination of the inner striding load and enters DVR
with each lane, starting and terminating as specified in Section 4.2.

4.4 Hardware Overhead
The hardware structures to support DVR incur only 1139 bytes
overhead. The 32-entry stride detector requires 460 bytes: each
entry incurs 48 bits for the load PC, 48 bits for the previous memory
address, 16 bits for the stride distance, 2 bits for the saturating
counter, and 1 bit for innermost detection. The VRAT is a 16-entry
table (288 bytes): each entry features 16 register identifiers each
requiring 9 bits (to select one of the 128 vector physical registers
and 256 integer physical registers). The VIR incurs 86 bytes: 128
bits for the mask, 16 bits issued, 16 bits executed, 64 bits uop and
imm, 9×16 bits for the destination, 10×16 bits for src1, 10×16 bits
for src2. The front-end buffer incurs 64 bytes for 8 micro-ops. The
8-entry reconvergence stack requires 176 bytes: 6 bytes for the PC
and 128-bit mask for each PC. The FLR and LCR require only 6
bytes and 2 bytes, respectively; the SBB requires only 1 bit. The
loop-bound detector saves two checkpoints (2×16×8 bits for the
register ID mappings) and two registers for the compare and branch
instructions, totalling 48 bytes. The taint-tracker needs 16 bits. For
NDM, the IR and ILR require 7 bits and 6 bytes for keeping track
of the loop increment (maximum 128) and ID of the address of the
inner striding load.

5 EXPERIMENTAL SETUP
Simulation Infrastructure.We use Sniper 6.0 [18], an x86 sim-
ulator with its most detailed, cycle-level core model to simulate

Table 2: Graph inputs used for the GAP suite [12].

Input # Nodes
(in Millions)

Edges
(in Millions) LLC MPKI

Kron (KR) 134.2 2111.6 19
LiveJournal (LJN) 4.8 69.0 21
Orkut (ORK) 3.1 1930.3 18
Twitter (TW) 61.6 1468.4 61
Urand (UR) 134.2 2147.4 32

an aggressive 5-wide 350-entry ROB superscalar, out-of-order pro-
cessor. The configuration of the core, the key microarchitectural
structures of which are inspired by Intel Ice Lake processors [36],
is provided in Table 1 [28]. A hardware stride prefetcher is always
enabled at the L1-D cache level. Additionally, there are 24 MSHRs to
keep track of outstanding misses from L1-D. The branch predictor
is the 8 KB TAGE-SC-L from the 2016 CBP [83].

Benchmarks.We evaluate a total of 13 benchmarks from the graph
analytics, database, and HPC domains featuring complex address-
calculation patterns for a chain of indirect memory accesses. Five
of the benchmarks are taken from the GAP benchmark suite [12]:
Betweenness Centrality (bc), Breadth-First Search (bfs), Connected
Components (cc), PageRank (pr), and Single-Source Shortest Path
(sssp). Eight benchmarks, namely Camel, Graph500, Hashjoin with
two and eight hashes (HJ2 and HJ8), Kangaroo, NAS-CG, NAS-IS,
and RandomAccess, are primarily from the database and HPC do-
mains; these benchmarks have been extensively used by prior
work [2, 3, 67, 88, 89], and we collectively call them hpc-db (high-
performance computing and databases benchmark). Table 2 de-
scribes graph inputs; LLC MPKI shows the number of misses per
kilo instructions aggregated over the five benchmarks for each in-
put on our baseline OoO core. We use the region-of-interest (ROI)
marker utility in Sniper to skip the initialization phase for each
benchmark and simulate the next representative 500M instructions.

6 EVALUATION
We evaluate the following runahead techniques relative to our
baseline OoO core:
• Precise Runahead Execution (PRE) [69]: The state-of-the-art runa-
head technique that selectively executes only the chain of instruc-
tions leading to long-latency loads, and recycles register-file and
issue-queue resources dynamically to avoid pipeline flushes.

• Indirect Memory Prefetcher (IMP) [98]: The indirect memory
prefetcher, that works at L1 D-cache level and prefetches indirect
memory accesses originating from striding access patterns.

• Vector Runahead (VR): The first vector-runahead mechanism
proposed by Naithani et al. [67].

• Decoupled Vector Runahead (DVR).
• Oracle: A hypothetical technique that knows all memory accesses
in advance, and prefetches them at the appropriate point in time
to avoid stalling.

6.1 Performance
Figure 7 reports normalized performance for each technique on
every benchmark-input combination. PRE rarely yields more than

Decoupled Vector Runahead MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0
b

c_
K

R

b
c_

LJ
N

b
c_

O
R

K

b
c_

TW

b
c_

U
R

b
fs

_K
R

b
fs

_L
JN

b
fs

_O
R

K

b
fs

_T
W

b
fs

_U
R

cc
_K

R

cc
_L

JN

cc
_O

R
K

cc
_T

W

cc
_U

R

p
r_

K
R

p
r_

LJ
N

p
r_

O
R

K

p
r_

TW

p
r_

U
R

ss
sp

_K
R

ss
sp

_L
JN

ss
sp

_O
R

K

ss
sp

_T
W

ss
sp

_U
R

C
am

e
l

G
ra

p
h

5
0

0

H
J2

H
J8

K
an

ga
r

N
A

S-
C

G

N
A

S-
IS

R
an

d

H
-m

e
an

N
o

rm
al

iz
ed

 IP
C

PRE IMP VR DVR Oracle

Figure 7: Performance for PRE, VR, DVR and Oracle normalized to a baseline OoO core. DVR achieves 2.4× higher performance (and
up to 6.4×) compared to a baseline OoO core.

negligible performance improvements (with Camel and NAS-IS as
exceptions). IMP performs better than PRE as it can detect simple-
indirect patterns in benchmarks such as cc, Camel, and NAS-IS.
However, it cannot prefetch indirect accesses for other benchmarks
with more complex address calculation patterns. Vector Runahead
manages slightly more (1.2× harmonic mean) because it is able to
follow, reorder and vectorize the chains. Still, both PRE and VR
suffer on large cores. The ROB rarely fills up, and even though there
is still potential performance to be gained, the fact that neither PRE
nor VR often reach their trigger condition limits their speedup.
This is especially pronounced on the GAP benchmarks, where
frequent branch mispredictions imply that the reorder buffer rarely
reaches full utilization before the misprediction is discovered. This
is the reason why IMP, which is detached from the core size and
works at L1 D-cache level, performs better than VR for benchmarks
such as cc_KR and cc_TW. In some cases where Vector Runahead
is triggered, it decreases performance because of its inaccuracy
(e.g., bfs on the UR dataset): when inner loops are short, the lack
of DVR’s Discovery Mode evicts useful data from the cache and
wastes DRAM bandwidth. DVR often yields close to Oracle-level
performance; it is more proactive in generating prefetches than VR
and PRE, and achieves a 2.4× average speedup and 6.4× maximum.

Granted, there are still some workloads where DVR does not
reach the full potential of a perfect Oracle, since it is not given
full knowledge of the future or unlimited resources. In some cases
(NAS-CG and NAS-IS), the workload is so simple that looking ahead
only 128 elements into the future is insufficient to hide the full
memory latency on such a large core: wider 256-element DVR
units would achieve the higher performance of the Oracle, at the
expense of a larger VRAT and more physical vector registers being
required to be mapped simultaneously. In others, the memory-level
parallelism is more difficult to find. This is particularly pronounced
on workloads running the UR graph, where vertices are uniformly
smaller than the 128-edge-element target, used by DVR within
inner loops to generate MLP, unlike the power-law graphs (KR and
Graph 500) which spend more time in highly populated vertices. As
we shall see, Nested Vector Runahead mitigates this issue partially
but still suffers from timeliness due to the complex dependencies.

0.0

1.0

2.0

3.0

4.0

bc bfs cc pr sssp hpc-db H-mean

N
o

m
al

iz
ed

 IP
C

VR Offload +Discovery +Multiple

Figure 8: Breaking down DVR’s performance normalized
to the baseline OoO: (1) Vector Runahead [67], (2) Offload
triggers a vector-runahead subthread whenever a stride is
detected, (3) Discovery Mode further improves prefetch accu-
racy, and (4) Nested Runahead Mode completes DVR by fur-
ther increasing memory-level parallelism over short loops.

6.2 Performance Breakdown
Figure 8 shows how the constituent parts of DVR contribute to
the overall performance gain. Offloading Vector Runahead to a
subthread, and thus allowing it to run more proactively than just
on a full ROB, gives large benefits on its own: from 1.2× with a
base Vector Runahead to almost 1.5× here. Indeed, the fact that
the base Vector Runahead is out-of-order and the offloaded DVR
is in-order is barely relevant when it comes to performance: each
scalar-equivalent instruction in DVR does somuchwork, and brings
in so many (vectorized gather) loads that there is no need for full
out-of-order execution in the vector-runahead subthread.

Adding Discovery Mode particularly benefits bc, bfs and sssp;
the over-fetching that vector-runahead techniques otherwise cause
results in enough cache pollution and bandwidth wastage for the
more accurate Discovery Mode to win out. Still, it is a double-edged
sword on cc and pr, where the wrong-path execution triggered
by DVR without Discovery Mode happens to bring in the correct
data despite being out-of-bounds, as each outer loop generates only
sequential values for the inner loop, unlike bc, bfs and sssp. Still,
the full DVR technique, completed with the addition of Nested
Runahead Mode, is uniformly best, because it can most effectively
generate MLP far into the future even for short inner loops.

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Ajeya Naithani, Jaime Roelandts, Sam Ainsworth, Timothy M. Jones, and Lieven Eeckhout

0

4

8

12

16

bc bfs cc pr sssp hpc-db H-mean

M
LP

OoO VR DVR

Figure 9: Memory-level parallelism, in terms of MSHRs used
per cycle on average, for DVR and VR compared to the base-
line OoO core. DVR generates significantly more parallel outstand-
ing memory accesses.

6.3 Memory-Level Parallelism
The secrets of DVR’s success are that it generates far more overlap-
ping memory accesses than competing techniques. In Figure 9, we
see that the number of outstanding requests for the out-of-order
core in the data cache are less than four on average, with DVR
generating more than ten at a time, on average per cycle, by com-
parison. The simplest workloads (pr and those in hpd-db) have
fewer branch mispredicts, and so achieve higher raw memory-level
parallelism even if the speedups are typically higher in the more
complex workloads. Even though DVR itself does not suffer sig-
nificantly from branch mispredicts (its simple in-order pipeline
squashes them extremely early, and its coarse form of specula-
tive loop parallelism means branches across loop iterations do not
form chains that cause all instructions later in program order to
be squashed), the main thread does, and so DVR naturally ends up
looking less far ahead, and overlapping fewer accesses.

6.4 Effectiveness
Here we analyze to what extent DVR is successful at generating
accurate, timely, comprehensive prefetches.
Accuracy and Coverage. Figure 10 shows both the total number
of main memory accesses performed, and the fraction within the
main thread and runahead mode or subthread. Both DVR and VR
are given for comparison, relative to the same out-of-order baseline.
DVR is extremely accurate because of the Discovery Mode. By
contrast, Vector Runahead can over-fetch by over 2×, because it
lacks loop-length analysis.

As well as being more accurate, DVR also covers far more of each
application, due to triggering more eagerly, and because Nested
Mode can handle far more complex indirection.
Timeliness. Figure 11 shows how timely the prefetches are in DVR,
in terms of the access latency observed by the main thread. Most
cache lines are in the L1 D-cache when the main thread accesses
them, with only a few evicted to higher cache levels. This is because
the combination of the Discovery and Nested Modes allows DVR
to generate very fine-grained memory-level parallelism, meaning
that even though we are bringing in hundreds of entries at once,
we can synchronize with the main thread so that they are accessed
shortly after. Still, a consistent 10–20 percent of accesses observe
a latency higher than the last-level cache. When interpreted in
correspondence with Figure 10, we see that this is not because of

0.0

0.5

1.0

1.5

2.0

2.5

3.0

V
R

D
V

R

V
R

D
V

R

V
R

D
V

R

V
R

D
V

R

V
R

D
V

R

V
R

D
V

R

V
R

D
V

R

bc bfs cc pr sssp hpc-db Avg

Fr
ac

ti
o

n
 M

em
o

ry
 A

cc
es

se
s

Normal Mode Runahead Mode

Figure 10: Accuracy and Coverage: number of off-chip mem-
ory accesses for VR andDVRnormalized to OoO, and fraction
of memory accesses in normal versus runahead mode. DVR
successfully prefetches DRAM accesses, converting them into on-chip
cache hits when the program subsequently accesses them in normal
mode.

0%

20%

40%

60%

80%

100%

bc bfs cc pr sssp hpc-db

Ti
m
el
in
es
s

L1D-hits L2-hits L3-hits Off-chip

Figure 11: Timeliness: fraction of total prefetched cachelines
in runahead mode for which the data is present in the L1-D,
L2 and L3 caches during normal mode; ‘Off-chip’ represents
either the cachelines prefetched incorrectly or the cache lines
for which the data is still being transferred from memory.

inaccuracy. Rather, it is because the prefetches are too late. Because
DVR overlaps with the main thread’s execution, and especially
because Discovery and Nested Modes can delay the start of vector-
ization, many earlier accesses in a single runahead iteration may
overlap with those same accesses in the main thread. This is a sig-
nificant (if difficult to avoid) reason why the Oracle, which pays no
such overheads for discovering future addresses, achieves better
performance in some cases, as previously reported in Figure 7.

6.5 Core Size Sensitivity Analysis
Figure 12 reports performance for DVR as a function of ROB size
normalized to our baseline OoO core with 350-entry ROB. In con-
trast to VR which yields diminishing performance benefits with
increasing ROB size, as previously reported in Figure 2, the perfor-
mance boost offered by DVR holds on. In contrast to VR which is
triggered upon a full ROB, DVR operates in a decoupled manner
from the main thread, significantly boosting performance by con-
tinuously vectorizing and prefetching future chains of dependent
loads. When we scale all the back-end structures — in proportion
to the ROB — the performance of DVR relative to the OoO baseline

Decoupled Vector Runahead MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

0.0

1.0

2.0

3.0

4.0
1

2
8

1
9

2
2

2
4

3
5

0
5

1
2

1
2

8
1

9
2

2
2

4
3

5
0

5
1

2

1
2

8
1

9
2

2
2

4
3

5
0

5
1

2

1
2

8
1

9
2

2
2

4
3

5
0

5
1

2

1
2

8
1

9
2

2
2

4
3

5
0

5
1

2

1
2

8
1

9
2

2
2

4
3

5
0

5
1

2

1
2

8
1

9
2

2
2

4
3

5
0

5
1

2

bc bfs cc pr sssp hpc-db H-mean

IP
C

 N
o

rm
al

iz
ed

 t
o

 t
h

e
O

o
O

B
as

el
in

e
(R

O
B

=3
5

0
)

OoO DVR

Figure 12: Performance of DVR with increasing ROB size,
relative to our baseline OoO core with 350-entry ROB. The
performance gains delivered by DVR continue to increase despite the
large size of the ROB.

with 350-entry ROB is 1.9×, 2.2×, 2.2×, 2.4×, and 2.5× higher for
the cores with the ROB sizes of 128, 192, 224, 350, and 512 entries.

7 RELATEDWORK
Decoupled Vector Runahead is both a helper thread [20, 44], and a
runahead execution [66] according to the categories from Mittal et
al. [59] and Falsafi et al. [32].

7.1 Helper Threads and Precomputation
Helper threads perform work to assist the performance of a main
thread. Athanasaki et al. [8] perform speculative precomputation
on simultaneous multithreads. Wang et al. [93] run helper threads
via context switching, removing the need for explicit SMT capa-
bilities. SSMT [20] introduced hardware support specifically for
helper threads, rather than SMT generically, and runs microthreads
alongside the main core, via a buffer that stores hand-generated
micro-ops.

Slice Processors [60] identify cache misses to precompute ad-
dress calculation on a parallel thread. Dependence-graph computa-
tion [7, 82] executes the slices on separate hardware. Lau et al. [53]
introduces a small core by not only duplicating the execution hard-
ware, but some of the core front-end as well, to run speculative
threads. DeSC [37] decouples address calculation and load-value
usage into two separate devices.

Kim et al. [45] generate helper threads automatically in the com-
piler. Ganusov and Burtscher [35] emulate hardware prefetchers
on helper threads. Speculative Precomputation [25] allows helper
threads to spawn their own helper threads to handle chain depen-
dencies.

None of this prior work reorders and vectorizes the code in the
helper thread to prefetch dependent memory operations far into
the future instruction stream, and typically it requires software
support instead of being fully microarchitectural.

7.2 Runahead Techniques
Runahead execution [29, 65, 66] was proposed as an alternative to
large reorder buffers, allowing execution to continue after a long-
latency load by removing the blocking instruction from the reorder
buffer and continuing to transiently execute other instructions.
Mutlu et al. [62, 64] showed that dynamically choosing whether

or not to enter runahead can reduce the number of executed in-
structions, while keeping the performance benefits intact. Hashemi
et al. [40] filter and buffer dependency chains to improve perfor-
mance. Precise Runahead [70] both filters instructions and avoids
throwing away correct instructions that fit inside the ROB. Branch
Runahead [78] uses a light dependency chain executed continu-
ously to assist the branch predictor. Bringing runahead together
with vectorization was the key idea of Vector Runahead [67, 68]
(Section 2.3).

Helper threads have been combined with (scalar) runahead ex-
ecution [80]. MLP-aware runahead threads [27] only initiate ex-
ecution with far-distance MLP. Ramirez et al. [79] dynamically
calculate the offset at which runahead thread should run. Contin-
uous Runahead [39] offloads simple address patterns to a core at
the last-level cache controller, and runs them continuously. As con-
tinuous runahead can only prefetch chains leading to independent
memory accesses, EMC [38], another near-memory core, prefetches
dependent cache misses. Both continuous runahead and EMC are
in-order, like DVR, but due to a lack of vectorization and instruction
reordering, they cannot deliver high coverage and performance like
DVR.

7.3 Auto-Vectorization and SW Reordering
DVR can be seen as a type of speculative vectorization [10, 52, 55, 57,
74, 76, 77, 86], albeit one that is generated microarchitecturally, that
does not seek to maintain guaranteed correctness of its transient
workload, and which overlaps far more independent loads than a
single vector at a time. Likewise, it can be seen as a type of hardware-
generated, compute-optimized (via vectorization) software pipelin-
ing [21, 47, 81, 90, 92], or software prefetching [3, 4, 17, 21, 61, 89]
in that it reorders loads to overlap them.

7.4 Architecturally Visible Prefetching
Prefetching the most complex memory access patterns has tradi-
tionally been the preserve of compiler- or hand-targeted hardware.
The Event-Triggered Programmable Prefetcher [2] offloads and
overlaps many memory accesses like DVR, to hide the latencies of
dependent chains. However, it uses compiler- or hand-generated
thread-level parallelism, and runs on a sea of small, dedicated cores.

Harbinger instructions [5], Guided-Region Prefetching [94] and
RnR [99] generate hints inside programs to give to prefetchers.
Prodigy [88] and the Graph Prefetcher [1] are configured with a
set of dependent-chain patterns typical to graph workloads. Other
prefetchers are configuredwith the indirection patterns of arrays [19]
or linked structures [24, 49]. Such hints may configure the entire
memory hierarchy [97].

Fetcher units [41, 48, 50, 51, 56, 73, 100] are configured with
the memory access pattern, but directly access data rather than
prefetching it, reducing work repetition at the expense of requiring
stricter ordering guarantees to preserve correctness.

7.5 Microarchitectural Prefetchers
Stride prefetchers [22, 23], for repeated patterns in addresses such
as sequential walks through arrays, are endemic in commercial
systems [9]. The recent research literature focuses on improving
their coverage, performance and selectivity [11, 15, 46, 58, 71, 84].

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Ajeya Naithani, Jaime Roelandts, Sam Ainsworth, Timothy M. Jones, and Lieven Eeckhout

More recently, temporal-history prefetchers [42, 43, 72, 95, 96],
which store and repeat observed patterns, have become practical
enough for deployment in Arm processors [34]. Pythia [14] consid-
ers more than just the PC to index predictors, by using reinforce-
ment learning to select the relevant characteristics. Hermes [13]
predicts whether data will be cached or off-chip, to avoid waiting
for the cache miss before accessing off-chip memory. Shi et. al [85]
correlate address patterns via machine learning. The complex data-
dependent chains within big-data workloads that DVR targets are
unsuited to address correlation, given their lack of regular address
pattern, or temporal reuse over even gigabytes of data [2].

Cooksey et al. [26] propose a ‘content-directed’ prefetcher de-
signed to pick up possible pointers within arrays, with others at-
tempting to reduce overfetch rates via compiler input [5, 30]. IMP is
successful at simple indirection patterns [98] but does not scale to
graph or database workloads [67]. Takayashiki et al. [87] generate
similar simple stride-indirects by observing vector gather instruc-
tions. The Bouquet of Prefetchers [75] predicts which prefetcher is
best to use for each PC address.

8 CONCLUSION
Decoupled Vector Runahead offloads the runahead execution to a
simple, in-order, SIMT, vector subthread that is initiated whenever
the core detects an indirect memory access pattern. Unlike prior
runahead techniques, DVR does not wait for the reorder buffer to
stall, and by discovering the loop bound at runtime, it can adjust
the degree of vectorization to better suit application characteristics.
DVR generates prefetches frommultiple invocations of a loop when
the discovered degree of vectorization for one invocation is not
sufficient to achieve high memory-level parallelism. DVR incurs
minimal hardware overhead of 1139 bytes.

The benefits of reordering-based runahead over invalidation
runaheads will usher in a new era of processors with the latency
insensitivity of GPUs while maintaining the programmability and
single-threaded performance of CPUs. The potential of near-oracle
performance for even the trickiest graph workloads is too tempting
to leave on the table.

ACKNOWLEDGMENTS
We thank the reviewers for their valuable feedback. This work is
supported in part by the UGent-BOF-GOA grant No. 01G01421,
the Research Foundation Flanders (FWO) grant No. G018722N,
the European Research Council (ERC) Advanced Grant agreement
No. 741097, and the Engineering and Physical Sciences Research
Council (EPSRC) grant reference EP/W00576X/1. Additional data
related to this publication is available on request from the lead
author.

REFERENCES
[1] Sam Ainsworth and Timothy M. Jones. 2016. Graph Prefetching Using Data

Structure Knowledge. In Proceedings of the 2016 International Conference on
Supercomputing (Istanbul, Turkey) (ICS ’16). Association for Computing Machin-
ery, New York, NY, USA, Article 39, 11 pages. https://doi.org/10.1145/2925426.
2926254

[2] Sam Ainsworth and Timothy M. Jones. 2018. An Event-Triggered Programmable
Prefetcher for Irregular Workloads. In Proceedings of the Twenty-Third Interna-
tional Conference on Architectural Support for Programming Languages and Op-
erating Systems (Williamsburg, VA, USA) (ASPLOS ’18). Association for Comput-
ing Machinery, New York, NY, USA, 578–592. https://doi.org/10.1145/3173162.

3173189
[3] Sam Ainsworth and Timothy M. Jones. 2019. Software Prefetching for Indirect

Memory Accesses: A Microarchitectural Perspective. ACM Transactions on
Computer Systems 36, 3, Article 8 (jun 2019), 34 pages. https://doi.org/10.1145/
3319393

[4] Sam Ainsworth and Timothy M. Jones. 2020. Prefetching in Functional Lan-
guages. In Proceedings of the 2020 ACM SIGPLAN International Symposium on
Memory Management (London, UK) (ISMM ’20). Association for Computing Ma-
chinery, New York, NY, USA, 16–29. https://doi.org/10.1145/3381898.3397209

[5] Hassan Al-Sukhni, Ian Bratt, and Daniel A. Connors. 2003. Compiler-Directed
Content-Aware Prefetching for Dynamic Data Structures. In Proceedings of
the 12th International Conference on Parallel Architectures and Compilation
Techniques (PACT ’03). IEEE Computer Society, Los Alamitos, CA, USA, 91.
https://doi.org/10.1109/PACT.2003.1238005

[6] James Alfred Ang, BrianW. Barrett, Kyle BruceWheeler, and Richard C. Murphy.
2010. Introducing the graph 500. Cray User’s Group (CUG) 19 (5 2010), 45–74.
https://www.osti.gov/biblio/1014641

[7] Murali Annavaram, Jignesh M. Patel, and Edward S. Davidson. 2001. Data
Prefetching by Dependence Graph Precomputation. In Proceedings of the 28th
Annual International Symposium on Computer Architecture (Göteborg, Sweden)
(ISCA ’01). Association for Computing Machinery, New York, NY, USA, 52–61.
https://doi.org/10.1145/379240.379251

[8] Evangelia Athanasaki, Nikos Anastopoulos, Kornilios Kourtis, and Nectarios
Koziris. 2008. Exploring the Performance Limits of Simultaneous Multithreading
for Memory Intensive Applications. Journal of Supercomputing 44, 1 (apr 2008),
64–97. https://doi.org/10.1007/s11227-007-0149-x

[9] Grant Ayers, Heiner Litz, Christos Kozyrakis, and Parthasarathy Ranganathan.
2020. Classifying Memory Access Patterns for Prefetching. In Proceedings
of the Twenty-Fifth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Lausanne, Switzerland) (ASP-
LOS ’20). Association for Computing Machinery, New York, NY, USA, 513–526.
https://doi.org/10.1145/3373376.3378498

[10] Sara S. Baghsorkhi, Nalini Vasudevan, and Youfeng Wu. 2016. FlexVec: Auto-
Vectorization for Irregular Loops. In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Santa Barbara,
CA, USA) (PLDI ’16). Association for Computing Machinery, New York, NY,
USA, 697–710. https://doi.org/10.1145/2908080.2908111

[11] Mohammad Bakhshalipour, Mehran Shakerinava, Pejman Lotfi-Kamran, and
Hamid Sarbazi-Azad. 2019. Bingo Spatial Data Prefetcher. In 2019 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA ’19). IEEE
Computer Society, Los Alamitos, CA, USA, 399–411. https://doi.org/10.1109/
HPCA.2019.00053

[12] Scott Beamer, Krste Asanović, and David Patterson. 2017. The GAP Benchmark
Suite. arXiv:1508.03619 [cs.DC]

[13] Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo,
Ataberk Olgun, Mohammad Sadrosadat, and Onur Mutlu. 2022. Hermes: Ac-
celerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load
Prediction. In 2022 55th IEEE/ACM International Symposium on Microarchi-
tecture (MICRO-55). IEEE Computer Society, Los Alamitos, CA, USA, 1–18.
https://doi.org/10.1109/MICRO56248.2022.00015

[14] Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreeni-
vas Subramoney, and Onur Mutlu. 2021. Pythia: A Customizable Hardware
Prefetching Framework Using Online Reinforcement Learning. In MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture (Virtual
Event, Greece) (MICRO ’21). Association for Computing Machinery, New York,
NY, USA, 1121–1137. https://doi.org/10.1145/3466752.3480114

[15] Rahul Bera, Anant V. Nori, Onur Mutlu, and Sreenivas Subramoney. 2019.
DSPatch: Dual Spatial Pattern Prefetcher. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (Columbus, OH, USA)
(MICRO ’52). Association for Computing Machinery, New York, NY, USA,
531–544. https://doi.org/10.1145/3352460.3358325

[16] Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. The Journal of
Mathematical Sociology 25, 2 (2001), 163–177. https://doi.org/10.1080/0022250X.
2001.9990249

[17] David Callahan, Ken Kennedy, and Allan Porterfield. 1991. Software Prefetching.
In Proceedings of the Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems (Santa Clara, California, USA)
(ASPLOS IV). Association for Computing Machinery, New York, NY, USA, 40–52.
https://doi.org/10.1145/106972.106979

[18] Trevor E. Carlson, Wim Heirman, Stijn Eyerman, Ibrahim Hur, and Lieven
Eeckhout. 2014. An evaluation of high-level mechanistic core models. ACM
Transactions on Architecture and Code Optimization 11, 3, Article 28 (aug 2014),
25 pages. https://doi.org/10.1145/2629677

[19] Mustafa Cavus, Resit Sendag, and Joshua J. Yi. 2020. Informed Prefetching
for Indirect Memory Accesses. ACM Transactions on Architecture and Code
Optimization 17, 1, Article 4 (mar 2020), 29 pages. https://doi.org/10.1145/
3374216

https://doi.org/10.1145/2925426.2926254
https://doi.org/10.1145/2925426.2926254
https://doi.org/10.1145/3173162.3173189
https://doi.org/10.1145/3173162.3173189
https://doi.org/10.1145/3319393
https://doi.org/10.1145/3319393
https://doi.org/10.1145/3381898.3397209
https://doi.org/10.1109/PACT.2003.1238005
https://www.osti.gov/biblio/1014641
https://doi.org/10.1145/379240.379251
https://doi.org/10.1007/s11227-007-0149-x
https://doi.org/10.1145/3373376.3378498
https://doi.org/10.1145/2908080.2908111
https://doi.org/10.1109/HPCA.2019.00053
https://doi.org/10.1109/HPCA.2019.00053
https://arxiv.org/abs/1508.03619
https://doi.org/10.1109/MICRO56248.2022.00015
https://doi.org/10.1145/3466752.3480114
https://doi.org/10.1145/3352460.3358325
https://doi.org/10.1080/0022250X.2001.9990249
https://doi.org/10.1080/0022250X.2001.9990249
https://doi.org/10.1145/106972.106979
https://doi.org/10.1145/2629677
https://doi.org/10.1145/3374216
https://doi.org/10.1145/3374216

Decoupled Vector Runahead MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

[20] Robert S. Chappell, Jared Stark, Sangwook P. Kim, Steven K. Reinhardt, and
Yale N. Patt. 1999. Simultaneous Subordinate Microthreading (SSMT). In Pro-
ceedings of the 26th Annual International Symposium on Computer Architecture
(Atlanta, Georgia, USA) (ISCA ’99). IEEE Computer Society, Los Alamitos, CA,
USA, 186–195. https://doi.org/10.1145/300979.300995

[21] Shimin Chen, Anastassia Ailamaki, Phillip B. Gibbons, and Todd C. Mowry.
2007. Improving Hash Join Performance through Prefetching. ACM Transactions
on Database Systems 32, 3 (aug 2007), 17–es. https://doi.org/10.1145/1272743.
1272747

[22] Tien-Fu Chen and Jean-Loup Baer. 1992. Reducing Memory Latency via Non-
blocking and Prefetching Caches. In Proceedings of the Fifth International Con-
ference on Architectural Support for Programming Languages and Operating
Systems (Boston, Massachusetts, USA) (ASPLOS V). Association for Computing
Machinery, New York, NY, USA, 51–61. https://doi.org/10.1145/143365.143486

[23] Tien-Fu Chen and Jean-Loup Baer. 1995. Effective hardware-based data prefetch-
ing for high-performance processors. IEEE Trans. Comput. 44, 5 (May 1995),
609–623. https://doi.org/10.1109/12.381947

[24] Seungryul Choi, Nicholas Kohout, Sumit Pamnani, Dongkeun Kim, and Donald
Yeung. 2004. A General Framework for Prefetch Scheduling in Linked Data
Structures and Its Application to Multi-chain Prefetching. ACM Transactions on
Computer Systems 22, 2 (may 2004), 214–280. https://doi.org/10.1145/986533.
986536

[25] Jamison D. Collins, Hong Wang, Dean M. Tullsen, Christopher Hughes, Yong-
Fong Lee, Dan Lavery, and John P. Shen. 2001. Speculative Precomputation:
Long-Range Prefetching of Delinquent Loads. In Proceedings of the 28th Annual
International Symposium on Computer Architecture (Göteborg, Sweden) (ISCA
’01). Association for Computing Machinery, New York, NY, USA, 14–25. https:
//doi.org/10.1145/379240.379248

[26] Robert Cooksey, Stephan Jourdan, and Dirk Grunwald. 2002. A Stateless,
Content-directed Data Prefetching Mechanism. In Proceedings of the 10th Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (San Jose, California) (ASPLOS X). Association for Computing
Machinery, New York, NY, USA, 279–290. https://doi.org/10.1145/605397.605427

[27] Kenzo Van Craeynest, Stijn Eyerman, and Lieven Eeckhout. 2009. MLP-Aware
Runahead Threads in a Simultaneous Multithreading Processor. In High Perfor-
mance Embedded Architectures and Compilers, Fourth International Conference,
HiPEAC 2009, Paphos, Cyprus, January 25-28, 2009. Proceedings (Lecture Notes
in Computer Science, Vol. 5409). Springer Berlin Heidelberg, Berlin, Heidelberg,
110–124. https://doi.org/10.1007/978-3-540-92990-1_10

[28] Dr. Ian Cutress. 2018. Intel’s Architecture Day 2018: The future of core, Intel gpus,
10nm, and hybrid x86. AnandTech. https://www.anandtech.com/show/13699/
intel-architecture-day-2018-core-future-hybrid-x86

[29] James Dundas and Trevor Mudge. 1997. Improving Data Cache Performance
by Pre-Executing Instructions under a Cache Miss. In Proceedings of the 11th
International Conference on Supercomputing (Vienna, Austria) (ICS ’97). As-
sociation for Computing Machinery, New York, NY, USA, 68–75. https:
//doi.org/10.1145/263580.263597

[30] Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt. 2009. Techniques for bandwidth-
efficient prefetching of linked data structures in hybrid prefetching systems.
In 2009 IEEE 15th International Symposium on High Performance Computer
Architecture. IEEE Computer Society, Los Alamitos, CA, USA, 7–17. https:
//doi.org/10.1109/HPCA.2009.4798232

[31] Jack Edmonds and Richard M. Karp. 1972. Theoretical Improvements in Al-
gorithmic Efficiency for Network Flow Problems. J. ACM 19, 2 (April 1972),
248–264. https://doi.org/10.1145/321694.321699

[32] Babak Falsafi and Thomas F. Wenisch. 2014. A Primer on Hardware Prefetching.
Springer Cham, Cham, Switzerland. https://doi.org/10.1007/978-3-031-01743-8

[33] Andrei Frumusanu. 2020. Apple Announces The Apple Silicon M1: Ditching x86 -
What to Expect, Based on A14. Anandtech. https://www.anandtech.com/show/
16226/apple-silicon-m1-a14-deep-dive/2

[34] Andrei Frumusanu. 2021. The Snapdragon 888 vs The Exynos 2100: Cortex-X1
& 5nm - Who Does It Better? AnandTech. https://www.anandtech.com/show/
16463/snapdragon-888-vs-exynos-2100-galaxy-s21-ultra/3

[35] Ilya Ganusov and Martin Burtscher. 2006. Efficient Emulation of Hardware
Prefetchers via Event-Driven Helper Threading. In Proceedings of the 15th Inter-
national Conference on Parallel Architectures and Compilation Techniques (Seattle,
Washington, USA) (PACT ’06). Association for Computing Machinery, New York,
NY, USA, 144–153. https://doi.org/10.1145/1152154.1152178

[36] Saurabh Gupta, Niranjan Soundararajan, Ragavendra Natarajan, and Sreeni-
vas Subramoney. 2020. Opportunistic Early Pipeline Re-Steering for Data-
Dependent Branches. In Proceedings of the ACM International Conference on
Parallel Architectures and Compilation Techniques (Virtual Event, GA, USA)
(PACT ’20). Association for Computing Machinery, New York, NY, USA, 305–316.
https://doi.org/10.1145/3410463.3414628

[37] Tae Jun Ham, Juan L. Aragón, and Margaret Martonosi. 2015. DeSC: Decoupled
Supply-compute Communication Management for Heterogeneous Architec-
tures. In Proceedings of the 48th International Symposium on Microarchitecture
(Waikiki, Hawaii) (MICRO-48). Association for Computing Machinery, New

York, NY, USA, 191–203. https://doi.org/10.1145/2830772.2830800
[38] Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt. 2016.

Accelerating Dependent Cache Misses with an Enhanced Memory Controller.
In Proceedings of the 43rd International Symposium on Computer Architecture
(Seoul, Republic of Korea) (ISCA ’16). IEEE Computer Society, Los Alamitos, CA,
USA, 444–455. https://doi.org/10.1109/ISCA.2016.46

[39] Milad Hashemi, Onur Mutlu, and Yale N. Patt. 2016. Continuous Runahead:
Transparent Hardware Acceleration for Memory Intensive Workloads. In The
49th Annual IEEE/ACM International Symposium on Microarchitecture (Taipei,
Taiwan) (MICRO-49). IEEE Computer Society, Los Alamitos, CA, USA, Article
61, 12 pages. https://doi.org/10.1109/MICRO.2016.7783764

[40] Milad Hashemi and Yale N. Patt. 2015. Filtered Runahead Execution with a
Runahead Buffer. In Proceedings of the 48th International Symposium on Microar-
chitecture (Waikiki, Hawaii) (MICRO-48). Association for Computing Machinery,
New York, NY, USA, 358–369. https://doi.org/10.1145/2830772.2830812

[41] Chen-Han Ho, Sung Jin Kim, and Karthikeyan Sankaralingam. 2015. Efficient
Execution of Memory Access Phases Using Dataflow Specialization. In Pro-
ceedings of the 42nd Annual International Symposium on Computer Architecture
(Portland, Oregon) (ISCA ’15). Association for Computing Machinery, New York,
NY, USA, 118–130. https://doi.org/10.1145/2749469.2750390

[42] Akanksha Jain and Calvin Lin. 2013. Linearizing Irregular Memory Accesses for
Improved Correlated Prefetching. In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture (Davis, California) (MICRO-46).
Association for Computing Machinery, New York, NY, USA, 247–259. https:
//doi.org/10.1145/2540708.2540730

[43] Doug Joseph and Dirk Grunwald. 1997. Prefetching Using Markov Predictors. In
Proceedings of the 24th Annual International Symposium on Computer Architecture
(Denver, Colorado, USA) (ISCA ’97). Association for Computing Machinery, New
York, NY, USA, 252–263. https://doi.org/10.1145/264107.264207

[44] Changhee Jung, Daeseob Lim, Jaejin Lee, and Yan Solihin. 2006. Helper Thread
Prefetching for Loosely-Coupled Multiprocessor Systems. In Proceedings of the
20th International Conference on Parallel and Distributed Processing (Rhodes
Island, Greece) (IPDPS’06). IEEE Computer Society, Los Alamitos, CA, USA, 10
pp.–. https://doi.org/10.1109/IPDPS.2006.1639375

[45] Dongkeun Kim and Donald Yeung. 2002. Design and Evaluation of Compiler
Algorithms for Pre-execution. In Proceedings of the 10th International Conference
on Architectural Support for Programming Languages and Operating Systems (San
Jose, California) (ASPLOS X). Association for Computing Machinery, New York,
NY, USA, 159–170. https://doi.org/10.1145/605397.605415

[46] Jinchun Kim, Seth H. Pugsley, Paul V. Gratz, A. L. Narasimha Reddy, Chris Wilk-
erson, and Zeshan Chishti. 2016. Path Confidence Based Lookahead Prefetching.
In The 49th Annual IEEE/ACM International Symposium on Microarchitecture
(Taipei, Taiwan) (MICRO-49). IEEE Computer Society, Los Alamitos, CA, USA,
Article 60, 12 pages. https://doi.org/10.1109/MICRO.2016.7783763

[47] Onur Kocberber, Babak Falsafi, and Boris Grot. 2015. Asynchronous Memory
Access Chaining. Proc. VLDB Endow. 9, 4 (dec 2015), 252–263. https://doi.org/
10.14778/2856318.2856321

[48] Onur Kocberber, Boris Grot, Javier Picorel, Babak Falsafi, Kevin Lim, and
Parthasarathy Ranganathan. 2013. Meet the Walkers: Accelerating Index Tra-
versals for In-memory Databases. In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture (Davis, California) (MICRO-46).
Association for Computing Machinery, New York, NY, USA, 468–479. https:
//doi.org/10.1145/2540708.2540748

[49] Nicholas Kohout, Seungryul Choi, Dongkeun Kim, and Donald Yeung. 2001.
Multi-Chain Prefetching: Effective Exploitation of Inter-Chain Memory Par-
allelism for Pointer-Chasing Codes. In Proceedings of the 2001 International
Conference on Parallel Architectures and Compilation Techniques (PACT ’01).
IEEE Computer Society, Los Alamitos, CA, USA, 268–279. https://doi.org/10.
1109/PACT.2001.953307

[50] Snehasish Kumar, Arrvindh Shriraman, Vijayalakshmi Srinivasan, Dan Lin, and
Jordon Phillips. 2014. SQRL: Hardware Accelerator for Collecting Software
Data Structures. In Proceedings of the 23rd International Conference on Parallel
Architectures and Compilation (Edmonton, AB, Canada) (PACT ’14). Association
for Computing Machinery, New York, NY, USA, 475–476. https://doi.org/10.
1145/2628071.2628118

[51] Snehasish Kumar, Naveen Vedula, Arrvindh Shriraman, and Vijayalakshmi
Srinivasan. 2015. DASX: Hardware Accelerator for Software Data Structures.
In Proceedings of the 29th ACM on International Conference on Supercomputing
(Newport Beach, California, USA) (ICS ’15). Association for Computing Machin-
ery, New York, NY, USA, 361–372. https://doi.org/10.1145/2751205.2751231

[52] Samuel Larsen and Saman Amarasinghe. 2000. Exploiting Superword Level
Parallelism with Multimedia Instruction Sets. In Proceedings of the ACM SIG-
PLAN 2000 Conference on Programming Language Design and Implementation
(Vancouver, British Columbia, Canada) (PLDI ’00). Association for Computing
Machinery, New York, NY, USA, 145–156. https://doi.org/10.1145/349299.349320

[53] Eric Lau, Jason E. Miller, Inseok Choi, Donald Yeung, Saman Amarasinghe,
and Anant Agarwal. 2011. Multicore Performance Optimization Using Partner
Cores. In 3rd USENIX Workshop on Hot Topics in Parallelism (HotPar 11). USENIX

https://doi.org/10.1145/300979.300995
https://doi.org/10.1145/1272743.1272747
https://doi.org/10.1145/1272743.1272747
https://doi.org/10.1145/143365.143486
https://doi.org/10.1109/12.381947
https://doi.org/10.1145/986533.986536
https://doi.org/10.1145/986533.986536
https://doi.org/10.1145/379240.379248
https://doi.org/10.1145/379240.379248
https://doi.org/10.1145/605397.605427
https://doi.org/10.1007/978-3-540-92990-1_10
https://www.anandtech.com/show/13699/intel-architecture-day-2018-core-future-hybrid-x86
https://www.anandtech.com/show/13699/intel-architecture-day-2018-core-future-hybrid-x86
https://doi.org/10.1145/263580.263597
https://doi.org/10.1145/263580.263597
https://doi.org/10.1109/HPCA.2009.4798232
https://doi.org/10.1109/HPCA.2009.4798232
https://doi.org/10.1145/321694.321699
https://doi.org/10.1007/978-3-031-01743-8
https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2
https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2
https://www.anandtech.com/show/16463/snapdragon-888-vs-exynos-2100-galaxy-s21-ultra/3
https://www.anandtech.com/show/16463/snapdragon-888-vs-exynos-2100-galaxy-s21-ultra/3
https://doi.org/10.1145/1152154.1152178
https://doi.org/10.1145/3410463.3414628
https://doi.org/10.1145/2830772.2830800
https://doi.org/10.1109/ISCA.2016.46
https://doi.org/10.1109/MICRO.2016.7783764
https://doi.org/10.1145/2830772.2830812
https://doi.org/10.1145/2749469.2750390
https://doi.org/10.1145/2540708.2540730
https://doi.org/10.1145/2540708.2540730
https://doi.org/10.1145/264107.264207
https://doi.org/10.1109/IPDPS.2006.1639375
https://doi.org/10.1145/605397.605415
https://doi.org/10.1109/MICRO.2016.7783763
https://doi.org/10.14778/2856318.2856321
https://doi.org/10.14778/2856318.2856321
https://doi.org/10.1145/2540708.2540748
https://doi.org/10.1145/2540708.2540748
https://doi.org/10.1109/PACT.2001.953307
https://doi.org/10.1109/PACT.2001.953307
https://doi.org/10.1145/2628071.2628118
https://doi.org/10.1145/2628071.2628118
https://doi.org/10.1145/2751205.2751231
https://doi.org/10.1145/349299.349320

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Ajeya Naithani, Jaime Roelandts, Sam Ainsworth, Timothy M. Jones, and Lieven Eeckhout

Association, Berkeley, CA, 1–6. https://www.usenix.org/conference/hotpar11/
multicore-performance-optimization-using-partner-cores

[54] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. 2008.
NVIDIA Tesla: A Unified Graphics and Computing Architecture. IEEE Micro 28,
2 (March 2008), 39–55. https://doi.org/10.1109/MM.2008.31

[55] Jun Liu, Yuanrui Zhang, Ohyoung Jang, Wei Ding, and Mahmut Kandemir. 2012.
A Compiler Framework for Extracting Superword Level Parallelism. In Proceed-
ings of the 33rd ACM SIGPLAN Conference on Programming Language Design
and Implementation (Beijing, China) (PLDI ’12). Association for Computing Ma-
chinery, New York, NY, USA, 347–358. https://doi.org/10.1145/2254064.2254106

[56] Elliot Lockerman, Axel Feldmann, Mohammad Bakhshalipour, Alexandru
Stanescu, Shashwat Gupta, Daniel Sanchez, and Nathan Beckmann. 2020. Livia:
Data-Centric Computing Throughout the Memory Hierarchy. In Proceedings
of the Twenty-Fifth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Lausanne, Switzerland) (ASP-
LOS ’20). Association for Computing Machinery, New York, NY, USA, 417–433.
https://doi.org/10.1145/3373376.3378497

[57] Saeed Maleki, Yaoqing Gao, Maria J. Garzarán, Tommy Wong, and David A.
Padua. 2011. An Evaluation of Vectorizing Compilers. In Proceedings of the 2011
International Conference on Parallel Architectures and Compilation Techniques
(PACT ’11). IEEE Computer Society, Los Alamitos, CA, USA, 372–382. https:
//doi.org/10.1109/PACT.2011.68

[58] Pierre Michaud. 2016. Best-offset hardware prefetching. In 2016 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA). IEEE
Computer Society, Los Alamitos, CA, USA, 469–480. https://doi.org/10.1109/
HPCA.2016.7446087

[59] Sparsh Mittal. 2016. A Survey of Recent Prefetching Techniques for Processor
Caches. ACM Comput. Surv. 49, 2, Article 35 (aug 2016), 35 pages. https:
//doi.org/10.1145/2907071

[60] Andreas Moshovos, Dionisios N. Pnevmatikatos, and Amirali Baniasadi. 2001.
Slice-Processors: An Implementation of Operation-Based Prediction. In Pro-
ceedings of the 15th International Conference on Supercomputing (Sorrento, Italy)
(ICS ’01). Association for Computing Machinery, New York, NY, USA, 321–334.
https://doi.org/10.1145/377792.377856

[61] Todd Carl Mowry. 1995. Tolerating Latency through Software-Controlled Data
Prefetching. Ph. D. Dissertation. Stanford University, Computer Systems Labora-
tory, Stanford, CA, USA. UMI Order No. GAX94-29983.

[62] Onur Mutlu, Hyesoon Kim, and Yale N. Patt. 2005. Techniques for Efficient
Processing in Runahead Execution Engines. In Proceedings of the 32nd Annual
International Symposium on Computer Architecture (ISCA ’05). IEEE Computer
Society, Los Alamitos, CA, USA, 370–381. https://doi.org/10.1109/ISCA.2005.49

[63] Onur Mutlu, Hyesoon Kim, and Yale N. Patt. 2006. Address-Value Delta (AVD)
Prediction: A Hardware Technique for Efficiently Parallelizing Dependent Cache
Misses. IEEE Trans. Comput. 55, 12 (Dec 2006), 1491–1508. https://doi.org/10.
1109/TC.2006.191

[64] Onur Mutlu, Hyesoon Kim, and Yale N. Patt. 2006. Efficient Runahead Execution:
Power-Efficient Memory Latency Tolerance. IEEE Micro 26, 1 (Jan 2006), 10–20.
https://doi.org/10.1109/MM.2006.10

[65] Onur Mutlu, Hyesoon Kim, Jared Stark, and Yale N. Patt. 2005. On Reusing the
Results of Pre-Executed Instructions in a Runahead Execution Processor. IEEE
Computer Architecture Letters 4, 1 (Jan 2005), 2–2. https://doi.org/10.1109/L-
CA.2005.1

[66] Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt. 2003. Runahead
execution: an alternative to very large instruction windows for out-of-order
processors. In The Ninth International Symposium on High-Performance Com-
puter Architecture, 2003. HPCA-9 2003. Proceedings. IEEE Computer Society, Los
Alamitos, CA, USA, 129–140. https://doi.org/10.1109/HPCA.2003.1183532

[67] Ajeya Naithani, Sam Ainsworth, Timothy M. Jones, and Lieven Eeckhout. 2021.
Vector Runahead. In Proceedings of the 48th Annual International Symposium on
Computer Architecture (Virtual Event, Spain) (ISCA ’21). IEEE Computer Society,
Los Alamitos, CA, USA, 195–208. https://doi.org/10.1109/ISCA52012.2021.00024

[68] Ajeya Naithani, Sam Ainsworth, Timothy M. Jones, and Lieven Eeckhout. 2022.
Vector Runahead for Indirect Memory Accesses. IEEE Micro 42, 4 (jul 2022),
116–123. https://doi.org/10.1109/MM.2022.3163132

[69] Ajeya Naithani, Josué Feliu, Almutaz Adileh, and Lieven Eeckhout. 2019. Precise
Runahead Execution. IEEE Computer Architecture Letters 18, 1 (Jan 2019), 71–74.
https://doi.org/10.1109/LCA.2019.2910518

[70] Ajeya Naithani, Josué Feliu, Almutaz Adileh, and Lieven Eeckhout. 2020. Precise
Runahead Execution. In 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE Computer Society, Los Alamitos, CA, USA,
397–410. https://doi.org/10.1109/HPCA47549.2020.00040

[71] Agustín Navarro-Torres, Biswabandan Panda, Jesús Alastruey-Benedé, Pablo
Ibáñez, Víctor Viñals-Yúfera, and Alberto Ros. 2022. Berti: an Accurate Local-
Delta Data Prefetcher. In 2022 55th IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO-55). IEEE Computer Society, Los Alamitos, CA, USA,
975–991. https://doi.org/10.1109/MICRO56248.2022.00072

[72] Kyle J. Nesbit and James E. Smith. 2004. Data Cache Prefetching Using a Global
History Buffer. In Proceedings of the 10th International Symposium on High

Performance Computer Architecture (HPCA ’04). IEEE Computer Society, Los
Alamitos, CA, USA, 96. https://doi.org/10.1109/HPCA.2004.10030

[73] Quan M. Nguyen and Daniel Sanchez. 2020. Pipette: Improving Core Utilization
on Irregular Applications through Intra-Core Pipeline Parallelism. In 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE
Computer Society, Los Alamitos, CA, USA, 596–608. https://doi.org/10.1109/
MICRO50266.2020.00056

[74] Dorit Nuzman, Ira Rosen, and Ayal Zaks. 2006. Auto-Vectorization of Inter-
leaved Data for SIMD. In Proceedings of the 27th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Ottawa, Ontario, Canada)
(PLDI ’06). Association for Computing Machinery, New York, NY, USA, 132–143.
https://doi.org/10.1145/1133981.1133997

[75] Samuel Pakalapati and Biswabandan Panda. 2020. Bouquet of Instruction
Pointers: Instruction Pointer Classifier-based Spatial Hardware Prefetching.
In 2020 ACM/IEEE 47th Annual International Symposium on Computer Ar-
chitecture (ISCA). IEEE Computer Society, Los Alamitos, CA, USA, 118–131.
https://doi.org/10.1109/ISCA45697.2020.00021

[76] Vasileios Porpodas and Timothy M. Jones. 2015. Throttling Automatic Vector-
ization: When Less is More. In Proceedings of the 2015 International Conference
on Parallel Architecture and Compilation (PACT) (PACT ’15). IEEE Computer
Society, Los Alamitos, CA, USA, 432–444. https://doi.org/10.1109/PACT.2015.32

[77] Vasileios Porpodas, Alberto Magni, and Timothy M. Jones. 2015. PSLP: Padded
SLP Automatic Vectorization. In Proceedings of the 13th Annual IEEE/ACM In-
ternational Symposium on Code Generation and Optimization (San Francisco,
California) (CGO ’15). IEEE Computer Society, Los Alamitos, CA, USA, 190–201.
https://doi.org/10.1109/CGO.2015.7054199

[78] Stephen Pruett and Yale Patt. 2021. Branch Runahead: An Alternative to
Branch Prediction for Impossible to Predict Branches. In MICRO-54: 54th An-
nual IEEE/ACM International Symposium on Microarchitecture (Virtual Event,
Greece) (MICRO ’21). Association for Computing Machinery, New York, NY,
USA, 804–815. https://doi.org/10.1145/3466752.3480053

[79] Tanausú Ramírez, Alex Pajuelo, Oliverio Jesus Santana, Onur Mutlu, and Mateo
Valero. 2010. Efficient Runahead Threads. In Proceedings of the 19th International
Conference on Parallel Architectures and Compilation Techniques (Vienna, Austria)
(PACT ’10). Association for Computing Machinery, New York, NY, USA, 443–452.
https://doi.org/10.1145/1854273.1854328

[80] Tanausú Ramírez, Alex Pajuelo, Oliverio Jesus Santana, and Mateo Valero. 2008.
Runahead Threads to improve SMT performance. In 2008 IEEE 14th International
Symposium on High Performance Computer Architecture. IEEE Computer Society,
Los Alamitos, CA, USA, 149–158. https://doi.org/10.1109/HPCA.2008.4658635

[81] Ram Rangan, Neil Vachharajani, Manish Vachharajani, and David I. August. 2004.
Decoupled Software Pipelining with the Synchronization Array. In Proceedings
of the 13th International Conference on Parallel Architectures and Compilation
Techniques (PACT ’04). IEEE Computer Society, Los Alamitos, CA, USA, 177–188.
https://doi.org/10.1109/PACT.2004.1342552

[82] Amir Roth, Andreas Moshovos, and Gurindar S. Sohi. 1998. Dependence Based
Prefetching for Linked Data Structures. In Proceedings of the Eighth International
Conference on Architectural Support for Programming Languages and Operating
Systems (San Jose, California, USA) (ASPLOS VIII). Association for Computing
Machinery, New York, NY, USA, 115–126. https://doi.org/10.1145/291069.291034

[83] André Seznec. 2016. TAGE-SC-L Branch Predictors Again. In 5th JILP Work-
shop on Computer Architecture Competitions (JWAC-5): Championship Branch
Prediction (CBP-5) (Seoul, South Korea). INRIA HAL, rennes France, 1–4. https:
//inria.hal.science/hal-01354253

[84] Manjunath Shevgoor, Sahil Koladiya, Rajeev Balasubramonian, Chris Wilkerson,
Seth H. Pugsley, and Zeshan Chishti. 2015. Efficiently Prefetching Complex
Address Patterns. In Proceedings of the 48th International Symposium on Microar-
chitecture (Waikiki, Hawaii) (MICRO-48). Association for Computing Machinery,
New York, NY, USA, 141–152. https://doi.org/10.1145/2830772.2830793

[85] Zhan Shi, Akanksha Jain, Kevin Swersky, Milad Hashemi, Parthasarathy Ran-
ganathan, and Calvin Lin. 2021. A Hierarchical Neural Model of Data Prefetch-
ing. In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (Virtual, USA) (ASP-
LOS ’21). Association for Computing Machinery, New York, NY, USA, 861–873.
https://doi.org/10.1145/3445814.3446752

[86] Peng Sun, Giacomo Gabrielli, and Timothy M. Jones. 2021. Speculative Vec-
torisation with Selective Replay. In Proceedings of the 48th Annual International
Symposium on Computer Architecture (Virtual Event, Spain) (ISCA ’21). IEEE
Computer Society, Los Alamitos, CA, USA, 223–236. https://doi.org/10.1109/
ISCA52012.2021.00026

[87] Hikaru Takayashiki, Masayuki Sato, Kazuhiko Komatsu, and Hiroaki Kobayashi.
2019. A Hardware Prefetching Mechanism for Vector Gather Instructions.
In 2019 IEEE/ACM 9th Workshop on Irregular Applications: Architectures and
Algorithms (IA3). IEEE Computer Society, Los Alamitos, CA, USA, 59–66. https:
//doi.org/10.1109/IA349570.2019.00015

[88] Nishil Talati, Kyle May, Armand Behroozi, Yichen Yang, Kuba Kaszyk, Christos
Vasiladiotis, Tarunesh Verma, Lu Li, Brandon Nguyen, Jiawen Sun, John Magnus
Morton, Agreen Ahmadi, Todd Austin, Michael O’Boyle, Scott Mahlke, Trevor

https://www.usenix.org/conference/hotpar11/multicore-performance-optimization-using-partner-cores
https://www.usenix.org/conference/hotpar11/multicore-performance-optimization-using-partner-cores
https://doi.org/10.1109/MM.2008.31
https://doi.org/10.1145/2254064.2254106
https://doi.org/10.1145/3373376.3378497
https://doi.org/10.1109/PACT.2011.68
https://doi.org/10.1109/PACT.2011.68
https://doi.org/10.1109/HPCA.2016.7446087
https://doi.org/10.1109/HPCA.2016.7446087
https://doi.org/10.1145/2907071
https://doi.org/10.1145/2907071
https://doi.org/10.1145/377792.377856
https://doi.org/10.1109/ISCA.2005.49
https://doi.org/10.1109/TC.2006.191
https://doi.org/10.1109/TC.2006.191
https://doi.org/10.1109/MM.2006.10
https://doi.org/10.1109/L-CA.2005.1
https://doi.org/10.1109/L-CA.2005.1
https://doi.org/10.1109/HPCA.2003.1183532
https://doi.org/10.1109/ISCA52012.2021.00024
https://doi.org/10.1109/MM.2022.3163132
https://doi.org/10.1109/LCA.2019.2910518
https://doi.org/10.1109/HPCA47549.2020.00040
https://doi.org/10.1109/MICRO56248.2022.00072
https://doi.org/10.1109/HPCA.2004.10030
https://doi.org/10.1109/MICRO50266.2020.00056
https://doi.org/10.1109/MICRO50266.2020.00056
https://doi.org/10.1145/1133981.1133997
https://doi.org/10.1109/ISCA45697.2020.00021
https://doi.org/10.1109/PACT.2015.32
https://doi.org/10.1109/CGO.2015.7054199
https://doi.org/10.1145/3466752.3480053
https://doi.org/10.1145/1854273.1854328
https://doi.org/10.1109/HPCA.2008.4658635
https://doi.org/10.1109/PACT.2004.1342552
https://doi.org/10.1145/291069.291034
https://inria.hal.science/hal-01354253
https://inria.hal.science/hal-01354253
https://doi.org/10.1145/2830772.2830793
https://doi.org/10.1145/3445814.3446752
https://doi.org/10.1109/ISCA52012.2021.00026
https://doi.org/10.1109/ISCA52012.2021.00026
https://doi.org/10.1109/IA349570.2019.00015
https://doi.org/10.1109/IA349570.2019.00015

Decoupled Vector Runahead MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

Mudge, and Ronald Dreslinski. 2021. Prodigy: Improving the Memory Latency of
Data-Indirect IrregularWorkloads Using Hardware-Software Co-Design, In 2021
IEEE International Symposium on High-Performance Computer Architecture.
Proceedings - International Symposium on High-Performance Computer Architec-
ture 2021-February, 654–667. https://doi.org/10.1109/HPCA51647.2021.00061

[89] Sam Ainsworth Timothy and M. Jones. 2017. Software prefetching for indirect
memory accesses. In CGO 2017 - Proceedings of the 2017 International Symposium
on Code Generation and Optimization. IEEE Computer Society, Los Alamitos,
CA, USA, 305–317. https://doi.org/10.1109/CGO.2017.7863749

[90] Kim-Anh Tran, Trevor E. Carlson, Konstantinos Koukos, Magnus Själander,
Vasileios Spiliopoulos, Stefanos Kaxiras, and Alexandra Jimborean. 2017. Clair-
voyance: Look-Ahead Compile-Time Scheduling. In Proceedings of the 2017
International Symposium on Code Generation and Optimization (Austin, USA)
(CGO ’17). IEEE Computer Society, Los Alamitos, CA, USA, 171–184. https:
//doi.org/10.1109/CGO.2017.7863738

[91] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. 1995. Simultaneous
Multithreading: Maximizing on-Chip Parallelism. In Proceedings of the 22nd
Annual International Symposium on Computer Architecture (S. Margherita Ligure,
Italy) (ISCA ’95). Association for Computing Machinery, New York, NY, USA,
392–403. https://doi.org/10.1145/223982.224449

[92] Neil Vachharajani, Ram Rangan, Easwaran Raman, Matthew J. Bridges, Guil-
herme Ottoni, and David I. August. 2007. Speculative Decoupled Software
Pipelining. In 2007 16th International Conference on Parallel Architectures and
Compilation Techniques. IEEE Computer Society, Los Alamitos, CA, USA, 49–59.
https://doi.org/10.1109/PACT.2007.66

[93] Perry H. Wang, Jamison D. Collins, Hong Wang, Dongkeun Kim, Bill Greene,
Kai-Ming Chan, Aamir B. Yunus, Terry Sych, Stephen F. Moore, and John P.
Shen. 2004. Helper Threads via Virtual Multithreading. IEEE Micro 24, 6 (nov
2004), 74–82. https://doi.org/10.1109/MM.2004.75

[94] Zhenlin Wang, Doug Burger, Kathryn S. McKinley, Steven K. Reinhardt, and
Charles C. Weems. 2003. Guided Region Prefetching: A Cooperative Hard-
ware/Software Approach. In Proceedings of the 30th Annual International Sym-
posium on Computer Architecture (San Diego, California) (ISCA ’03). Asso-
ciation for Computing Machinery, New York, NY, USA, 388–398. https:

//doi.org/10.1145/859618.859663
[95] Hao Wu, Krishnendra Nathella, Joseph Pusdesris, Dam Sunwoo, Akanksha Jain,

and Calvin Lin. 2019. Temporal Prefetching Without the Off-Chip Metadata.
In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Mi-
croarchitecture (Columbus, OH, USA) (MICRO ’52). Association for Computing
Machinery, New York, NY, USA, 996–1008. https://doi.org/10.1145/3352460.
3358300

[96] Hao Wu, Krishnendra Nathella, Dam Sunwoo, Akanksha Jain, and Calvin Lin.
2019. Efficient Metadata Management for Irregular Data Prefetching. In Pro-
ceedings of the 46th International Symposium on Computer Architecture (Phoenix,
Arizona) (ISCA ’19). Association for Computing Machinery, New York, NY, USA,
449–461. https://doi.org/10.1145/3307650.3322225

[97] Chia-Lin Yang and Alvin R. Lebeck. 2002. A Programmable Memory Hierarchy
for Prefetching Linked Data Structures. In Proceedings of the 4th International
Symposium on High Performance Computing (ISHPC ’02). Springer-Verlag, Berlin,
Heidelberg, 160–174. https://doi.org/10.1007/3-540-47847-7_15

[98] Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, and Srinivas Devadas.
2015. IMP: Indirect Memory Prefetcher. In Proceedings of the 48th International
Symposium on Microarchitecture (Waikiki, Hawaii) (MICRO-48). Association for
Computing Machinery, New York, NY, USA, 178–190. https://doi.org/10.1145/
2830772.2830807

[99] Chao Zhang, Yuan Zeng, John Shalf, and Xiaochen Guo. 2020. RnR: A Software-
Assisted Record-and-ReplayHardware Prefetcher. In 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE Computer Society,
Los Alamitos, CA, USA, 609–621. https://doi.org/10.1109/MICRO50266.2020.
00057

[100] Dan Zhang, Xiaoyu Ma, Michael Thomson, and Derek Chiou. 2018. Minnow:
Lightweight Offload Engines for Worklist Management and Worklist-Directed
Prefetching. In Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (Williams-
burg, VA, USA) (ASPLOS ’18). Association for Computing Machinery, New York,
NY, USA, 593–607. https://doi.org/10.1145/3173162.3173197

https://doi.org/10.1109/HPCA51647.2021.00061
https://doi.org/10.1109/CGO.2017.7863749
https://doi.org/10.1109/CGO.2017.7863738
https://doi.org/10.1109/CGO.2017.7863738
https://doi.org/10.1145/223982.224449
https://doi.org/10.1109/PACT.2007.66
https://doi.org/10.1109/MM.2004.75
https://doi.org/10.1145/859618.859663
https://doi.org/10.1145/859618.859663
https://doi.org/10.1145/3352460.3358300
https://doi.org/10.1145/3352460.3358300
https://doi.org/10.1145/3307650.3322225
https://doi.org/10.1007/3-540-47847-7_15
https://doi.org/10.1145/2830772.2830807
https://doi.org/10.1145/2830772.2830807
https://doi.org/10.1109/MICRO50266.2020.00057
https://doi.org/10.1109/MICRO50266.2020.00057
https://doi.org/10.1145/3173162.3173197

	Abstract
	1 Introduction
	2 Background
	2.1 Runahead Execution
	2.2 Indirect Memory Accesses
	2.3 Vector Runahead

	3 Motivation
	4 DVR Microarchitecture
	4.1 Discovery Mode
	4.2 Vector-Runahead Subthread Operation
	4.3 Nested Vector Runahead
	4.4 Hardware Overhead

	5 Experimental Setup
	6 Evaluation
	6.1 Performance
	6.2 Performance Breakdown
	6.3 Memory-Level Parallelism
	6.4 Effectiveness
	6.5 Core Size Sensitivity Analysis

	7 Related Work
	7.1 Helper Threads and Precomputation
	7.2 Runahead Techniques
	7.3 Auto-Vectorization and SW Reordering
	7.4 Architecturally Visible Prefetching
	7.5 Microarchitectural Prefetchers

	8 Conclusion
	Acknowledgments
	References

