
2025 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

MASCOT: Predicting Memory Dependencies and
Opportunities for Speculative Memory Bypassing

Karl H. Mose†, Sebastian S. Kim‡, Alberto Ros‡,
Timothy M. Jones†, Robert D. Mullins†

University of Cambridge†, University of Murcia‡
km781@cam.ac.uk, sebastiansumin.kim@um.es, aros@ditec.um.es,

timothy.jones@cl.cam.ac.uk, robert.mullins@cl.cam.ac.uk

Abstract—Memory-dependence prediction (MDP) increases
instruction-level parallelism (ILP) by allowing load instructions
to be issued even when addresses in the store queue are unknown.
The predictor determines whether a load will alias with a
prior store, delaying issue when a dependence is predicted.
Speculative memory bypassing (SMB) further enhances ILP by
short-circuiting a predicted dependence to forward the value
written by a store to a load that is predicted to depend on
it, without their addresses necessarily being known. This breaks
data dependencies on the load and store addresses, allowing loads
to obtain their values much earlier than they normally would.

To obtain benefits, dependencies must be predicted with high
accuracy. Furthermore, the benefits are skewed, with false neg-
atives being more costly for performance than false positives for
MDP, since the former requires squashing when the misprediction
is identified, whereas the latter only delays the issue of indepen-
dent loads. For SMB, on the other hand, false positives are very
costly, as they require squashing, whereas false negatives have
little impact in the presence of an accurate memory dependence
predictor. Due to these differing requirements, the designs of
predictors for these mechanisms have diverged.

In this paper, we propose MASCOT, a novel predictor capable
of performing both MDP and SMB. MASCOT is inspired by
the TAGE predictor, widely used in branch prediction. Although
TAGE has proven effective as a universal predictor structure, we
demonstrate how prior TAGE-based MDP or SMB predictors
suffer from inaccuracy due to not learning patterns of non-
dependence. By learning the context for dependencies as well
as non-dependencies, MASCOT achieves sufficiently low false
negatives and false positives to perform MDP and SMB, while
at the same time uses less space than existing designs that only
perform MDP or SMB.

Our simulation results show that for SPEC CPU 2017, MAS-
COT used for MDP alone yields an IPC gain of 0.4 % over the
previous state-of-the-art predictor, on average, at the same size.
When used for both MDP and SMB, it yields an increase in
IPC of 1.9 % on average, with peak gains of 26 %. A compacted
version of MASCOT, MASCOT-OPT, achieves similar numbers
within 0.1 % while using just 10.1 KiB of space.

I. INTRODUCTION

High-performance out-of-order superscalar processors can
increase instruction-level and memory-level parallelism (ILP
and MLP) by speculatively executing load instructions early,
before the addresses of all prior stores in program order are
known. There are two opportunities to increase performance
using this approach. In the first, loads that are predicted not
to have a dependence on any older in-flight store instruction
can be issued immediately, accessing the data cache. In the

second, loads that are predicted to have a dependence with a
specific prior store instruction can obtain their value directly
from that store as soon as this value has been computed,
irrespective of the addresses having been calculated. In both
instances, loads can potentially obtain their value much earlier
than otherwise, but must be squashed and re-executed if the
speculative execution is found to be wrong.

In the past, researchers have taken advantage of these two
opportunities, generally using separate, unrelated predictor
schemes. Memory-dependence prediction (MDP) speculates
on whether a load aliases a prior store [6], [11], [19], [28],
[31]. It is important in this scenario to be liberal in making
predictions—it is far more costly to predict a load to be non-
dependent, issue it and its dependent instructions, and have to
squash them all on a misprediction, than it is to hold the load
up unnecessarily until all prior store instructions have their
addresses known. Therefore memory-dependence predictors
are historically skewed towards keeping the false-negative rate
low, erring on the side of predicting a dependence when there
is none, so as to keep the number of squashes low [6], [28],
[31].

The complementary scheme is speculative memory bypass-
ing (SMB) [16], [18], [26], [30], which predicts the exact
older store on which a load depends (if there is one) and
then forwards the value that would be stored to the load as
soon as it is ready. Here, the load and its dependencies must be
squashed if the predictor identifies the wrong store. Therefore,
in this situation, predictors are skewed towards keeping the
false-positive rate low, since predicting no dependence results
in comparatively little overhead as long as the load is otherwise
stalled correctly.

Due to this imbalance, prior work has considered predicting
MDP or SMB opportunities separately. However, this leads to
unnecessary overhead in predictor area and missed opportuni-
ties to improve ILP.

To address this, we propose MASCOT (Memory-dependence
And Short-Circuit Optimising TAGE), a novel predictor for
both MDP and SMB. MASCOT takes inspiration from TAGE,
widely used for branch prediction [22]–[25], explored sepa-
rately in the context of MDP [19] and SMB [18]. MASCOT
records load-store dependencies and context-dependent non-
dependencies, achieving state-of-the-art performance in terms
of both false dependencies and missed dependencies. This

For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) license to any Author
Accepted Manuscript version arising.

Store addr

Load addr

(a) Memory dependence
and bypass opportunity

(b) Memory dependence
but no bypass opportunity

(c) No memory dependence
or bypass opportunity

Fig. 1. Examples of memory dependencies and bypass opportunities.

accuracy in both directions makes it uniquely suited for
SMB. While SMB has been previously considered as not
worth the effort given a good enough memory-dependence
predictor [12], having a predictor that provides highly accurate
predictions for both kinds of mis-speculation makes SMB
much cheaper to implement, as it can solve both MDP
and SMB using less space than other predictors that would
traditionally solve just one of the two.

The key innovation in MASCOT is an optimised alloca-
tion policy that records context-dependent non-dependencies,
alongside load-store dependencies. When a TAGE predictor
used for branch prediction mispredicts, it allocates a new entry
with the correct direction in the table with the next longest
global history, so as to capture the additional context necessary
to predict the branch the next time around. However, existing
uses of TAGE for MDP only keep track of dependencies
between loads and prior stores. They only allocate in the next
table when a load’s dependence is mispredicted but it actu-
ally depends on a different prior store. MASCOT differently
allocates a new entry in the next table to record situations
where the load does not depend on any store, using the global
branch history as context to record this non-dependence. This
drastically reduces the misprediction rate of false dependencies
and allows the predictor to be more aggressive when predicting
true dependencies.

Our simulation results show that MASCOT used solely as
a memory-dependence predictor manages to beat the previ-
ous state-of-the-art predictor in PHAST [11] on the SPEC
CPU2017 benchmarks, reducing MPKI by 70 % on average,
and increasing IPC by 0.4 %. We further show that MASCOT
can easily be extended to predict SMB opportunities, increas-
ing IPC by a total of 1.9 % over PHAST. A size-optimised
version of MASCOT, MASCOT-OPT, achieves a 1.8 % speedup
over PHAST, while using just 10.1 KiB of space compared to
14.5 KiB for PHAST.

In summary, our contributions are:

• A TAGE-like predictor with an optimised allocation
policy that learns context-sensitive non-dependencies (as
well as dependencies) to achieve much higher accuracy
than previous memory-dependence predictors.

• Unifying MDP and SMB into a single high-accurate
predictor for false positives and false negatives to reduce
memory overhead.

• A tuning strategy to reduce the area required by a TAGE-
like predictor while maintaining high performance.

II. BACKGROUND

A. Memory-dependence prediction

Memory-dependence prediction (MDP) is an optimisation
technique that allows the processor to speculate whether a load
depends on an earlier in-flight store. When a predictor says
that there is not a prior depending store, then the load can be
issued as soon as its address has been calculated, rather than
waiting for all prior stores to also obtain their addresses. If the
predictor incorrectly predicts that a load has no dependencies
on in-flight stores, the load may execute before its dependent
store is ready, leading either to a spurious memory access
or forward from an outdated store in the store queue, both
scenarios requiring a squash. Alternatively, if the predictor
says that a load is dependent on a store that it does not actually
depend on then the load may stall unnecessarily. The penalty
for the latter is much smaller (though not insignificant), and
because of this, memory-dependence predictors have generally
been designed to have many fewer false negatives (missed
dependencies) than false positives (erroneous dependencies).

One of the earliest examples of MDP is Store Sets, intro-
duced by Chrysos and Emer [6]. In this scheme, each load is
allocated a store set, which contains the PCs of all stores that
the load was previously dependent on. When a load enters the
pipeline, it accesses its store set to look for dependent stores.
If any of those are in flight, the load is delayed.

TAGE-MDP, first mentioned in a paper by Perais et al. [20],
and most thoroughly explained by Kim and Ros [11], modifies
the TAGE branch predictor to also predict memory depen-
dencies. It is a relatively simple augmentation of TAGE,
repurposing the 3-bit saturating counter to predict the store
distance, and adding a single bit u to encode usefulness. If
u is not 0, the entry can be used for predicting a memory
dependence.

Recently, Kim and Ros developed the PHAST predic-
tor [11]. PHAST employs a storage structure similar to TAGE,
organising entries into tables with increasing context length.
When making a prediction, all tables are looked up in parallel,
using a hash of the load PC with increasing lengths of global
history as the index and picking the entry from the table
with the longest global history. PHAST entries have a 7-bit
distance field, a 16-bit tag, a 4-bit usefulness counter and a
2-bit LRU field. It uses a unique allocation strategy, choosing
to allocate to a given table based on the number of branches
in between a given load-store pair. PHAST achieves state-of-
the-art performance as a memory-dependence predictor.

pe
rlb

en
ch

1
pe

rlb
en

ch
2

pe
rlb

en
ch

3
gc

c1
gc

c2
gc

c3
gc

c4
gc

c5
bw

av
es

1
bw

av
es

2
bw

av
es

3
bw

av
es

4
mcf

ca
ctu

BS
SN

na
md

pa
res

t
po

vra
y

lbm
om

ne
tpp wr

f
xa

lan
cb

mk
x2

64
1

x2
64

2
x2

64
3

ble
nd

er
ca

m4
de

ep
sje

ng
im

ag
icklee
lana
b

ex
ch

an
ge

2
fot

on
ik3

d
rom

s
xz

1
xz

2
xz

3
Ge

om
ea

n

Benchmarks

0%

10%

20%

30%

40%

Pe
rc

en
ta

ge
Percentage of bypassing opportunitiesDirectBypass NoOffset Offset MDP Only

Fig. 2. Percentage of loads that have a dependence with a previous store.

B. Speculative memory bypassing

Speculative memory bypassing (SMB) is similar to MDP in
that the processor speculates that a load depends on an earlier
store. However, rather than stalling the load, SMB forwards the
value that will be stored to memory directly to the predicted-
dependent load without necessarily having computed load or
store addresses [30].

Note that there is a subtle difference in the meaning of
dependency here. In the context of MDP, a dependence means
that the load may not execute before the store. For SMB,
a dependence means that the store’s source value provides
the full value for the load. A partial load-store dependence,
where a load might, for example, load half the value of a
previous store and the remainder from memory, is a memory
dependence but does not provide an opportunity for SMB.

Fig. 1 shows the three different cases that can occur when
considering a load and a single prior store, where each box
represents an address (red for a store and blue for a load), the
length of the box represents the size of the access, and the
placement of the boxes relative to one another represents their
offsets in memory. A dependence arises when the memory
accesses of the store and the load overlap (even with a single
byte). Scenario (a) is the only situation with a dependence
suitable for SMB, whereas there is still a dependence between
the instructions in scenario (b), but it does not offer an
opportunity for SMB as the load cannot be fully fed by the
store.

1) Practicalities of SMB: Even with a dependence between
a load and a prior store, there are multiple different scenarios
in which forwarding can take place and logical operations
that must be applied to a value to forward it correctly. The
opportunities for SMB in our workloads are evaluated in fig. 2,
using the experimental setup described in section V. Here,
DirectBypass means that the prior store and load addresses and
sizes are identical, so the load can directly bypass memory to
get the stored value. NoOffset means that the load and store
addresses are the same, but the store is larger than the load,
so the value should be truncated during memory bypassing.
Offset corresponds to a situation where the load can obtain the
whole value through memory bypassing from a prior store, but

its address starts at an offset from the store’s address, which
requires shifting and potentially truncating the value during
memory bypassing. Finally, MDP Only refers to a memory
dependence where the load would get only part of its data
from the prior store and the rest from the memory system
(or another, older in-flight store). Each bar shows a histogram
of the dependencies, as a percentage of the number of loads
executed.

As can be seen, although there are opportunities for SMB
with a smaller load size and when the load is not aligned to the
store, the overwhelming fraction of opportunities occur in the
simple case where the load and store have the same size and
are aligned. Note that this fraction varies by benchmark, with
some, such as perlbench and lbm, having around 40 % of loads
with SMB opportunities, whereas others, such as bwaves and
wrf, having just around 5 % of loads with SMB opportunities.

2) Prior SMB schemes: There are many examples in the
literature of SMB, with the two most notable examples de-
scribed here.

In 2006, Sha et al. proposed NoSQ, which maps each
dynamic load to its dependent store [26]. NoSQ proposes to
remove the store queue and instead relies only on predictive
bypassing. If the predictor does not predict a bypassing oppor-
tunity, the load is stalled until all prior stores have completed,
meaning that NoSQ is effectively an SMB-only predictor.
The NoSQ predictor is based on the GShare predictor [14],
where one of its two predictor tables is XORed with a global-
history vector, preferring the context-sensitive prediction when
available. Each entry has a 6-bit store distance, a 3-bit offset
used for misaligned addresses, 2-bits used for the store size,
a 7-bit confidence counter, and a 22-bit tag.

NoSQ is one of the most sophisticated implementations
of SMB that we are aware of, even covering cases such as
partial-word bypassing, where an offset between a load and
store address might require the microarchitecture to shift, sign
extend or truncate the bypassed value.

Perais et al. provide a detailed implementation for physical-
register sharing to enable optimisations such as SMB [17],
[18]. Their IDist predictor is a TAGE-based predictor, which
uses 2, 5, 11, 27 and 64 bits of global branch history combined
with 16 bits of path history and the load PC. To minimise
squashes, IDist only makes predictions when it is highly
confident. Because of this, it is not suitable for memory-
dependence prediction, and thus the authors implement it
in conjunction with a 4 KiB store-sets predictor [6] for that
purpose.

III. CHALLENGES OF USING TAGE AS A MEMORY
DEPENDENCE PREDICTOR

TAGE has previously been used for both MDP and SMB
separately, with notable examples being MDP-TAGE [19] and
IDist [17]. Yet dealing with false dependencies creates a
decision when designing memory-dependence predictors that
does not occur in branch prediction, meaning that TAGE
cannot be used directly for MDP to the best of its ability.

Load PC Bit 0

####

Depends on
store 2

####

.

.

.

####

####

No dependence

####

.

.

.

####

Hash

Table 1 Table 2

####

Depends on
store 2

####

.

.

.

####

Hash

Table 3

Global history: 11100110

Load PC Bits 10Load PC

1 2 3

Fig. 3. MASCOT allocates non-dependence entries in higher-context entries
when false dependencies are identified 1 meaning a non-dependence can be
predicted next time 2 . Future dependencies can also create entries in higher-
context tables 3 .

If a memory-dependence predictor falsely predicts a non-
dependent load to be dependent on a prior store, the designer
is faced with a challenge. If the load is dependent on a different
prior store, a new entry can be allocated as usual in TAGE, by
creating that new entry in the table corresponding to the next-
longest global history. However, if the load is not dependent
on any prior store, the options are less obvious. It is likely
that the context used in making the erroneous dependence
prediction was inadequate (hence the misprediction), and one
might wish to allocate a dependence in a higher-context table,
but at the moment of misprediction, the longer history of the
conflict is not available. Instead, the current global history has
resulted in the load being non-dependent. To our knowledge,
all TAGE-based memory-dependence predictors so far have
opted to store only dependencies, and designers have opted to
deal with this situation by decrementing the usefulness of the
mispredicting entries. This leads to two issues: (1) learning
a non-dependency can take a long time, especially for big
counters; and (2) this does not strongly signal to the predictor
that it has inadequate information.

A. Example

Consider, for example, a scenario where a load’s depen-
dency on a specific prior store distance is determined by the
most recent branch in the global history, where if it is taken
(70 % probability), the load is dependent on the store, but if it
is not taken (30 % probability), it is non-dependent. Assume
that the predictor has allocated an entry for this dependence
in its first table, which is indexed using only the PC and no
global history. The predictor now faces the following issues.

Prediction persistence. Given that the load is always either
correctly predicted to be dependent, or otherwise fully

non-dependent, there is no occasion where it is obvious
to allocate a new entry.

Slow confidence adjustment. One approach might be to al-
locate a new entry with the same dependency if the
current entry is found to have confidence 0. However,
using a 3-bit counter initialised to the maximum value,
it would take an expected 1,625 predictions1 before the
entry reaches confidence 0.

Eviction risk. Even with the scheme mentioned above, when
the counter reaches zero, the entry also becomes vul-
nerable to eviction, reducing the likelihood of growing
the prediction pattern to capture the branch-dependent
behaviour.

Despite these issues, TAGE generally performs well if used
for MDP or SMB alone. For MDP, this stems from the
relatively low penalty from false dependencies in traditional
memory-dependence prediction, since false dependencies lead
only to loads being issued later than if the non-dependence
had been identified. As long as the predictor allocates when
a new load-store dependence is realised, false negatives are
kept low. For SMB, predictors can filter prediction from any
entries that do not have perfect confidence.

However, both of these approaches lead to sub-optimal
performance and missed opportunities. We instead propose,
upon a false dependency, to allocate a new entry within the
predictor with a bigger context length that encodes a non-
dependency.

Revisiting our example, and illustrated in fig. 3, the initial
state is shown at point 1 , where only the load’s PC is used
to access the first table that stores the dependent prior store.
When the predictor falsely predicts a dependence, we will
allocate a new entry in the next table, hashing the load PC
and the branch history, which includes the not-taken bit from
the most recent branch, to create the index, shown at 2 .
Now, when the branch is taken, the predictor will hit in the
first table, correctly identifying a dependence with the prior
store, but when the branch is not taken the predictor will hit in
the next, correctly identifying no dependence. Later, if there
are situations where this non-dependency entry also causes
mispredictions, then a further entry can be created in a higher-
context table 3 .

B. Discussion
Prior MDP and SMB predictors have opted to only track

dependencies between loads and stores. We liken this to branch
target prediction, where predictors only track branch targets
when branches are taken. However, because of this, branch
target prediction is only effective in the presence of a branch
direction predictor that tracks the patterns of branches both
when they’re taken and not taken, and uses this to predict
branch directions. Similarly, a memory-dependence predic-
tor that only tracks the patterns of load-store dependencies
(and not non-dependencies) will struggle to accurately predict
whether there exists a dependency or not.

1This value was obtained by creating Markov chains and calculating the
predictions required for the counter to reach 0.

Fig. 4. Pipeline with additions for MASCOT showing where predictions are made and used.

One solution would be to design a TAGE-like predictor
that tracks dependencies as well as non-dependencies for
predicting whether or not a load is dependent in conjunction
with a traditional memory-dependence predictor for predicting
the distance. However, if the memory-dependence predictor
itself is based on TAGE, this is unnecessary, as the two
predictors can be merged if we allow for entries to also predict
non-dependencies.

As an example, the reason that ITTAGE and TAGE are kept
separate in branch prediction is that TAGE entries are much
smaller, and can be used to predict direct branches without
consulting ITTAGE. In the analogy, all loads are indirect
branches.

Allocating non-dependencies has the added benefit of more
aggressively growing the dependent patterns as well. Where
previous TAGE-style memory-dependence predictors are likely
to keep an entry that even has a slightly higher accuracy than
50 % of being correct and otherwise non-dependent, in this
scenario our predictor will continually allocate new entries.
We argue that this is critical: traditional TAGE likely owes
much of its performance to always allocating a new entry after
a misprediction.

IV. MASCOT

We propose MASCOT, a predictor inspired by TAGE to
tackle memory-dependence prediction as well as speculative
memory bypassing. MASCOT is capable of tracking depen-
dencies as well as non-dependencies, yielding high accuracy
and low rates of both false positives and false negatives. We
give an overview of MASCOT in section IV-A and describe
its structure in section IV-B. Section IV-C then describe how
MASCOT allocates entries and section IV-D provides details
of how it tracks non-dependencies.

A. Overview

Fig. 4 shows a diagram of how MASCOT is incorporated
into an out-of-order superscalar pipeline. When an instruction
is decoded its instruction address is sent to MASCOT to make a
prediction, which becomes available later once the instruction
has been through the processor’s frontend. MASCOT makes a
three-way prediction: (1) no dependence on any prior store;
(2) a dependence on a specified prior store, but no opportunity
for speculative memory bypassing (MDP); (3) a dependence

on a specified prior store and the value can be bypassed
(SMB). These correspond to the left-hand side of fig. 5.

In case (1), the load can issue as soon as its address is
known. In case (2), the load must wait for the specified prior
store to obtain its address. At this point, the load issues,
computes its address, and the dependence is checked. Finally,
in case (3), the load can obtain its value through memory
bypassing as soon as it has been calculated. In all cases,
dependencies between load instructions and prior stores are
identified as usual through snooping of the load and store
queues. At commit, this dependence information is sent back
to MASCOT to update its entries.

B. Predictor structure

Similar to TAGE, MASCOT has an array of tables that
use increasing sizes of global history. Each table is 4-way
associative, to tolerate some conflicts between entries with the
same index. For each table, the index and tag are computed by
folding the load PC and increasing lengths of the global branch
and path history, as shown in fig. 3. The default configuration
of MASCOT uses histories of [0, 2, 4, 8, 16, 32, 64, 128]
branches respectively with 512 entries in each table. We use
one bit to encode a taken or not taken branch, and for indirect
branches we fold the target to 5 bits.

MASCOT makes a prediction for each load in the decode
stage. The tables are searched in parallel, and the entry
from the highest-context table that has a match is used for
prediction. When the predictor finds no matching entry it
will default to predicting a non-dependency (termed the base
predictor).

Each entry (shown in fig. 6) has a 7-bit distance field, a tag
field (default 16 bits) and two separate saturating counters: a 3-
bit usefulness counter that indicates the confidence of the entry
in predicting a memory dependence with the given distance,
and a 2-bit bypass counter that indicates the confidence of the
entry in predicting speculative memory bypassing. The sizes
of counters and the global history lengths were selected via a
grid-based sensitivity study. This means that the total predictor
size (discarding logic) comes to 14 KiB.

A distance field of all 0s indicates that the entry is non-
dependent (i.e., there is no dependence on any prior store),
whereas any other value encodes an offset into the store queue.
A value of 1, for example, means that the load depends on the

Hit in MASCOT?

No dependence Distance == 0?

No dependenceBypassing == 3 &
Usefulness == 7?

MDP SMB

Yes

No

No

No dependence

Conflict found?

Squash and allocate
dependent entry Commit as correct

No Yes

Yes

Yes

No

MDP

Conflict found?

Squash and allocate
dependent entry

Commit as correct

No Yes

SMB

Conflict found?

Squash and allocate
dependent entry

No Yes

Dependence with
predicted store?

Yes

Squash and allocate
non-dependent entry

No

Commit as correct

Dependence with
predicted store?

YesNo

Commit and allocate
non-dependent entry

Fig. 5. Decisions tree of predictions made by MASCOT (left-hand side) and the corresponding actions for each prediction once dependencies have been
calculated (right-hand side). MASCOT predicts either no dependence, a dependence with a prior store (MDP) or a dependence with speculative memory
bypassing (SMB). If a conflict is later found (where a conflict is defined as a dependence with a different store than the one predicted) then the load and
its dependents must be squashed. For SMB, squashing must also occur if there was no dependence (since the load erroneously obtained its value through
memory bypassing) and MASCOT allocates a non-dependency entry to avoid the false dependence the next time the load executes with the same context. For
MDP, in the same situation there is no need to squash but an opportunity for performance improvement was lost.

Tag Distance Usefulness Bypassing

16 bits 7 bits 3 bits 2 bits

Fig. 6. MASCOT entry structure consisting of tag and distance fields and
two counters (28 bits total). Distance corresponds to the prior store that a
load will depend on, or 0 to encode a non-dependency. Usefulness captures
the confidence for MDP and the bypassing counter is confidence for SMB.

first store prior to the load in program order. Whenever the
distance field is not zero, a memory dependence prediction is
made regardless of the value of the usefulness field, whereas
speculative memory bypassing is only predicted if both the
usefulness and bypassing counters are saturated. Only entries
with a usefulness counter at 0 may be evicted.

Entries are updated when a load is committed. When
an entry correctly predicts a memory dependence the use-
fulness counter is incremented. Similarly, when there is a
bypass opportunity correctly predicted, the bypass counter is
incremented. When the entry predicts an incorrect memory
dependence, the usefulness counter is decremented, and when
the entry incorrectly predicts a bypassing opportunity, the
bypass counter is reset to 0. This means that MASCOT is ag-
gressive in predicting memory dependencies and conservative
in taking advantage of SMB. Both are important to reduce the
chances of mispredictions and their associated overheads from
squashing.

C. Allocation

Like TAGE, MASCOT allocates entries on mispredictions,
using lower-context tables first. Upon a misprediction from
the base predictor (that always predicts a non-dependency),
a dependent entry is allocated in the smallest-history table,
which we can call N0, with the distance set depending on the
conflicting store. Dependent entries are always allocated with
a usefulness of 6, and non-dependent entries (described more
in section IV-D) are allocated with a usefulness of 2.

There are three types of misprediction that will lead to an
allocation in a table with a longer history. First, when a load
is predicted not to depend on any prior store but does have
a dependence on one. Second, when a load is predicted to

depend on a particular prior store but actually conflicts with a
different one (where either the predicted store has the wrong
address, or the conflict is with a younger store). Finally, when
a load is predicted to depend on a prior store but no conflicts
are detected. In the first two cases, the new entry contains the
correct distance for the conflicting store. In the latter case, a
non-dependency entry is allocated. These different scenarios
can be seen in the right-hand side of fig. 5.

MASCOT’s allocation strategy is tuned to be aggressive in
its use of table entries. If a misprediction is made based on an
entry found in table Ni−1, MASCOT will attempt to allocate
to the next table ordered by length of global history, Ni.
When allocating to a particular table, Ni, if the allocation
fails (i.e., all entries in the relevant set have a usefulness
greater than 0), then the predictor will attempt allocation in
table Ni+1. Should allocation in table Ni+1 fail, it will try
in Ni+2, and so on. Given that allocation to Ni+1 failed,
regardless of whether an allocation was made to a bigger
table or not, all four entries in table Ni have their usefulness
counters decremented, but those in subsequent tables do not.
This try-again style allocation policy means that MASCOT can
make good use of its limited space, and the frequent usefulness
decrements mean that stale entries do not live long.

We did not find any meaningful changes in performance
from periodically decrementing all usefulness counters, despite
this being a common optimisation across TAGE-like predic-
tors. We suspect that this is a combination of the tables being
4-way associative as well as the above allocation policy. Every
time an entry fails to allocate, the confidence of four entries
is decremented, which likely helps to clear out the predictor.

D. Tracking non-dependencies

The power of MASCOT compared to other TAGE-like
predictors lies in its ability to record instances of what we call
conditional non-dependencies. While there are an effectively
infinite number of non-dependencies to track (i.e., between
every load and store where there is not a dependence), we
only track non-dependencies for PCs where we would have
otherwise predicted a dependence. Compared to prior memory-

dependence predictors that generally rely on ‘forgetting’ pre-
dictions rather than learning these edge-cases, MASCOT can
quickly adapt to program behaviour to learn false dependen-
cies, rather than waiting for a counter to decrement sufficiently.

E. Speculative memory bypassing

SMB has been thoroughly explored in the literature [16],
[18], [26], [30] with a variety of schemes to achieve bypassing.
MASCOT operates independently of the specific SMB tech-
niques employed, and can be implemented in any architecture
that supports SMB in some form.

Given that MASCOT conservatively handles SMB, the by-
passing counter is initially set to 1 when a new conflict
is allocated, provided it is a potential bypassing scenario;
otherwise, the counter is set to 0. In both cases, no bypassing
is predicted until the counter saturates. If subsequent instances
of this prediction continue to indicate bypassing opportunities,
the counter increments by one, or resets to zero if not.

We discuss our implementation of SMB further in the
section V, but MASCOT is designed for any microarchitecture
that permits bypassing between stores and loads with no
address offset (i.e., the addresses are the same), although the
load size can be smaller than the store. As fig. 2 shows, these
represent the vast majority of bypassing opportunities seen in
our workloads. Nevertheless, MASCOT can be easily extended
to support bypassing with offsets by incorporating a shifting
field.

F. Tuning the predictor

Within MASCOT there are multiple parameters to tune to
increase the performance or decrease the area of the predictor.
Despite TAGE predictors being ubiquitous, there exists little
literature for fine-tuning them. In section VI-D we focus on
tuning the length of the tags and the sizes of the tables
within MASCOT using the following method. We begin with
a candidate predictor with the default table sizes (described
in section IV-B) and run it on a set of benchmarks. For each
entry in each table, we periodically compute its F1 score2 and
then sort all entries in each table by their F1 score. After
this, the values are recorded and the F1 scores are reset. The
recording from each period is averaged together to produce
the final result.

The length of this period can be tuned: short intervals mean
that only a few entries will have non-zero scores, while a long
interval will mean that many entries per table might appear
useful while, in reality, they were used in different time slices
and could be allocated on top of one another.

Averaging across all benchmarks, we identify tables that
should be larger (all entries have high F1 scores) and those
that can be smaller (some entries have low F1 scores or are
not useful at all). We show the results of this tuning on
performance and area in section VI-D.

2The F1 score is defined as the harmonic mean of precision and recall. This
measure balances entries with high accuracy but are seldom used and those
with lower accuracy that are often used. One could opt for a weighted F-score
if fine tuning for a specific architecture, where the weights can symbolise the
respective gains/penalties of a given misprediction.

TABLE I
SYSTEM CONFIGURATION

4-core Golden Cove Processor [7]
Front-end width 6-wide fetch and decode
Branch predictor TAGE-SC-L [24]
Back-end width 12 execution ports and 8 commit width
ROB/IQ/LQ/SB 512/204/192/114 entries

Memory hierarchy
L1I (private) 32KB, 8 ways [29], 4-cycle hit latency, pipelined,

64 MSHRs
L1D (private) 48KB 12 ways [29], 5-cycle hit latency, pipelined,

64 MSHRs
L1D prefetcher IP-stride with a prefetch degree of 3
L2 (private) 1.25MB, 10 ways [29], 14-cycle hit latency, 64 MSHRs
L3 (shared) 3MB/bank (4 banks), 12 ways [29], 36-cycle hit latency,

64 MSHRs
Memory 4GB, 100-cycle access latency

This style of optimisation is well suited for a predictor like
MASCOT, which uses a try-again style allocation policy. If one
table is under-sized, it can allocate new entries to tables with
longer histories. This means that we still get the benefits of
shrinking the predictor when our table sizing works well for a
given phase, and we pay less of a penalty in the worst case. For
PHAST, because it is only able to allocate a given load-store
pair to one specific table, this optimisation technique would
likely lead to a bigger penalty.

V. METHODOLOGY

We evaluate MASCOT using a cycle-level in-house simulator
that models in detail an out-of-order processor with an x86
instruction set architecture. The core is fed with an instruction
flow (split into micro-operations at decode) generated by
Sniper [4]. The memory hierarchy is modeled with Gems [13],
using its embedded GARNET interconnect network model [1].

The simulated core resembles an Intel Golden Cove mi-
croarchitecture [21]. The main system parameters are sum-
marised in table I. The pipeline has 3 ports for load execution
and 2 ports for store execution. The 2-ported LQ and the
3-ported SB are searched associatively and in parallel with
the L1D access, incurring the same latency as the L1D [8],
but allowing 2 and 3 new searches, respectively, each cycle
(pipelining). Stores are issued once both the address and the
data registers are ready. Memory order violations are filtered
when the load already has a forwarding store that is younger
than the one triggering the violation. The simulator has been
modified to support speculative memory bypassing.

We compare MASCOT against the state-of-the-art memory-
dependence predictor, PHAST, with the configuration de-
scribed by the authors [11], a combined MDP-SMB predictor
based on NoSQ [26] and Store Sets [6]. The NoSQ predictor
has a path-dependent table and a path-independent table.
High-confidence predictions from the path-dependent table are
allowed to perform SMB, while low-confidence predictions
mark the load to wait only for the predicted store. Predictions
from the path-independent table are never allow to perform
SMB. If no prediction is found, the load is allowed to
execute speculatively. Store Sets perform memory dependence

TABLE II
CONFIGURATION OF THE EVALUATED PREDICTORS

Predictor Tables Total Fields Size
entries per entry (KB)

Store
Sets

SSIT
(direct mapped) 8K 1 valid bit

12 bit SSID
18.5

LFST
(direct mapped) 4K 1 valid bit

10 bit St ID

NoSQ 2
(4 way) 4K

22 bit tag

197 bit counter
7 bit distance
2 bit lru

PHAST 8
(4 way) 4K

16 bit tag

14.54 bit counter
7 bit distance
2 bit lru

MASCOT
8

(4 way) 4K

16 bit tag

143 bit counter
7 bit distance
2 bit bypass

prediction by recording sets of dependent stores for each load,
and enforcing serialisation within these sets.

MASCOT is simulated both as solely a memory-dependence
predictor (the bypassing counter is ignored), and with memory-
dependence prediction as well as speculative memory bypass-
ing together. The main configuration of Store Sets, NoSQ,
PHAST and MASCOT is shown in table II.

To simulate bypassing, instructions that depend on a by-
passed load will not wait for its completion before issuing.
Instead, they will issue as soon as the data source physical
register of the store is available, from which they will obtain
their values. Loads execute as soon as their (address) operands
are ready. The value obtained by the load is then compared
to the value of the store’s physical register, and if they match,
the speculative bypass is considered correct. If not, the load
and all following instructions are squashed. An address check
also occurs as soon as the addresses are available, to allow for
earlier misprediction-detection if the addresses do not match.

The predictors are evaluated on the SPEC CPU 2017 rate
suite [27]. Benchmarks were compiled with -O3 optimisation,
as well as -mno-avx -fno-unsafe-math-optimisation -fno-tree-
loop-vectorise. Vectorisation has been disabled since our sim-
ulator does not model vector units. Nevertheless, MASCOT can
be incorporated into a processor that has SIMD instructions by
leveraging the memory conflict-detection mechanism, which
should account for vector-vector, vector-scalar, and scalar-
vector cases.

Benchmarks with multiple inputs are labeled with an in-
creasing number as a suffix to their name. For each combi-
nation of application-input, we generated a set of SimPoint
intervals of 100 M instructions following the guidelines of
Gottschall et al. [9]. To investigate the impact that MDP and
SMB might have in future architectures, we also evaluate
MASCOT on a core resembling the Intel Lion Cove microar-
chitecture [5].

VI. RESULTS

We compare the per-benchmark performance of MASCOT
to that of other existing MDP and SMB predictors, showing
performance gains of 1.9 % over state-of-the-art. We then com-
pare an MDP-only version of MASCOT to other existing MDP
predictors, to show that even when only performing MDP,
MASCOT is still state-of-the-art. Then, to demonstrate the per-
formance and accuracy impact of recording non-dependencies,
we compare MASCOT to a TAGE-like predictor that does
not allocate non-dependencies. Finally, we show how we can
optimise MASCOT for size to yield a more compact predictor
that maintains most of MASCOT’s performance while taking
up only 10.1 KiB of space for its tables.

A. Performance

In Fig. 7, we compare the IPC of MASCOT to both NoSQ
and the previous state-of-the-art memory-dependence predic-
tor, PHAST. All results are normalised to a perfect MDP
predictor that does not do bypassing. Fig. 8 compares the total
number of mispredictions (false positives and false negatives)
across all benchmarks for NoSQ, PHAST and MASCOT, as
well as their distribution of false positives/negatives.

We observe that despite doing speculative memory bypass-
ing, NoSQ generally performs worse than perfect MDP, which
does no bypassing at all, likely owing to its relatively simple
GShare-based predictor. PHAST, the current state-of-the-art
memory-dependence predictor, generally falls within 93–99 %
of perfect MDP, while MASCOT doing MDP as well as SMB
overtakes it with a 1.9 % higher geometric mean.

As is evident from the figure, the benefits of bypassing with
MASCOT are highly application specific. Some benchmarks,
such as perlbench2, see more than a 17.8 % increase in IPC
compared to a perfect MDP and 26.4 % compared to PHAST
while others such as exchange2 see barely any impact. Overall,
comparing the geometric means, we observe that for IPC,
MASCOT yields increases of 4.9 %, 1.9 % and 1.0 % over
NoSQ, PHAST, and a theoretically perfect MDP respectively.
Compared to a perfect MDP and SMB predictor (not shown),
MASCOT is 1.0 % slower.

To investigate the performance increase in perlbench2 fur-
ther, we measured, for instructions that depend on one load
or more, the average number of cycles spent in the issue
stage waiting for dependencies to resolve. Enabling bypassing
decreased this number from an average of 38.7 cycles down to
15.7, or a 60 % reduction. For lbm, another benchmark which
similarly to perlbench has a high rate of bypass prediction,
enabling bypassing only reduces this number by 1.9 %. This
indicates that perlbench is particularly sensitive to load-values
being available early.

In fig. 8 we observe that MASCOT reduces the total errors by
98 % and 85 % compared to NoSQ and PHAST respectively.
Comparing the distribution of error types, MASCOT reduces
speculative errors by 39 % and false dependencies by 91 %
compared to PHAST. This shows the importance of allocat-
ing non-dependency entries to reduce the high rate of false
dependencies.

pe
rlb

en
ch1

pe
rlb

en
ch2

pe
rlb

en
ch3gcc

1
gcc

2
gcc

3
gcc

4
gcc

5

bw
av

es1

bw
av

es2

bw
av

es3

bw
av

es4 mcf

cac
tuB

SS
N
na

md
pa

res
t

po
vra

y
lbm

om
ne

tpp wrf

xa
lan

cbm
k
x2

64
1
x2

64
2
x2

64
3

ble
nd

er
cam

4

de
ep

sje
ng

im
ag

icklee
la na

b

exc
ha

ng
e2

fot
on

ik3
d
rom

s
xz1 xz2 xz3

ge
om

ea
n

0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15

No
rm

al
ise

d
IP

C
NoSQ PHAST MASCOT

Fig. 7. IPC normalised to a perfect memory-dependence predictor (no SMB). We show NoSQ (a state-of-the-art SMB predictor) and PHAST (a state-of-the-art
MDP predictor) alongside the full MASCOT implementation (MDP and SMB). MASCOT out-performs NoSQ by 4.9 %, PHAST by 1.9 % and perfect MDP
by 1.0 %.

50
0.p

erl
be

nch
1

50
0.p

erl
be

nch
2

50
0.p

erl
be

nch
3

50
2.g

cc1

50
2.g

cc2

50
2.g

cc3

50
2.g

cc4

50
2.g

cc5

50
3.b

wav
es1

50
3.b

wav
es2

50
3.b

wav
es3

50
3.b

wav
es4

50
5.m

cf0

50
7.c

act
uB

SS
N0

50
8.n

am
d0

51
0.p

are
st0

51
1.p

ov
ray

0

51
9.l

bm
0

52
0.o

mne
tpp

0

52
1.w

rf0

52
3.x

ala
ncb

mk0

52
5.x

26
41

52
5.x

26
42

52
5.x

26
43

52
6.b

len
de

r0

52
7.c

am
40

53
1.d

ee
psj

en
g0

53
8.i

mag
ick

0

54
1.l

ee
la0

54
4.n

ab
0

54
8.e

xch
an

ge
20

54
9.f

oto
nik

3d
0

55
4.r

om
s0

55
7.x

z1

55
7.x

z2

55
7.x

z3

Benchmarks

0.0M

0.5M

1.0M

1.5M

2.0M

2.5M

3.0M

Er
ro

rs

5M 9M 3M 5M 5M3M

NoSQ PHAST MASCOT False Dependencies Speculative Errors

Fig. 8. Number of total mispredictions for each type of predictor, and the distribution of false dependencies and speculative errors.

In fig. 9, we compare the performance of Store Sets, PHAST
and an MDP-only version of MASCOT, normalised to a perfect
MDP predictor, to illustrate that even for memory-dependence
prediction alone, MASCOT is state of the art. The MDP-only
version of MASCOT achieves IPC improvements of 6.2 % over
Store Sets and 0.4 % over PHAST. The performance of Store
Sets is likely explained by the large size of the modelled CPU.
As the ROB gets bigger, so does the number of possible
conflicting load-store pairs. Store Sets, not using context-
dependent prediction, is not well equipped to deal with this.

Note than in some benchmarks (namely gcc4, gcc5, mcf
and nab), the MDP-only predictors perform better than per-
fect MDP. This is because there are some instances where
an incorrect non-dependency prediction might lead to better
performance. For example, if the load is issued at the same
time as a dependent store, due to program characteristics,
the store might always resolve before the load reaches the
memory stage and then simply forward its data to the load.
The perfect MDP predictor is inherently conservative, and in
these instances, will stall the load by at least 1 cycle to be

pe
rlb

en
ch1

pe
rlb

en
ch2

pe
rlb

en
ch3gcc

1
gcc

2
gcc

3
gcc

4
gcc

5

bw
av

es1

bw
av

es2

bw
av

es3

bw
av

es4 mcf

cac
tuB

SS
N
na

md
pa

res
t

po
vra

y
lbm

om
ne

tpp wrf

xa
lan

cbm
k
x2

64
1
x2

64
2
x2

64
3

ble
nd

er
cam

4

de
ep

sje
ng

im
ag

icklee
la na

b

exc
ha

ng
e2

fot
on

ik3
d
rom

s
xz1 xz2 xz3

ge
om

ea
n

0.5

0.6

0.7

0.8

0.9

1.0

1.1

No
rm

al
ise

d
IP

C
Store Sets PHAST MASCOT (MDP only)

Fig. 9. IPC for MDP techniques only, normalised to a perfect memory-dependence predictor. We show Store Sets and PHAST alongside the MDP-only
version of MASCOT. MASCOT out-performs Store Sets by 6.18 % and PHAST by 0.36 %.

pe
rlb

en
ch

1
pe

rlb
en

ch
2

pe
rlb

en
ch

3
gc

c1
gc

c2
gc

c3
gc

c4
gc

c5
bw

av
es

1
bw

av
es

2
bw

av
es

3
bw

av
es

4
m

cf
ca

ct
uB

SS
N

na
m

d
pa

re
st

po
vr

aylbm
om

ne
tp

p
wr

f
xa

lan
cb

m
k

x2
64

1
x2

64
2

x2
64

3
ble

nd
er

ca
m

4
de

ep
sje

ng
im

ag
ick

lee
la

na
b

ex
ch

an
ge

2
fo

to
nik

3d
ro

m
s

xz
1

xz
2

xz
3

ge
om

ea
n

0.0

0.2

0.4

0.6

0.8

1.0
Ratio of Predictions

pe
rlb

en
ch

1
pe

rlb
en

ch
2

pe
rlb

en
ch

3
gc

c1
gc

c2
gc

c3
gc

c4
gc

c5
bw

av
es

1
bw

av
es

2
bw

av
es

3
bw

av
es

4
m

cf
ca

ct
uB

SS
N

na
m

d
pa

re
st

po
vr

aylbm
om

ne
tp

p
wr

f
xa

lan
cb

m
k

x2
64

1
x2

64
2

x2
64

3
ble

nd
er

ca
m

4
de

ep
sje

ng
im

ag
ick

lee
la

na
b

ex
ch

an
ge

2
fo

to
nik

3d
ro

m
s

xz
1

xz
2

xz
3

ge
om

ea
n

0.0

0.2

0.4

0.6

0.8

1.0
Ratio of Mispredictions

Non-Dependent
Non-Dependent Mispredictions

MDP
MDP Mispredictions

SMB
SMB Mispredictions

Fig. 10. Distribution of prediction and misprediction types for each benchmark with MASCOT.

certain that no conflict arises. Thus the perfect MDP predictor
makes optimal predictions but this can lead to sub-optimal
performance.

Fig. 10 shows the distribution of prediction and mispre-
diction types for each benchmark. In the left-hand graph,
over 80 % of all predictions are of no dependency, with the
majority of the rest being for SMB. Considering the right-hand
graph, we observe that the proportion of SMB mispredictions,
which always cause a squash, is low. This is likely due to
using high confidence requirements before making this type
of prediction. mcf has a significantly higher proportion of
SMB mispredictions compared to the rest of the benchmarks.
Nonetheless, we observe that MASCOT still outperforms its
MDP-only version because the total mispredictions for that
benchmark are low, as shown in fig. 8.

B. Analysis

We argued earlier that much of MASCOT’s increased accu-
racy comes from learning the context of non-dependencies. To
test this claim, we constructed a similar TAGE-like predictor
that is structurally similar to MASCOT but does not allocate
non-dependent entries. Instead, on a false dependency, it will
simply decrement the confidence of the predicting entry, sim-
ilar to previous MDP and SMB implementation using TAGE.

Fig. 11 shows that the TAGE-like predictor without non-
dependent entries functions worse as a memory-dependence
predictor, and much worse as a memory-dependence and spec-
ulative memory bypassing predictor. The difference becomes
especially clear in the number of false dependencies, where
the TAGE-like predictor has more than 12× as many false
dependencies than MASCOT. The reason for this is that when
the predictor cannot allocate non-dependent entries, these will

0.96

0.97

0.98

0.99

1.00

1.01

1.02
Normalised IPC

10000

20000

30000

40000

50000

60000

70000
False Dependencies

TAGE (MDP only)
TAGE (MDP + SMB)

MASCOT (MDP only)
MASCOT

Fig. 11. Comparison of MASCOT to an equivalent TAGE-based predictor that
does not allocate non-dependencies. IPC values are normalised to a perfect
MDP. Allocating space for non-dependencies within the predictor’s tables
enables a significant reduction in false dependencies, yielding MASCOT’s IPC
gains.

instead reduce the confidence of dependent entries, which then
become less likely to predict bypassing.

C. Future architectures

To assess the impact of MASCOT in future microarchitec-
tures with larger core structures, we simulate on our existing
configuration for Golden Cove, as well as one aimed at the
more recent Lion Cove. We observe that the potential gains
of SMB are raised. In Golden Cove, a perfect MDP+SMB
predictor outperforms a perfect MDP-only predictor by 2.1 %,
whereas for Lion Cove this ceiling is raised to 2.8 % as
shown in fig. 12. Compared to a perfect MDP-only predictor,
MASCOT achieves gains of 1.0 % and 1.3 % respectively,
illustrating how MASCOT can yield additional gains for wider
architectures.

D. Fine tuning

Section IV-F described a technique for tuning MASCOT so
as to optimise its area whilst maintaining high performance.
MASCOT’s default configuration uses 14 KiB of space for its
entries, with each table using 512 entries. We seek to optimise
this by analysing entry usage. Following the methodology in
section IV-F, we simulated MASCOT across all benchmarks,
recording F1 scores every 1,000,000 cycles.

Fig. 13 shows the distribution of predictions made from each
table in MASCOT, and fig. 14 shows the average ranking of
entries by F1 score across all SPEC CPU 2017 benchmarks.
We make two observations. First, table 1 could benefit from
being larger, as its least important entry ranks similar to the
top 40 entries in table 2. Second, to reduce space, tables 5–
7 could be reduced to half their size, and table 8 could be
reduced to one quarter.

Golden Cove Lion Cove

0.96

0.98

1.00

1.02

1.04

No
rm

al
ise

d
IP

C

MASCOT Perfect MDP+SMB

Fig. 12. IPC of MASCOT and a perfect MDP and SMB predictor in Golden
Cove and Lion Cove. Both are normalised to a perfect MDP predictor for
their respective architectures. The benefits of MASCOT and opportunities for
performance gains increase as the core structures get larger.

Base T1 T2 T3 T4 T5 T6 T7 T8
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ra
tio

 o
f p

re
di

ct
io

ns

0.763

Fig. 13. Distribution of predictions made from each table. Base is the default
non-dependence prediction given that no entry was found.

We modify the predictor to instead use table sizes of [1,024,
512, 512, 512, 256, 256, 256, 128], and tag sizes of [15, 16,
16, 16, 17, 17, 17, 18] respectively to keep the same likelihood
of conflicts, obtaining a 16 % decrease in size. We term this
new predictor MASCOT-OPT.

We simulate MASCOT-OPT, as well as additional configu-
rations where the tag sizes are reduced by 2, 4 and 6 bits,
to save further area. Fig. 15 shows the resulting changes in
IPC. MASCOT-OPT leads to a loss of only 0.09 % in IPC.
Reducing the tag size by 4 bits for MASCOT-OPT leads to an
IPC decrease of just 0.13 % due to an increase of 17.4 % in
mispredictions, yet saves 27.7 % area, requiring only 10.1 KiB.

VII. RELATED WORK

There are a number of works in the literature that study
MDP and SMB using a variety of prediction structures. We
consider here additional publications that were not described
earlier in section II.

Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8

0

20

40

60

80

100

120

Least important Most important

Fig. 14. F1 scores of entries ranked over each table. Table 1 contains the
most important entries and could be larger. Conversely tables 5–8 could be
reduced in size since their entries do not have high F1 scores.

Önder and Jin [10] proposed a method to speculatively
execute loads earlier in store-queue free architectures. Whereas
NoSQ will always delay loads for whose dependencies it has
poor confidence, DMDP proposes to predicate these loads.
When a a load is hard to predict, DMDP will instead issue a
micro-op to compare the addresses of the store and load and,
based on this result, either obtain the value from the store
or perform the load. This essentially achieves the benefits of
non-speculative forwarding without the overhead of a load and
store queue. The predictor used for DMDP is the same as
NoSQ, and thus one can imagine that the gains would likely
be greater with MASCOT.

Moshovos and Sohi showed how bypassing can also be
applied to load-load pairs, rather than just load-store pairs [15].
Perais, Endo and Seznec proposed distance prediction as a
generalization to SMB [17]. Distance prediction attempts to
determine how many instructions separate a given instruction
from the most recent instruction that provides the same result.

Alves et al. [2] proposed a unified store-queue/buffer/cache
(S/QBC) to filter L1/TLB probes. With the help of a memory-
dependence predictor based on store distance [31], they predict
when the load will hit or miss in the S/QBC. Hits predicted
correctly reduce energy consumption since the L1/TLB is
not probed, while correctly predicted misses reduce latency
by letting the load probe both the S/QBC and L1/TLB in
parallel. The memory-dependence predictor used yields 93.6 %
accuracy on average, with a worst case of 89.7 %, leaving
potential for further improvement with MASCOT.

Bekerman et al. propose multiple different schemes for de-
tecting load-store dependencies through register tracking [3].
One example of such a scheme is tracking stores to the stack
pointer. The authors find, for example, that 25 % of all loads
are stack loads and 95 % of them can be resolved in the front-
end solely through register tracking.

0.980

0.983

0.985

0.988

0.990

0.993

0.995

0.998

1.000

Normalised IPC

0

5000

10000

15000

20000

Total Mispredictions

MASCOT
MASCOT-OPT

MASCOT-OPT (Tag -2)
MASCOT-OPT (Tag -4)

MASCOT-OPT (Tag -6)

Fig. 15. After optimising table sizes and reducing tag sizes, MASCOT-OPT
requires only 10.1 KiB for an IPC reduction of 0.13 %.

VIII. CONCLUSION

In this work we have shown that current prediction mech-
anisms are tailored either for memory dependencies or for
speculative memory bypassing. We have proposed MASCOT,
a prediction mechanism based on TAGE that improves its
allocation policy by learning non-dependencies. MASCOT’s
optimised allocation policy is able to considerably reduce the
prediction of false dependencies while still keeping a low
rate of missing dependencies, obtaining a reduction in mispre-
dictions of 70 % on average with respect to the state-of-the-
art predictor PHAST. Thanks to that characteristic, MASCOT
obtains an IPC improvement of 0.4 % over PHAST. More
importantly, because MASCOT has high accuracy both with
regards to false dependencies and missing dependencies, it
also functions as an accurate predictor for speculative memory
bypassing. When applied to a processor supporting speculative
memory bypassing, it is able to increase performance by 1.9 %
on average compared to PHAST while using the same amount
of space, or 1.8 % while being 30 % smaller in size at 10.1 KiB.

IX. ACKNOWLEDGEMENTS

This paper was made possible due to funding from the Eu-
ropean Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program (grant agree-
ment No 819134), the Engineering and Physical Sciences Re-
search Council (EPSRC) grant reference EP/W00576X/1 and
from the MCIN/AEI/10.13039/501100011033/ and the “ERDF
A way of making Europe”, EU (grant PID2022-136315OB-
I00). Karl Hvarregaard Mose is a PhD student and Trinity
Hall Scholar funded by the Cambridge Commonwealth, Eu-
ropean & International Trust. Sebastian S. Kim is a PhD
student funded by the Fundación Séneca, Región of Murcia
(21456/FPI/20). Additional data related to this publication is
available in the repository at https://doi.org/10.17863/CAM.
114977.

https://doi.org/10.17863/CAM.114977
https://doi.org/10.17863/CAM.114977

REFERENCES

[1] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A detailed
on-chip network model inside a full-system simulator,” in ispass, Apr.
2009, pp. 33–42.

[2] R. Alves, A. Ros, D. Black-Schaffer, and S. Kaxiras, “Filter caching for
free: The untapped potential of the store buffer,” in 2019 International
Symposium on Computer Architecture (ISCA), Jun. 2019, pp. 436–448.

[3] M. Bekerman, A. Yoaz, F. Gabbay, S. Jourdan, M. Kalaev, and R. Ronen,
“Early load address resolution via register tracking,” ACM SIGARCH
Computer Architecture News, vol. 28, no. 2, pp. 306–315, 2000.

[4] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulations,”
in SC, Nov 2011, pp. 52:1–52:12.

[5] Chips and Cheese. (2024, 6) Intel’s lion cove architecture preview.
[Online]. Available: https://chipsandcheese.com/2024/06/03/intels-lion-
cove-architecture-preview/

[6] G. Z. Chrysos and J. S. Emer, “Memory dependence prediction using
store sets,” ACM SIGARCH Computer Architecture News, vol. 26, no. 3,
pp. 142–153, 1998.

[7] clamchowder, “Popping the hood on golden cove,” https:
//chipsandcheese.com/2021/12/02/popping-the-hood-on-golden-cove,
Dec. 2021.

[8] A. Fog, “The microarchitecture of Intel, AMD and VIA CPUs: An
optimization guide for assembly programmers and compiler makers,”
https://www.agner.org/optimize/microarchitecture.pdf, Technical Univer-
sity of Denmark, Nov. 2022.

[9] B. Gottschall, S. H. C. de Santana, and M. Jahre, “Balancing accuracy
and evaluation overhead in simulation point selection,” in IEEE Interna-
tional Symposium on Workload Characterization, IISWC 2023, Ghent,
Belgium, October 1-3, 2023. IEEE, 2023, pp. 43–53.

[10] Z. Jin and S. Önder, “Dynamic memory dependence predication,” in
2018 International Symposium on Computer Architecture (ISCA), Jun.
2018, pp. 235–246.

[11] S. S. Kim and A. Ros, “Effective context-sensitive memory depen-
dence prediction,” in 2024 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), 2024, pp. 515–527.

[12] G. H. Loh, R. Sami, and D. H. Friendly, “Memory bypassing: Not worth
the effort,” in Proc. 1st Workshop on Duplicating, Deconstructing, and
Debunking. Citeseer, 2002, pp. 71–80.

[13] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacet’s
general execution-driven multiprocessor simulator (GEMS) toolset,” can,
vol. 33, no. 4, pp. 92–99, Sep. 2005.

[14] S. McFarling, “Combining branch predictors,” Digital Western Research
Laboratory, Technical report TN-36, Jun. 1993.

[15] A. Moshovos and G. S. Sohi, “Read-after-read memory dependence
prediction,” in MICRO-32. Proceedings of the 32nd Annual ACM/IEEE
International Symposium on Microarchitecture. IEEE, 1999, pp. 177–
185.

[16] A. Moshovos and G. S. Sohi, “Speculative memory cloaking and
bypassing,” International Journal of Parallel Programming, vol. 27,
no. 6, pp. 427–456, 1999.

[17] A. Perais, F. A. Endo, and A. Seznec, “Register sharing for equality
prediction,” in 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2016, pp. 1–12.

[18] A. Perais and A. Seznec, “Cost effective physical register sharing,” in
2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2016, pp. 694–706.

[19] A. Perais and A. Seznec, “Storage-free memory dependency prediction,”
IEEE Computer Architecture Letters, vol. 16, no. 2, pp. 149–152, Jul.
2017.

[20] A. Perais and A. Seznec, “Cost effective speculation with the om-
nipredictor,” in Proceedings of the 27th International Conference on
Parallel Architectures and Compilation Techniques, 2018, pp. 1–13.

[21] E. Rotem, A. Yoaz, L. Rappoport, S. J. Robinson, J. Y. Mandelblat,
A. Gihon, E. Weissmann, R. Chabukswar, V. Basin, R. Fenger, M. Gupta,
and A. Yasin, “Intel Alder Lake CPU architectures,” ie3m, vol. 42, no. 3,
pp. 13–19, Mar. 2022.

[22] A. Seznec, “The L-TAGE branch predictor,” The Journal of Instruction-
Level Parallelism, vol. 9, pp. 1–13, May 2007.

[23] A. Seznec, “A new case for the TAGE branch predictor,” in 2011
International Symposium on Microarchitecture (MICRO), Dec. 2011, pp.
117–127.

[24] A. Seznec, “TAGE-SC-L branch predictors again,” in 5th JILP Work-
shop on Computer Architecture Competitions (JWAC-5): Championship
Branch Prediction (CBP-5), Jun. 2016.

[25] A. Seznec and P. Michaud, “A case for (partially) tagged geometric
history length branch prediction,” The Journal of Instruction-Level
Parallelism, vol. 8, 2006.

[26] T. Sha, M. M. Martin, and A. Roth, “NoSQ: Store-load communication
without a store queue,” in 2006 39th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’06). IEEE, 2006, pp. 285–
296.

[27] Standard Performance Evaluation Corporation, “SPEC CPU2017,”
2017. [Online]. Available: http://www.spec.org/cpu2017

[28] S. Subramaniam and G. H. Loh, “Store vectors for scalable memory
dependence prediction and scheduling,” in 2006 IEEE International
Symposium on High Performance Computer Architecture (HPCA), Feb.
2006, pp. 65–76.

[29] A. Syed, “Intel 12th gen alder lake golden cove-gracemont cache config-
uration detailed,” Jul. 2021, https://www.hardwaretimes.com/intel-12th-
gen-alder-lake-golden-cove-gracemont-cache-configuration-detailed/.

[30] G. S. Tyson and T. M. Austin, “Improving the accuracy and performance
of memory communication through renaming,” in Proceedings of 30th
Annual International Symposium on Microarchitecture. IEEE, 1997,
pp. 218–227.

[31] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan, “Speculation techniques
for improving load related instruction scheduling,” in 1999 International
Symposium on Computer Architecture (ISCA), May 1999, pp. 42–53.

https://chipsandcheese.com/2024/06/03/intels-lion-cove-architecture-preview/
https://chipsandcheese.com/2024/06/03/intels-lion-cove-architecture-preview/
https://chipsandcheese.com/2021/12/02/popping-the-hood-on-golden-cove
https://chipsandcheese.com/2021/12/02/popping-the-hood-on-golden-cove
https://www.agner.org/optimize/microarchitecture.pdf
http://www.spec.org/cpu2017
https://www.hardwaretimes.com/intel-12th-gen-alder-lake-golden-cove-gracemont-cache-configuration-detailed/
https://www.hardwaretimes.com/intel-12th-gen-alder-lake-golden-cove-gracemont-cache-configuration-detailed/

	Introduction
	Background
	Memory-dependence prediction
	Speculative memory bypassing
	Practicalities of SMB
	Prior SMB schemes

	Challenges of using TAGE as a memory dependence predictor
	Example
	Discussion

	Mascot
	Overview
	Predictor structure
	Allocation
	Tracking non-dependencies
	Speculative memory bypassing
	Tuning the predictor

	Methodology
	Results
	Performance
	Analysis
	Future architectures
	Fine tuning

	Related Work
	Conclusion
	Acknowledgements
	References

