
PIP: An Ensemble of Programming-Idiom Predictors
Karl H. Mose†, Alexandra W. Chadwick‡, Márton Erdős‡, Jiayi Nie†,

Rika Antonova‡, Timothy M. Jones‡, Robert D. Mullins‡
University of Cambridge

†{km781, jn517}@cam.ac.uk ‡{firstname.lastname}@cl.cam.ac.uk

Abstract
We present PIP, an ensemble of branch predictors specialised for
different patterns.We utilise a series of small but highly targeted pre-
dictors, each recognising a programming idiomwith data-dependent
structure. We call each of these an idiom tracker. When these id-
iom trackers are unable to make a prediction, we turn instead to a
base predictor consisting of a tuned TAGE-SC-L and a specialised
Multiperspective Perceptron predictor. The Perceptron predictor is
used only for predicting branches that TAGE struggles with, and
choosing between the two is handled by a novel arbiter algorithm.

Our predictor achieves an average of 3.47 mispredictions per kilo
instructions (MPKI) and an average of 148 cycles on the wrong path
per kilo instructions (cycWPKI) on the 6th Championship Branch
Prediction (CBP2025) training traces, given a 192KiB budget. This
is a decrease of 7.4% in MPKI and 3.0% in cycWPKI compared to
the 2016 CBP winner, TAGE-SC-L 64KiB.

1 Introduction
Branch predictors traditionally leverage different kinds of branch
and path history for prediction. However, they miss opportunities
to improve accuracy by being unaware of the state of the register
file, or the deeper semantics of code. Furthermore, there are many
different ways of organising history, and managing all of these in a
space-efficient manner can be challenging.

Towards solving these issues, we propose PIP. It uses an ensemble
of idiom-tracking predictors that capture common programming
idioms, combined with two history-based predictors for all other
code, and a novel arbiter to choose between the two. The idiom
trackers are a collection of specialised predictors that recognise and
predict common programming idioms by observing the branch his-
tory, operations executed, and register-file state. These can capture
branching behaviour that traditional history-based predictors are
unable to detect.

When the idiom trackers are unable to make a prediction, we
fall back to a combination of known-good designs: TAGE-SC-L,
the winner of the 2016 Championship Branch Prediction Competi-
tion [15], and Multiperspective Perceptron, the runner-up [7]. Both
achieve very high accuracy, but diverge somewhat in the features
that they use. TAGE is highly space efficient, and while the GEHL
predictors in TAGE’s statistical corrector provide some exposure
to additional features such as local history, Perceptron is able to
balance the output of a wide range of features. As an example, the
64KiB configuration from the 2016 CBP competition using 37 dif-
ferent features. We use a novel strategy to decide between using
TAGE or Perceptron for a given prediction, with an algorithm that
dynamically learns when each one performs the best.

‘CBP 2025’, June 21, 2025, Tokyo, Japan
.

2 Related Work
Our history-based predictor uses a combination of TAGE-SC-L [15]
and the Multiperspective Perceptron [7]. Previous works have com-
bined TAGE and Perceptron [8], and we have continued down this
track with a more advanced choosing mechanism.

Data-dependent branches have been commonly identified as a
central problem to reducing MPKI beyond history-based predic-
tors [5, 12]. Loops have been identified as particularly important
for branch predictors, motivating designs such as dedicated loop
predictors [14]. Runahead-style branch prediction [5, 12] is capable
of using register data to predict loop outcomes, but often requires
substantial resources.

Heil et al. [6] introduced the Branch Difference Predictor, which
computes the difference between registers in comparison-based
branches and feeds this, along with other runtime information,
into the main branch predictor to identify correlations. Given that
modern predictors are highly accurate for most branches but also
sensitive to noise, we see value in using a separate and specialised
set of register-based predictors, rather than inserting their data into
the main branch predictor.

Otoom et al. [1] introduced EXACT predictors. EXACT separates
branches by the addresses of their load dependencies to deal with
load-dependent branches, a frequent source of misprediction. A
chooser is employed since some branches benefit from this strategy
while others do not. The idea is that discerning between branches
based on their load addresses and values allows the main predictor
to discover patterns that would otherwise be hidden. While this is
potentially very general, we instead try to identifymultiple common
patterns and create specialised predictors for each.

The concept of classifying instructions and then applying an
appropriate predictor from an ensemble of simple predictors has
previously been used for data prefetching [11]. We borrow and
extend this concept to branch prediction via our idiom trackers.

3 High-Level Design Overview
PIP incorporates four main components: (1) the ensemble of idiom
trackers, (2) a TAGE-SC-L predictor, (3) a Multiperspective Percep-
tron Predictor (MPP), and (4) an Arbiter to choose select the latter
two. The TAGE-SC-L, Perceptron and Arbiter together constitute
the default predictor, which will provide predictions whenever the
idiom trackers do not detect a pattern.

PIP includes two idiom trackers:
A for-loop tracker aims to recognise simple loops of the form

for (int i = 𝐵; i != 𝐸; i += 𝑆)
for any 𝐵, 𝐸, 𝑆 .

A null-terminated string tracker (NTS) aims to recognise loops
that iterate over a null-terminated string, i.e.

for (char *p = 𝑆; *p != ’\0’; ++p)

1

‘CBP 2025’, June 21, 2025, Tokyo, Japan
Karl H. Mose† , Alexandra W. Chadwick‡ , Márton Erdős‡ , Jiayi Nie† ,

Rika Antonova‡ , Timothy M. Jones‡ , Robert D. Mullins‡

It remembers the lengths of such strings to predict the bound
in future loops that iterate over the same strings.

The predictions flow as follows:
(1) When a branch is encountered, the idiom tracker first decides

if it wants to provide a prediction.
(2) If not, the combined prediction from TAGE and MPP is used.
(3) If they disagree, a final decision is made by the Arbiter. The

Arbiter looks into a threshold table, and uses this along with
the TAGE confidence to decide a winner.

Updating is handled as follows:
• Confidence counters track whether or not the idiom trackers
are producing useful information.

• TAGE-SC-L is updated as usual.
• MPP is updated as usual, with the caveat that if it disagrees
with TAGE, it uses a more aggressive update strategy for its
weights.

• On a misprediction, the Arbiter either raises or lowers its
threshold counters depending on the magnitude of the MPP
and the confidence level of TAGE.

4 Predictor Operation
We describe our idiom trackers in detail, then the configurations of
TAGE, MPP and the Arbiter.

4.1 An Ensemble of Idiom Trackers
Each idiom tracker observes decode and execute information from
the core pipeline to detect programming idioms in an idiom-specific
manner. If found, an entry is allocated in an idiom-tracking table.
By default, tracked idioms in this table will be used to provide the
prediction, falling back to the history-based predictors (TAGE +
Perceptron) if the tracked idiom is unable to predict for any reason.
Confidence counters track howwell predictions from each entry are
performing, and the entry is disabled if confidence drops too low.
We also track whether or not this entry is beating the history-based
predictors, and lock it to enabled or disabled if it is significantly over-
or under-performing that predictor. If the table is full, a replacement
policy is used to evict the ‘least useful’ entry, which is determined
by a metric combining recency and usefulness.

4.1.1 The for-loop tracker. The for-loop tracker aims to recog-
nise simple loops with an integer start, stride and end:

for (int i = 𝐵; i != 𝐸; i += 𝑆)
for any 𝐵, 𝐸, 𝑆 . We observe that, in machine-code form, such a loop
is typically translated to include some sort of two-argument arith-
metic instruction that operates on i (the iteration variable) and
𝐸 (the end bound of the loop), whose result is observed by a con-
ditional branch. The for-loop tracker tracks any such arithmetic
instructions to see if the difference between two operands is mono-
tonically decreasing. If it observes that difference decreasing by a
constant amount 𝑆 in three successive executions (i.e. the stride),
the tracker records this as a for-loop.

Once tracked, the for-loop tracker will predict the branch to be
taken or untaken based on the projected difference. The execution
units in amodern core run far behind the fetch stream, meaning that
it is possible that instruction fetch is several loop iterations ahead in
the for loop compared to instructions being executed. Hence, the

tracker takes the latest-seen difference 𝐷 of the arithmetic instruc-
tion, and subtracts 𝑆 multiplied by the number of in-flight instances
of that instruction between that point and the fetch address. If this
projected difference value is zero (or negative), the tracker predicts
the branch to go in the exit direction, otherwise it predicts the loop
direction. The loop versus exit direction is learned by observing
the first three executions of the branch.

Notably, this tracker has the remarkable property of being able
to achieve 100% accuracy on some loop branches. It never needs to
observe a change in direction of the branch before predicting the
exit for the first time, and so in some traces we see loop branches
with nomispredictions at all when this tracker is active. This tracker
is particularly effective when a given loop is executed many times
with different bounds 𝐸. Conventional history-based predictors may
struggle to understand the pattern of the loop bounds, whereas the
for-loop tracker simply observes the bound.

If the for-loop contains a break statement, it may exit early.
This can be a problem for the for-loop tracker, as it cannot detect
this and may mispredict the next invocation of the loop as being
the same invocation. On the other hand, as soon as the arithmetic
instruction’s operands are available, the tracker can be updated to
become aware of the new bound. Hence, break statements only
typically cause mispredictions in very short loops.

One caveat with the experimental setup of the CBP2025 simulator
is that the tracker is not able to see the opcodes of the branches or
arithmetic operations. Consequently, the predictor has to assume
that the loop uses a condition such as i != 𝐸 or i < 𝐸. This is
the common case in practice, but some loops use i <= 𝐸, which
results in the for-loop tracker mispredicting the final iteration.
For this reason, our implementation of the tracker can switch to
predicting the loop exit only if the projected difference is a negative
number (i.e. instead of it being zero or less). This switch is made if
the tracker is off-by-one in the first exit prediction. If this tracker
were to be deployed in a real system, observing the opcode of the
branch and comparison would obviate the need for such off-by-one
errors.

In the CBP2025 sample traces, the for-loop tracker outperforms
the TAGE+MPP+Arbiter predictor on more than one thousand for-
loop branches.

4.1.2 The null-terminated string tracker. The null-terminated string
(NTS) tracker aims to recognise loops that iterate over an NTS:

for (char *p = 𝑆; *p != ’\0’; ++p)
It remembers the lengths of such strings to predict the bound in
future loops. We observe that, in machine-code form, such a loop
is typically translated to have a memory load operation that ei-
ther feeds directly into a ‘compare-and-branch’ instruction, or first
into a comparison against an immediate, and then a conditional
branch. The NTS tracker tracks any such load operations to see if
the source address is incrementing by a character width. It records
the pattern as a null-terminated string loop if the load is observed as
incrementing by a character width in three successive executions.

Once tracked, the NTS tracker records as a string any memory
addresses that are accessed by an NTS-loop load operation. When it
observes the load returning a value of zero, it can record the length
of that string in a tracking table.

2

PIP: An Ensemble of Programming-Idiom Predictors ‘CBP 2025’, June 21, 2025, Tokyo, Japan

Whenever an NTS-loop is iterating over a string of known length,
the NTS tracker will predict that the branch goes in the loop direc-
tion until the null-terminator, and then goes in the exit direction.
The directions are learned by observing the first three executions
of the branch.

Notably, any NTS-loop can benefit from a string length learned
from any other NTS-loop, and so it is possible that the NTS tracker
can predict a given loop branch 100% accurately if all the strings it
operates on are known.

Unfortunately, some NTS manipulation code is vectorised by
either the compiler or standard-library functions, meaning that the
NTS tracker will not detect it as an NTS loop. As mentioned previ-
ously, the CBP2025 simulator does not provide access to instruction
opcodes. With a greater visibility of the them it may nevertheless
be possible to detect NTS manipulation code that is vectorised.

4.2 TAGE-SC-L
We employ a fine tuned version of the 2016 version of TAGE-SC-L,
that was provided with the CBP2025 simulator. The final version
included the following changes:

• We allocate a full 16KiB of space just for the bimodal predic-
tor.

• We increase the counter width in the Statistical Corrector
(SC) from 6 to 7.

• We increase the size of the bias tables in the SC from 256
entries to 2,048

• We increase the number of history-tables from 36 to 48.
• We track up to 4,900 bits of global history.
• Other, smaller changes were made to counter sizes, tag sizes,
etc.

4.3 Multiperspective Hashed Perceptron
To complement TAGE-SC-L, we’ve built a custom predictor based
on theMultiperspective Perceptron Predictor [7]. TAGEwill provide
most of the predictions, and this predictor will be used solely when
TAGE is underperforming. Because of this, we use a different set
of history functions than the original paper, which was intended
to be a stand-alone predictor. Notably, we weigh all weight-tables
equally.

The training algorithm has also been modified to increase learn-
ing pressure when the Perceptron disagrees with TAGE. Similar to
O-GEHL predictors [13], we employ a dynamic threshold algorithm
for training. We only train the predictor if it is correct and the
total magnitude of its prediction is below this threshold, or if it is
incorrect. We modify this strategy so that if TAGE is wrong, and
the Perceptron is right, it is trained as long as its total magnitude is
less than double the current threshold.

The standard MPP also has a strategy to update a few more
weights randomly if, after an update, its prediction is still incorrect.
We use this same strategy, but use a different number of updates
depending on whether or not the MPP agreed with TAGE or not.

We employ a subset of the features from the original paper, and
one new feature:

• MOD-LOCAL, a local-history table where branches con-
gruent to modulo 0 with some constant are filtered. Since
branches are also used to index into the local-history tables,

we use the upper bits for indexing, and the lower bits for
congruency testing.

• TAGE-HIST, a history vector of TAGE-SC-L’s predictions.

4.4 TAGE-Perceptron Arbiter
When TAGE-SC-L and the MPP disagree, we choose between them
using an Arbiter. The Arbiter consists of two tables of thresholds,
med-conf and low-conf. If TAGE reports high-confidence (a sat-
urated counter when hitting a tagged table), the Arbiter always
selects TAGE. If not, the Arbiter looks up into the med-conf or low-
conf table depending on TAGE’s reported confidence level. The
threshold in the table is compared with the magnitude of the MPP
prediction—if the MPP prediction magnitude is greater than the
threshold, the MPP prediction is chosen, otherwise TAGE is chosen.

For updating, the threshold entry that was used for prediction is
decremented if the Perceptron was correct and TAGE was wrong.
Alternatively, if the Perceptron predictor was wrong, and predicted
with a magnitude 𝑀 , the threshold in the entry is set to a value
𝑀 + 𝜖 , where 𝜖 is a small integer value that is dynamically updated
depending how well the MPP is doing overall.

5 Parameter Tuning
We fine-tuned configuration parameters for TAGE-SC-L, the MPP
and the Arbiter using Bayesian Optimisation (BO) through the
SMAC3 software package [9]. BO is a family of global search meth-
ods for optimising non-differentiable functions (Shahriari et al. give
an overview [16]). Formally, BO searches for a parameter vector
w∗ that optimises an objective function 𝑓 , i.e. 𝑓 (w∗) = maxw 𝑓 (w).
𝑓 is commonly modelled with a Gaussian Process that captures
the predictive mean and uncertainty of 𝑓 for any w. BO chooses
candidates to evaluate in a way that reduces uncertainty globally,
while also coming back to sampling promising candidates with
high predictive mean. BO does not make restrictive assumptions
about 𝑓 , supports optimisation with both discrete and continuous
quantities [2–4], and can handle high-dimensional spaces [10, 18].
It has been widely used for neural-network architecture search,
optimisation of robot controllers, and hyper parameter tuning for
reinforcement learning methods (see the survey by Wang et al. [17]
for example applications).

6 Evaluation
PIP achieves an average of 3.47 MPKI and 148 CycWpPKI, respec-
tively a 7.4% and 3.0% decrease compared to the 64KiB configuration
of TAGE-SC-L. Figure 1 shows the MPKI across various configu-
rations: (1) 64KiB TAGE-SC-L (2) 64KiB TAGE-SC-L with Idiom
Tracker (3) 128KiB TAGE-SC-L (4) 64KiB TAGE-SC-L with Percep-
tron and Idiom Tracker (PIP) (5) 128KiB TAGE-SC-L with Idiom
Tracker (6) 160KiB TAGE-SC-L (7) 192KiB TAGE-SC-L (8) 160KiB
TAGE-SC-L with Idiom Tracker.

The 160KiB and 128KiB configurations of TAGE were tuned
using Bayesian optimisation. The 64KiB and 192KiB configurations
were based on references in the CBP2025 framework.

We measured the effect of the idiom trackers in PIP. On average,
they provided a prediction for 10.1% of all branches. For these
predictions, the idiom trackers only disagreed with TAGE+MPP in
around 1.1% of cases, leading to an average disagreement rate of

3

‘CBP 2025’, June 21, 2025, Tokyo, Japan
Karl H. Mose† , Alexandra W. Chadwick‡ , Márton Erdős‡ , Jiayi Nie† ,

Rika Antonova‡ , Timothy M. Jones‡ , Robert D. Mullins‡

3.0

3.2

3.4

3.6

3.8

T6
4

T6
4+
IT

T1
28

T1
28
+P
+I
T

T1
28
+I
T

T1
60

T1
92

T1
60
+I
T

Figure 1: Comparison of average MPKI between different
configurations (T=TAGE, P=Perceptron, IT=Idiom Tracker).
Orange marks the submitted predictor (PIP), blue for TAGE-
only configurations.

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

Disagreement (%) Error (%)

Figure 2: Percentage of predictions where the idiom trackers
and the TAGE+MPP+Arbiter predictor disagree across all
CBP2025 traces. ‘Error’ refers to disagreements where the
idiom tracker’s prediction is incorrect.

0.12% (see figure 2). On average, the idiom trackers were correct in
87.6% of disagreements.

Some specific benchmarks saw significant improvements, while
others showed negligible impact. For example, in fp_5, int_21,
and int_0, 2.3%, 0.68%, and 0.55% respectively of all predictions
were inverted correctly due to the idiom trackers.

We found that a reasonably sized version of our Perceptron pre-
dictor often had negligible and occasionally small negative effects
on performance when combined with TAGE and the idiom trackers.
While PIP includes both components, in later experiments we found
a 160KiB TAGE-SC-L predictor combined with the idiom trackers
to be the configuration with the lowest MPKI.

After tuning the 160KiB TAGE-SC-L configuration using Bayesian
optimisation we found that it exhibited negligible performance
losses (approximately 0.5%MPKI) compared to the reference 192KiB
configuration. Adding the idiom tracker provides a further 1.8%
improvement, for a total of a 9.7% decrease in MPKI compared to
the 64KiB configuration of TAGE-SC-L.

7 Discussion
The two idiom trackers employed in our design both demonstrate an
ability to correctly predict loops the first time they are entered. This
is commonly seen in the CBP2025 sample traces for the for-loop
tracker. This is a novel property for a branch predictor: history-
based predictors generally cannot handle the initial behaviour of
a branch, and use this for training. The ability to predict loops
correctly on the first invocation is particularly relevant for large
code bases, where capacities of branch predictors often become
problematic.

The for-loop idiom tracker detects and predicts branches in ev-
ery single one of the CBP2025 sample traces. This suggests that the
for-loop programming idiom is exceptionally common in practice.
By contrast, the null-terminated string tracker makes little differ-
ence for many traces, suggesting it is a more niche programming
idiom. Future work could extend the ensemble with other small
predictors for niche idioms, which might collectively apply to a
wide range of applications.

In a real design, the two idiom trackers would likely be some-
what easier to implement, as the CBP2025 infrastructure does not
provide valuable information such as the opcode of decoded in-
structions. These opcodes would result in much better filtering
resulting in fewer false positives and smaller tracking structures.
Furthermore, a hardware-software co-design may be possible to
benefit idiom-tracking prediction. Compilers could be tweaked to
transform machine code into clearer idioms, for example by group-
ing the increment, compare and branch instructions to be adjacent
in a for-loop, allowing much simpler pattern recognition.

8 Conclusion
We show that small, targeted data-dependent predictors can achieve
significant MPKI reductions even when combined with very large
statistical branch predictors. The combination of TAGE-SC-L and
MPP provides accurate predictions for most branches. However,
combining the two is not trivial and out of the configurations that
we tried, a stand-alone TAGE-SC-L predictor achieved the best
performance. Given that modern workloads are likely to see one
or two orders of magnitude more branch-PCs compared to what
previous predictors were designed for, and considering our observed
MPKI improvements from scaling up existing designs, intelligently
increasing predictor sizes will likely remain an important driver
for future performance gains. Bayesian optimisation can effectively
guide decisions about which predictor components to scale, helping
make the most of constrained resources.

Acknowledgments
This work is supported in part by the Engineering and Physical
Sciences Research Council (EPSRC) grant reference EP/W00576X/1
and the Advanced Research and Innovation Agency (ARIA). Addi-
tional data related to this publication is available in the repository
at http://doi.org/10.17863/CAM.119036.

References
[1] Muawya Al-Otoom, Elliott Forbes, and Eric Rotenberg. 2010. EXACT: Explicit

dynamic-branch prediction with active updates. In Proceedings of the 7th ACM
international conference on Computing frontiers. 165–176.

4

http://doi.org/10.17863/CAM.119036

PIP: An Ensemble of Programming-Idiom Predictors ‘CBP 2025’, June 21, 2025, Tokyo, Japan

[2] Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham,
Andrew G Wilson, and Eytan Bakshy. 2020. BoTorch: A framework for efficient
Monte-Carlo Bayesian optimization. Advances in neural information processing
systems 33 (2020), 21524–21538.

[3] Samuel Daulton, XingchenWan, David Eriksson, Maximilian Balandat, Michael A
Osborne, and Eytan Bakshy. 2022. Bayesian optimization over discrete and mixed
spaces via probabilistic reparameterization. Advances in Neural Information
Processing Systems 35 (2022), 12760–12774.

[4] Aryan Deshwal, Syrine Belakaria, and Janardhan Rao Doppa. 2021. Bayesian
optimization over hybrid spaces. In International Conference on Machine Learning.
PMLR, 2632–2643.

[5] Saurabh Gupta, Niranjan Soundararajan, Ragavendra Natarajan, and Sreenivas
Subramoney. 2020. Opportunistic early pipeline re-steering for data-dependent
branches. In Proceedings of the ACM International Conference on Parallel Architec-
tures and Compilation Techniques. 305–316.

[6] TimothyHHeil, Zak Smith, and James E Smith. 1999. Improving branch predictors
by correlating on data values. In MICRO-32. Proceedings of the 32nd Annual
ACM/IEEE International Symposium on Microarchitecture. IEEE, 28–37.

[7] Daniel A. Jiménez. 2016. Multiperspective perceptron predictor. In 5th JILP
Workshop on Computer Architecture Competitions (JWAC-5): Championship Branch
Prediction (CBP-5). https://www.jilp.org/cbp2016/paper/DanielJimenez1.pdf

[8] Daniel A. Jiménez. 2016. Multiperspective Perceptron Predictor with TAGE. In
Online publication. https://jilp.org/cbp2016/paper/DanielJimenez2.pdf

[9] Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp,
Difan Deng, Carolin Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter.
2022. SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter
Optimization. Journal of Machine Learning Research 23, 54 (2022), 1–9.

[10] Haitao Liu, Yew-Soon Ong, Xiaobo Shen, and Jianfei Cai. 2020. When Gaussian
process meets big data: A review of scalable GPs. IEEE transactions on neural
networks and learning systems 31, 11 (2020), 4405–4423.

[11] Samuel Pakalapati and Biswabandan Panda. 2020. Bouquet of Instruction Point-
ers: Instruction Pointer Classifier-based Spatial Hardware Prefetching. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA).
118–131. https://doi.org/10.1109/ISCA45697.2020.00021

[12] Stephen Pruett and Yale Patt. 2021. Branch runahead: An alternative to branch pre-
diction for impossible to predict branches. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture. 804–815.

[13] André Seznec. 2005. Analysis of the o-geometric history length branch predictor.
In 32nd International Symposium on Computer Architecture (ISCA’05). IEEE, 394–
405.

[14] André Seznec. 2007. A 256 kbits l-tage branch predictor. Journal of Instruction-
Level Parallelism (JILP) Special Issue: The Second Championship Branch Prediction
Competition (CBP-2) 9 (2007), 1–6.

[15] André Seznec. 2016. Tage-sc-l branch predictors again. In 5th JILP Workshop on
Computer Architecture Competitions (JWAC-5): Championship Branch Prediction
(CBP-5).

[16] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Fre-
itas. 2015. Taking the human out of the loop: A review of Bayesian optimization.
Proc. IEEE 104, 1 (2015), 148–175.

[17] Xilu Wang, Yaochu Jin, Sebastian Schmitt, and Markus Olhofer. 2023. Recent
advances in Bayesian optimization. Comput. Surveys 55, 13s (2023), 1–36.

[18] Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando De Feitas.
2016. Bayesian optimization in a billion dimensions via random embeddings.
Journal of Artificial Intelligence Research 55 (2016), 361–387.

A Cost Analysis
We use a modified version of TAGE. It has the same configuration as
the default, but it has been modified increasing total size of 128KiB

The Perceptron predictor has 10 weight tables, with 2 bits used
for signs and 6 bits per weight.

We include in our costs a ‘uop_tracker’. This structure provides
information that is likely available ‘for free’ in a real pipeline;
namely the operands to each executed instruction and the number
of instances of a given instruction address in the pipeline. These
are not provided by the CBP2025 infrastructure, so we have tracked
them as part of our submission, but a real design could likely avoid
this cost entirely.

Both the MPP and the Arbiter have structures to store prediction-
time histories. These are not accounted for, and are highlighted in
the code. For the MPP this could be a relatively expensive structure,

since it will need to, among other things, store indices for each of
the 10 tables.

Component Details of each field of each entry,
entries, etc.

Cost
(bits)

Idiom tracker uop info: 6 bits, 2,048 entries
tracked idioms: 185 bits, 128 entries 35,968

for-loop
tracker

candidates: 335 bits, 8 entries
decode tracking: 79 bits 2,759

NTS tracker

candidates: 339 bits, 8 entries
decode tracking: 5,135 bits
known lengths: 91 bits, 128 entries
load addresses: 75 bits, 64 entries

24,295

Perceptron

tables: 7 bits, 4,096 entries × 9 + 2 ×
2,048 entries : 286,720 bits
LOCAL HIST: 18,260
MODHIST: 3,490 bits
GHIST: register: 336 bits
PATHHIST: register: 1,152 bits
TAGEHIST: register: 80 bits
LFSR: 32 bits
Addtional counters: 40 bits

310,110

TAGE-SC-L
TAGE: 943,007 bits
LOOP-Predictor: 1,408 bits
Statistical Corrector: 104,398 bits

1,048,813

Arbiter
med-conf table: 16 bits, 8 entries
low-conf table: 16 bits, 8 entries
counters: 16 bits

272

uop_tracker

per uop pc: 24 bits, 1,024 entries
uop to instruction: 1 bit, 2,048 entries
uop regs: 43 bits, 1,024 entries
state: 11 bits
phys reg file: 76 bits, 1,024 entries
arch reg file: 11 bits, 128 entries

149,889

TOTAL
1,572,106
≈ 191.9
KiB

5

https://www.jilp.org/cbp2016/paper/DanielJimenez1.pdf
https://jilp.org/cbp2016/paper/DanielJimenez2.pdf
https://doi.org/10.1109/ISCA45697.2020.00021

	Abstract
	1 Introduction
	2 Related Work
	3 High-Level Design Overview
	4 Predictor Operation
	4.1 An Ensemble of Idiom Trackers
	4.2 TAGE-SC-L
	4.3 Multiperspective Hashed Perceptron
	4.4 TAGE-Perceptron Arbiter

	5 Parameter Tuning
	6 Evaluation
	7 Discussion
	8 Conclusion
	Acknowledgments
	References
	A Cost Analysis

