
45

The Migration Prefetcher: Anticipating Data Promotion in Dynamic
NUCA Caches

JAVIER LIRA, Universitat Politècnica de Catalunya
TIMOTHY M. JONES, University of Cambridge
CARLOS MOLINA, Universitat Rovira i Virgili
ANTONIO GONZÁLEZ, Intel Barcelona Research Center, Intel Labs - UPC

The exponential increase in multicore processor (CMP) cache sizes accompanied by growing on-chip wire
delays make it difficult to implement traditional caches with a single, uniform access latency. Non-Uniform
Cache Architecture (NUCA) designs have been proposed to address this problem. A NUCA divides the whole
cache memory into smaller banks and allows banks nearer a processor core to have lower access latencies
than those further away, thus mitigating the effects of the cache’s internal wires. Determining the best
placement for data in the NUCA cache at any particular moment during program execution is crucial for
exploiting the benefits that this architecture provides. Dynamic NUCA (D-NUCA) allows data to be mapped
to multiple banks within the NUCA cache, and then uses data migration to adapt data placement to the
program’s behavior. Although the standard migration scheme is effective in moving data to its optimal
position within the cache, half the hits still occur within non-optimal banks. This paper reduces this number
by anticipating data migrations and moving data to the optimal banks in advance of being required. We
introduce a prefetcher component to the NUCA cache that predicts the next memory request based on the
past. We develop a realistic implementation of this prefetcher and, furthermore, experiment with a perfect
prefetcher that always knows where the data resides, in order to evaluate the limits of this approach. We
show that using our realistic data prefetching to anticipate data migrations in the NUCA cache can reduce
the access latency by 15% on average and achieve performance improvements of up to 17%.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—Cache memories; C.1.2
[Processor Architectures]: Multiple Data Stream Architectures (Multiprocessors)—Parallel processors

General Terms: Design, Management, Performance

Additional Key Words and Phrases: Memory hierarchy, cache memory, NUCA, migration, prefetching

ACM Reference Format:
Lira, J., Jones, T. M., Molina, C., and González, A. 2012. The migration prefetcher: Anticipating data promo-
tion in dynamic NUCA caches. ACM Trans. Architec. Code Optim. 8, 4, Article 45 (January 2012), 20 pages.
DOI = 10.1145/2086696.2086724 http://doi.acm.org/10.1145/2086696.2086724

1. INTRODUCTION

Researchers from both academia [Kim et al. 2002] and industry [Borkar et al. 2005]
agree that future CMPs will accommodate large on-chip last-level caches. However,
the exponential increase in multicore processor cache sizes accompanied by growing

This work was supported by the Spanish Ministry of Science and Innovation (MCI) and FEDER funds of the
EU under the contracts TIN 2010-18368 and TIN 2007-68050-C03-03, the Generalitat de Catalunya under
grant 2009SGR1250, EPSRC, the Royal Academy of Engineering and Intel Corporation.
Authors’ addresses: J. Lira, Intel Research Center Barcelona, Barcelona, Spain; T. M. Jones, University of
Cambridge, Cambridge, UK; C. Molina, Universitat Rivira i Virgili, 43003 Tarragona, Spain; A. González,
Intel Research Center Barcelona, Barcelona, Spain; email: javierx.lira@intel.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1544-3566/2012/01-ART45 $10.00

DOI 10.1145/2086696.2086724 http://doi.acm.org/10.1145/2086696.2086724

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 45, Publication date: January 2012.

45:2 J. Lira et al.

on-chip wire delays [Agarwal et al. 2000] make it difficult to implement traditional
caches with a single, uniform access latency. Non-Uniform Cache Architecture (NUCA)
designs [Kim et al. 2002] have been proposed to address this problem. A NUCA divides
the whole cache memory into smaller banks and allows those that are located next to
the cores to have lower access latencies than the banks that are further away, thus
mitigating the effects of the cache’s internal wires.

An important issue to be addressed for CMP NUCAs is data placement, which can
be described as determining the most suitable location for data blocks in the NUCA
space. This is not an easy problem to solve as different data blocks can experience
entirely different degrees of sharing (i.e., the number of processors that access them)
and exhibit a wide range of access patterns. Moreover, the access pattern of a given
data block can also change during the course of program execution. Therefore a static
placement strategy which fixes the location of each block for the entire application will
perform sub-optimally. To address this issue, dynamic NUCA (D-NUCA) [Beckmann
and Wood 2004; Kim et al. 2002] allows data to be mapped to multiple banks within
the NUCA cache, and then uses data migration to adapt its placement to the program
behavior as it executes.

Prior research on D-NUCA has developed two main trends for dealing with data
migration: 1) promotion and 2) optimal position. With promotion [Beckmann and Wood
2004; Kim et al. 2002] the requested data is moved closer to the processor that initiated
the memory request upon a hit in the NUCA cache. This scheme is especially effective in
uniprocessor systems. However, in a CMP environment, multiple processors accessing
shared data results in this data “ping-ponging” between NUCA banks.

Other migration schemes in the literature compute the optimal placement for a par-
ticular data block by taking into consideration dynamic parameters such as the usage
of data or the processors that are currently sharing it [Hammoud et al. 2009; Kandemir
et al. 2008]. An alternative for D-NUCA are those NUCA designs based on S-NUCA
configurations Beckmann et al. 2006; Hardavellas et al. 2009]. These designs avoid
data migration by using external support, like OS or selective data replication, to solve
the data placement issue. These schemes effectively reduce the ping-pong effect at
the cost of significantly increasing complexity. In general, current migration schemes
leverage locality of data to reduce the NUCA access latency for future accesses to the
same data, but do not exploit data access patterns or data correlation. In this paper
we apply these concepts to a traditional migration technique in order to anticipate and
speed up data migration on D-NUCA architectures.

Existing data migration policies are effective in concentrating the most frequently
accessed data in the NUCA banks with the shortest access latency (i.e. the optimal
banks). However, a significant percentage of hits in the NUCA cache are still resolved
in slower banks. In this paper, we complement the migration scheme with a simple
prefetching technique in order to recognize access patterns to data blocks and anticipate
data migration. We show that using data prefetching to anticipate data migrations
in the NUCA cache can reduce the access latency by 15% on average and achieve
performance improvements of up to 17%.

The remainder of this paper is structured as follows. Section 2 describes the baseline
architecture assumed in this paper. In Section 3 the proposed mechanism is described
in detail. Section 4 presents the experimental methodology we used, followed by the
analysis of the results that is presented in Section 5. Related work is discussed in
Section 6, and concluding remarks are given in Section 7.

2. BASELINE ARCHITECTURE

We assume an L2 cache with a Non-Uniform Cache Architecture (NUCA), derived from
the Dynamic NUCA (D-NUCA) design by Kim et al. [2002]. As in the original proposal

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 45, Publication date: January 2012.

The Migration Prefetcher 45:3

Core 0 Core 1 Core 2 Core 3

Core 4 Core 5 Core 6 Core 7

Fig. 1. Baseline architecture layout.

we partition the address space across cache banks which are connected via a 2D mesh
interconnection network. As illustrated in Figure 1, the NUCA storage is partitioned
into 128 banks. D-NUCA allows migration of data towards the cores that use it the
most. This distributes data blocks among the NUCA banks so data close to the cores
is accessed the most often, thus reducing the access latency for future accesses to the
same data.

Ideally, a data block would be mapped into any cache bank in order to maximize
placement flexibility. However, the overheads of locating a data block in this scenario
would be too large as each bank would have to be searched, either through a centralized
tag store or by broadcasting the tag to all banks. To mitigate this, the NUCA cache is
treated as a set-associative structure with each bank holding one “way” of the set. The
banks which make up each set are called banksets and data blocks can be mapped to any
bank within a single bankset. The NUCA banks that make up a bankset are organized
into bankclusters within the cache (the dotted boxes in Figure 1). Each bankcluster
consists of a single bank from each bankset. As shown in Figure 1, we assume a NUCA
cache that is 16-way bankset associative, organized in 16 bankclusters. Of these, eight
are located close to the cores (the local banks) and the other eight in the center of the
NUCA cache (the central banks). Therefore, a data block has 16 possible placements
in the NUCA cache (eight local banks and eight central banks).

An incoming data block from the off-chip memory is mapped to a specific bank within
the cache. This is statically predetermined based on the lower bits from the data block’s
address. The LRU data block in this bank would be evicted if required. Once the data
block is in the NUCA cache, the migration scheme determines its optimal position. As
a migration policy, we assume gradual promotion that has been widely used in the
literature [Beckmann and Wood 2004; Kim et al. 2002]. This states that upon a hit
in the cache the requested data block should move one-step closer to the core that
initiated the memory request.

It is also necessary to determine how to find data within the NUCA cache. This
is known as the data search scheme. The baseline D-NUCA design uses a two-phase
multicast algorithm that is also known as partitioned multicast. First, it broadcasts
a request to the local bank that is closest to the processor that launched the memory
request, and to the eight central banks. If all nine initial requests miss, the request is
sent, also in parallel, to the remaining seven banks from the requested data’s bankset.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 45, Publication date: January 2012.

45:4 J. Lira et al.

(a) Static placement (b) D-NUCA with gradual migration

Fig. 2. Distribution of hits in the NUCA cache when core 0 sends memory requests.

Finally, if the request misses in all 16 banks, the request is forwarded to the off-chip
memory.

Having described our baseline D-NUCA architecture, the next section presents our
migration prefetcher in more detail.

3. THE MIGRATION PREFETCHER

This section describes our migration prefetcher in detail. We first motivate the need
for this approach in Section 3.1. The implementation and the basic concepts of the
prefetcher are described in Section 3.2. Then, we show several alternatives to deal with
the prefetching strategies, accuracy and the data search scheme, which are described
in Sections 3.3, 3.4 and 3.5, respectively. Finally, the actual prefetcher is presented in
Section 3.6.

3.1. Motivation

To illustrate the need for our prefetching approach, consider Figure 2 which shows the
distribution of hits within the NUCA cache for accesses made by core 0. Figure 2(a)
shows a static placement of data which provides an even distribution of hits among all
banks. Figure 2(b), on the other hand, shows the same accesses when using a simple
migration scheme, like gradual promotion. Note that the number of hits in both figures
is exactly the same. Here, as expected, the NUCA banks that are closest to core 0 have
the highest concentration of hits as data is migrated into them. However, despite this
migration, half the hits from core 0 still find their data in the farther (i.e., non-optimal)
banks.

This can partly be explained by data sharing. Some of the data required by core
0 is accessed by other cores too. Therefore, we would expect some of it to migrate
towards those other cores, especially if they access the data more frequently than core
0. However, accessing these non-optimal banks from core 0 is costly in terms of both
time and energy due to the search scheme employed to find the data. What we really
require is a system to automatically bring this data closer to the core that will next
need it, before it is actually required, instead of having to perform the search on the
critical path when the memory request is actually initiated.

The aim of our prefetching technique is to increase the number of hits in the closest
banks to each core by anticipating data migrations and bringing the data closer to the
requesting core in advance of it being required. To do this we introduce a prefetcher
into the NUCA cache that predicts the next memory request to hit in the NUCA cache
based on the past. Figure 3 shows the potential for our prefetching strategy using
our benchmark applications described in Section 4. Here, for each pair of consecutive
memory accesses by a single core X, Y we show the fraction of accesses to the cache for
X where the next access by the same core is to the same address Y. In other words, the

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 45, Publication date: January 2012.

The Migration Prefetcher 45:5

Fig. 3. Percentage of X → Y access patterns.

number of times an access to X is immediately followed by an access to the same Y.
Figure 3 shows that, on average, almost 50% of the accesses exhibit this pattern and
that this behavior is present across all applications, ranging from 30% to 70% of all
accesses. We exploit this result in our prefetcher to predict the next memory address
that will be required based on the current.

Note that the migration prefetcher is not a regular prefetcher in the sense that it
does not bring data into the cache from main memory. Instead, this mechanism an-
ticipates migrations by moving data blocks that are currently stored in the NUCA
cache closer to the requesting core in advance of them being required. Moreover, unlike
a regular prefetcher, this mechanism neither consumes memory bandwidth nor pro-
vokes replacements in the NUCA that could hurt performance. In general, a regular
prefetcher and the migration prefetcher are orthogonal mechanisms that could be used
simultaneously.

The potential benefits of a migration prefetcher are restricted to the difference be-
tween a near-bank and far-bank access latency. Traditional prefetchers, on the other
hand, reduce the latency of an access to main memory, which is increasing with each
generation. Therefore, a traditional prefetcher can afford gigantic structures to deal
with complicated address correlation, whereas for our scheme this is not viable. In
short, the migration prefetcher should use simple prefetching techniques, like the next
access correlation we use in this paper.

3.2. How the Prefetcher Works

Figure 4 shows the NUCA cache including the prefetcher components. There are eight
prefetchers (one per core) that are located in the cache controller, which is the entrance
point to the NUCA from the L1 cache. A prefetcher consists of the prefetcher slot (PS),
which stores the prefetched data, a structure to manage the outstanding prefetching
request and the last request sent from the L1, and the Next Address Table (NAT), which
keeps track of the data access patterns. For each address requested, the NAT stores
the next address to be accessed. In this section, for the sake of simplicity, we assume
that the NAT is unlimited table which avoids address conflicts.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 45, Publication date: January 2012.

45:6 J. Lira et al.

Fig. 4. Additional structures introduced to enable migration prefetching.

The prefetcher manages memory requests to the NUCA cache and keeps track of
data access patterns. When a known pattern starts, the prefetcher predicts the next
address and then prefetches it into the PS, and therefore closer to the requesting core.
If the prediction was correct then the latency of the second access would be reduced
since it would hit in this structure instead of a far-away bank.

Note that our prefetching technique is speculative. Therefore taking prefetching
decisions into consideration when migrating data could lead to it being removed from
its optimal position and cause unnecessary data movements. To address this situation,
the PS always keeps a copy of the prefetched data on behalf of a bank in the NUCA.
When there is a hit in the prefetcher (i.e., the PS holds the required data), it sends
the data block to the L1 cache and then notifies the owner bank that it should migrate
the data one step closer to the requesting core. In order to avoid interfering with the
cache coherence protocol, data is copied to the prefetcher only if it is being shared by
several L1 caches (all of them holding it in read-only mode), or the NUCA bank has the
requested data in exclusive mode. Note that the prefetcher can only respond to stores
if it gets the data block in exclusive mode, otherwise only loads can be satisfied. When
the NUCA bank cannot send a copy of the requested data to the prefetcher, it notifies
the prefetcher which records this information. Then, once the actual memory access is
performed, although the prefetcher does not hold the requested data, it knows its bank
position in the NUCA, speeding up access to the block.

When a request from the L1 cache arrives to the prefetcher (Figure 5(a)), it can
be resolved in three ways. (1) If it hits in the PS, and the memory request is a load
instruction or the PS has the data block in exclusive mode, the prefetcher sends the
requested data to the L1 cache. This is the optimal situation because the memory
request was serviced in the minimum amount of time due to the previous prefetch.
(2) If the PS does not have the requested data, it still can hit on an outstanding
prefetch request. Although the memory request will take longer than in the optimal
case, there can be a reduction in the access latency in this situation. (3) If the request
misses in both structures then it will be forwarded to the NUCA cache, just as if the
prefetcher was not there. This situation also occurs if the prefetcher does have the data

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 45, Publication date: January 2012.

The Migration Prefetcher 45:7

(a) Request from L1 cache arrives. (b) Prefetcher receives data.

Fig. 5. Flowcharts showing the prefetcher actions when receiving requests from the L1 cache and data from
the NUCA cache.

block but does not satisfy the coherence requirements for it, (e.g., the PS is storing the
requested data in read-only mode and the core wants it in exclusive).

At the same time as checking the PS, the NAT is updated by storing the current
address in the entry for the last request, then updating the last request field with
the current address. If a pattern starting with the address of the current memory
request exists in the NAT then the prefetcher submits a prefetch request and updates
the outstanding request field. Note that if the prefetcher already has an outstanding
prefetch request to the same memory location as the current address, it cannot submit
a new prefetch request. Instead, the prefetcher must wait until the data comes back
from the NUCA cache.

Submitting a prefetch request does not guarantee that the prefetcher gets any data.
For example, the required data may not be in the NUCA cache. In this case, the
prefetcher is notified, leading to case (3) above. Due to this we use only one slot to keep
track of outstanding prefetch requests and this can be overwritten with a new prefetch
request if the data is not found in the cache.

Having a single structure for managing outstanding prefetch requests is very con-
venient in our particular case as we model simple in-order processors in our baseline
configuration. Bigger cores, however, may require dedicated hardware to deal with
their specific features. For out-of-order processors, the effectiveness of the migration
prefetcher would not significantly change. There are two main reasons for this. First,
our mechanism is implemented at the last level cache, so the memory requests that it
receives are filtered by the L1 cache. Therefore the NUCA cache is only accessed for a
small fraction of the total memory requests (i.e. those that miss in the L1) and these
are likely to be similar for both in-order and out-of-order processors. Second, resolution
of dependences in an out-of-order processor will be the same for iterations of the same
piece of code. Other features in processors like SMT would require replicating some of
the structures in the Migration Prefetcher to deal with the application behaviour.

Figure 5(b) illustrates the behavior of the prefetcher when it receives the prefetched
data from the NUCA cache. If the prefetch request is still alive and there is a pending
request, the prefetcher sends the received data to the L1 cache and it notifies the owner
bank to migrate the prefetched data block one-step closer to the requesting core. Note

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 45, Publication date: January 2012.

45:8 J. Lira et al.

Fig. 6. Fraction of prefetch requests that were useful for varying confidence counter sizes.

that if the coherence requirements are not satisfied then the pending memory request
must be forwarded to the NUCA cache. On the other hand, if there is no pending
request then the received data is stored in the PS.

3.3. Prefetching Strategies

Updating the NAT with the correct addresses is crucial for the prefetch requests to
be useful in the future. In this section we propose including a saturating counter
with each line in the NAT that shows the confidence of the corresponsing prediction.
When updating the NAT, we first update and check the confidence counter. If the former
address is the same as the new one the confidence counter is increased by one, otherwise
it is decreased by one. If the modified confidence counter is greater than zero then the
NAT will not be updated with the new address, instead keeping the old address. This
strategy prevents the removal of a good prediction by a single miss. This is important,
for example, when executing loops where there is a regular pattern of memory accesses.
The loop will iterate many times but, on the final iteration, the prediction based on the
last memory access will be incorrect. However, this will only occur once and we want
to maintain the old prediction for the next time the loop is executed. Through the use
of the confidence system we can ensure that the old prediction is not unnecessarily
removed.

Figure 6 shows the fraction of prefetch requests that ended up being useful as the
size of the confidence counter increases. This shows that implementing a confidence
counter per NAT line effectively increases the rate of useful prefetch requests by 5%
on average and up to 10% in the best case. However, we also observe that using more
than one bit to implement the confidence system does not provide benefits, and can
even reduce the performance of the system. This happens because some data blocks
eventually change behavior and are followed by a different memory access. The greater
the saturated counter, the longer the prefetcher takes to catch up with its current
behavior.

Based on this analysis, we implemented a one-bit confidence system in the prefetcher.
The prefetcher includes one extra bit per NAT line to represent the confidence counter
and a comparator to determine whether the NAT line should be updated. We take

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 45, Publication date: January 2012.

The Migration Prefetcher 45:9

Fig. 7. Conflicts in the NAT table.

these overheads into consideration when computing the prefetcher latency and energy
consumption.

3.4. Accuracy

Up to this point we have considered an unlimited NAT. However, this is not feasible
to implement, requiring 258 lines of 58 bits for a 64-bit processor with data blocks of
64 bytes. Therefore this section analyses the accuracy loss that the prefetcher experi-
ences if we assume an implementable NAT. Figure 7 shows the percentage of prefetch
requests that are submitted using another address’s information, caused by a conflict
in the NAT. We show six configurations that use between 6 and 16 bits from the address
to directly index into the NAT. This figure shows that conflicts on the NAT increase
exponentially as the NAT’s size decreases. For a very small NAT of 64 lines (6 bits),
almost every prefetch uses the wrong information and the prefetcher is practically use-
less. However, using bigger tables (12-14 bits) means that only 25% of prefetch requests
use erroneous information. The hardware overhead of using 12 bits to map addresses
to the NAT is 232 KBytes, 29 KBytes per NAT. If we use 14 bits, the total overhead is
almost 1 MByte.

A smarter implementation to reduce the hardware required to implement the NAT
could take advantage of the locality found in applications, using the fact that the
typical offset between two consecutive addresses is very small. Thus, we could consider
storing the offset in the NAT instead the whole address. We believe that 16 bits would
be enough to have good accuracy. Unfortunately, reducing the width of each NAT line
is not as crucial as reducing its length. In this case, using 14 bits to map addresses to
the NAT would make the NAT implementable. However, the accuracy loss caused by
being unable to represent large offsets would prevent this scheme from achieving finer
accuracy than the implementation proposed.

3.5. Lookup in NUCA

The dynamic placement of data in the NUCA cache makes the data search scheme
the key challenge in D-NUCA architectures. As described in Section 2, the baseline
architecture assumes the partition multicast algorithm to find data in the cache. This is

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 45, Publication date: January 2012.

45:10 J. Lira et al.

Fig. 8. Accuracy of the data search scheme.

a two-step access scheme that initially looks up the closest banks to the requesting core
and, if the requested data is still not found, it looks up the rest. Unfortunately, using an
access scheme like this to resolve prefetch requests could dramatically increase on-chip
network traffic and, consequently, reduce the potential benefits of using a prefetcher
in terms of performance and energy consumption.

In addition to predicting the next address, we also allow the prefetcher to predict
the position in the NUCA cache where this data will be found. We experimentally
observe that related data move together among bankclusters, therefore a significant
percentage of consecutive memory requests are resolved by banks that belong to the
same bankcluster. Based on this observation, for each line in the NAT we also keep
the number of the bankcluster of the last responder that held the data belonging to
the corresponding address. Therefore the prefetch request is sent only to one bank
instead of to all 16 candidate banks. Figure 8 shows the accuracy of the search scheme
compared to an oracle that always knows where the prefetched data is. This shows
that using the last responder scheme means that, on average, half of the prefetch
requests are found. However, this percentage is even higher (up to 90%) in some of the
simulated applications, like ferret or raytrace. In order to enhance the accuracy of the
access scheme without significantly increasing the network-on-chip traffic we consider
also sending the prefetch request to the local bank when it is not the last responder.
In this case, as Figure 8 shows, the search accuracy increases to 70% compared to the
oracle. We call this the last responder and local scheme.

3.6. Tuning the Prefetcher

The prefetcher described in Section 3.2 introduces several challenges that must be
met in order to provide a realistic implementation, such as the size of the NAT or the
access scheme used when looking for data. We have analysed these challenges and
propose a prefetcher with a one-bit confidence system, an NAT table size of 29 KBytes
(12 addressable bits), and the last responder and local as a search scheme. The total
hardware overhead of the actual prefetcher is 264 KBytes (33 KBytes per core), which
represents less than 4% extra hardware compared to the baseline architecture. This
includes all prefetcher structures, the confidence counter and the bankcluster identi-
fier. We have modeled all prefetcher structures using CACTI and computed its global

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 45, Publication date: January 2012.

The Migration Prefetcher 45:11

Table I. Configuration Parameters

Processors 8 - UltraSPARC IIIi
Frequency 1.5 GHz
Integration Technology 45 nm
Block size 64 bytes
L1 Cache (Instr./Data) 32 KBytes, 2-way
L2 Cache (NUCA) 8 MBytes, 128 Banks
NUCA Bank 64 KBytes, 8-way
L1 Latency 3 cycles
NUCA Bank Latency 4 cycles
Router Latency 1 cycle
Avg Offchip Latency 250 cycles

Table II. Multi-Programmed Scenario

astar gcc lbm mcf
milc omnetpp perlbench soplex

Reference input

latency, indicating that it takes up to 2 cycles to perform the actions described in this
section. Other aspects of the prefetcher, such as its influence in terms of performance
and energy consumption, are described in Section 5.

4. EXPERIMENTAL METHODOLOGY

This section describes our simulator and benchmarks used to evaluate our migration
prefetcher. We also explain the energy model used to calculate the energy consumed by
our design.

4.1. Simulation Environment

We use the full-system execution-driven simulator, Simics [Magnusson et al. 2002],
extended with the GEMS toolset [Martin et al. 2005]. GEMS provides a detailed
memory-system timing model that enables us to model the NUCA cache architecture.
Furthermore, it accurately models the network contention introduced by the simulated
mechanisms. The simulated architecture is structured as a single CMP made up of eight
in-order homogeneous cores. Each core is augmented with a split first-level cache (data
and instruction). The second level of the memory hierarchy is the NUCA cache. In order
to maintain coherency within the memory subsystem we used the MESIF coherence
protocol, which is also used in the Intel R© Nehalem processor [Molka et al. 2009].

Table I summarizes the configuration parameters used in our studies. The access
latencies of the memory components are based on the models made with the CACTI
6.0 [Muralimanohar et al. 2007] modeling tool, this being the first version of CACTI
that enables NUCA caches to be modeled.

In order to evaluate this mechanism, we assume two different scenarios: (1) multi-
programmed and (2) parallel applications. The former executes a set of eight different
SPEC CPU2006 [SPEC 2006] workloads with the reference input in parallel. Table II
outlines the workloads that make up this scenario. The latter simulates the whole set
of applications from the PARSEC v2.0 benchmark suite [Bienia et al. 2008] with the
simlarge input data sets. This suite contains of 13 programs from many different ap-
plication areas such as image processing, financial analytics, video encoding, computer
vision and animation physics, among others.

The methodology we used for simulation involved first skipping both the initialization
and thread creation phases, and then fast-forwarding while warming all caches for
500 million cycles. Finally, we performed a detailed simulation for 500 million cycles.
As a performance metric, we used the aggregate number of user instructions committed
per cycle, which is proportional to the overall system throughput [Wenisch et al. 2006].

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 45, Publication date: January 2012.

45:12 J. Lira et al.

4.2. Energy Model

In this paper we evaluate the energy consumed by the NUCA cache and the off-chip
memory. To do so, we used a similar energy model to that adopted by Bardine et al.
[2007]. This allowed us to also consider the total energy dissipated by the NUCA cache
and the additional energy required to access the off-chip memory. The energy consumed
by the memory system is computed as follows:

Etotal = Estatic + Edynamic
Esta = ES noc + ES banks + ES prefetcher

Edyn = ED noc + ED banks + ED prefetcher + Eoff-chip

We used models provided by CACTI 6.0 [Muralimanohar et al. 2007] to evaluate
static energy consumed by the memory structures (ES banks and ES prefetcher). CACTI
has been used to evaluate dynamic energy consumption as well, but GEMS [Martin
et al. 2005] support is required in this case to ascertain the dynamic behavior in
the applications (ED banks and ED prefetcher). GEMS also contains an integrated power
model based on Orion [Wang et al. 2002] that we used to evaluate the static and
dynamic power consumed by the on-chip network (ES noc and ED noc). Note that the
extra messages introduced by the prefetcher into the on-chip network have also been
accurately modeled by the simulator. The energy dissipated by the off-chip memory
(Eoff-chip) was determined using the Micron System Power Calculator [Micron 2009]
assuming a modern DDR3 system (4GB, 8DQs, Vdd:1.5v, 333 MHz). Our evaluation of
the off-chip memory focused on the energy dissipated during active cycles and isolated
this from the background energy. This study shows that the average energy of each
access is 550 pJ.

As an energy metric we used the energy consumed per memory access. This is based
on the energy per instruction (EPI) [Grochowski et al. 2004] metric which is commonly
used for analysing the energy consumed by the whole processor. This metric works
independently of the amount of time required to process an instruction and is ideal for
throughput performance.

5. RESULTS AND ANALYSIS

This section analyses the impact on performance and energy consumption of using
the migration prefetcher on a D-NUCA architecture. We evaluate two versions of our
prefetcher on a D-NUCA cache that uses gradual promotion as the migration policy
and compare them to the baseline configuration, which is described in Section 2. These
are a realistic implementation of the migration prefetcher and a perfect prefetcher.
The first implements the one-bit confidence system, its NAT table size is 29 KBytes
(12 addressable bits), and it uses last responder and local as a search scheme. On
the other hand, the perfect prefetcher also implements the one-bit confidence system,
but has an unlimited NAT table and uses a perfect search scheme. This represents
an oracle that knows exactly where any data block resides within the NUCA cache at
any time. Although unrealistic and unimplementable in practice, the perfect approach
shows the potential benefits of prefetching for data migration.

5.1. Performance Analysis

Figure 9 shows the performance improvement obtained with the migration prefetcher.
On average, we observe that the realistic implementation outperforms the baseline
configuration by 4%, while the perfect prefetcher obtains a 7% performance improve-
ment. This figure shows that, in general, the prefetcher is often able to find data
access patterns in the simulated applications and exploit them for performance gains.
Furthermore, it achieves speed-ups in all benchmarks and the multi-programmed

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 45, Publication date: January 2012.

The Migration Prefetcher 45:13

Fig. 9. Performance results.

mix (SPEC in Figure 9). In the parallel applications particularly, the realistic
migration prefetcher achieves performance improvements of over 5% in four bench-
marks (facesim, streamcluster, x264, and 17% in raytrace). On the other hand,
when considering the multi-programmed environment, both versions of the migration
prefetcher, perfect and realistic, outperform the baseline configuration by 5%. In many
cases the realistic prefetcher achieves a performance improvement that approaches the
perfect prefetcher (e.g., raytrace and dedup). In others, such as facesim, the improve-
ment is less impressive when using the realistic scheme. We analyze the reasons for
this later in this section.

The key reason for the performance improvements is a reduction in the access latency
to the NUCA cache on a hit in the prefetcher. Figure 10 shows that the perfect prefetcher
reduces the NUCA access latency by 30%, on average, while the reduction with the real-
istic implemetation is 15%. These results show the ability of the prefetcher to recognize
data access patterns and anticipate data migrations in order to increase the number of
memory requests satisfied with the optimal latency. Note that the realistic prefetcher
succeeds in taking advantage of high temporal locality found in most of applications.
This allows our implementation to deal with large amount of data correlation, even us-
ing small NAT structures. Unfortunately, the performance benefits of using this mech-
anism are restricted by the overall hit rate in the NUCA cache, which is small in some
PARSEC applications (see Figure 11). For example, the access latency for fluidanimate
is reduced by over 40% by using the perfect prefetcher. However, this only translates
into a 2% performance increase for this application due to its low hit rate of 3%.

Figure 12 illustrates how hits in the NUCA cache are distributed among its different
sections. For the sake of clarity we split the NUCA banks into three types which
correspond to their distance from the requesting core. These are the local banks
which are the 8 banks closest to the core, the central banks which are the 8 clusters
(64 banks) in the center of the NUCA, and the far banks that are all other banks. Note
that the migration prefetcher can only allocate one data block per core. However, as
Figure 12 shows, it effectively services the vast majority of hits, even with the realistic

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 45, Publication date: January 2012.

45:14 J. Lira et al.

Fig. 10. Reduction of NUCA access latency.

Fig. 11. Hit rate in the NUCA cache.

implementation. This clearly explains why this mechanism outperforms the baseline
configuration, overcoming the overheads of continuously submitting prefetch requests.

In addition, Figure 12 shows that the realistic implementation deals with as many
data access patterns from local banks as the perfect prefetcher. This is because the ac-
cess scheme used by the realistic prefetcher always sends the prefetch request to these
banks first. In order to deal with patterns in the other banks, the realistic prefetcher
sends the request to the last responder. This figure shows that it successfully prefetches
and migrates some of the patterns from the central or far banks to the prefetcher. Com-
pared to the perfect prefetcher, however, we find that there are a significant number of
patterns that the realistic implementation cannot deal with.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 45, Publication date: January 2012.

The Migration Prefetcher 45:15

Fig. 12. Distribution of hits in the NUCA cache.

Fig. 13. Sources of prefetched data.

Figure 13 shows the sources of prefetch data. It is clear from this that the perfect
prefetcher obtains more data from the central and far-away banks than the realistic
implementation. This is because the realistic prefetcher only accesses the local bank
and last responder to find the required data. Using this simple search scheme, the
realistic approach gets about 20% of prefetched data from the non-optimal banks.
On the other hand, the perfect prefetcher, that uses an oracle to know where in the
NUCA cache is the prefetched data, shows the potential of our mechanism to deal
with data located in non-optimal banks. It outlines that the realistic prefetcher could
get up to 50% of prefetched data from central and far-away banks. Based on this
observation, we conclude that far from the size of the NAT table being the limitation to
this approach, the main challenge that needs to be addressed to reduce the difference

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 45, Publication date: January 2012.

45:16 J. Lira et al.

Fig. 14. Quantification of the on-chip network traffic.

between the perfect and realistic implementations is the data access scheme and its
effectiveness in finding data access patterns in non-local banks. An example of this
can be found by analysing how the two versions of the migration prefetcher behave in
front of facesim and raytrace. These are the two applications that achieve the highest
performance improvement when using the perfect prefetcher. In Figure 12, on one hand,
we observe that raytrace fulfills almost 90% of its hits in the local banks. Therefore both
prefetcher versions can get the data access patterns from there and, consequently, the
realistic prefetcher achieves almost the same performance improvement as the oracle.
Considering facesim, on the other hand, most of the hits in the NUCA cache happen
in the central banks. The realistic prefetcher in this case is not able to obtain all data
access patterns and ends up improving performance by 5% compared to the baseline
configuration, whereas the perfect prefetcher achieves 20% performance improvement.

5.2. Energy Consumption Analysis

Here, we analyze the impact of the overheads that the migration prefetcher intro-
duces to the baseline D-NUCA configuration. Figure 14 shows the on-chip network
contention of the simulated mechanism by discriminating the traffic introduced by the
prefetcher. The figure shows that, on average, neither of the two versions of the mi-
gration prefetcher increase the on-chip network contention. Although we would expect
the prefetcher to significantly increase the on-chip network traffic due to the large
numbers of prefetch requests that this mechanism sends, in actual fact every hit in the
prefetcher saves up to 16 memory requests to the NUCA banks. To take advantage of
this and therefore avoid increasing the on-chip network traffic, the migration prefetcher
must be effective. Figure 14 also illustrates that the realistic implementation of the
prefetcher introduces fewer extra messages to the network. This is because the perfect
prefetcher always finds the prefetched data, and thus receives the corresponding data
block. On the other hand, if the realistic prefetcher could not find the required data it
must forward the memory request to the NUCA cache. Therefore the common on-chip
network traffic increases compared to the perfect implementation.

Considering the energy consumption, Figure 15 illustrates that the migration
prefetcher consumes about the same amount per memory access as the baseline

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 45, Publication date: January 2012.

The Migration Prefetcher 45:17

Fig. 15. Energy consumed per memory access.

configuration. For the sake of simplicity we remove the perfect prefetcher from this
analysis because we cannot model an infinite NAT. Static energy is the major con-
tributor to the overall energy consumed by caches, and this case is not an exception.
In general we find that although the migration prefetcher introduces 264 KBytes to
implement the required structures, it achieves a significant enough reduction in dy-
namic energy consumption in the on-chip network to counterbalance these overheads.
As happens with the on-chip traffic, the amount of energy consumed by the prefetcher
depends on its effectiveness. We can clearly see that the migration prefetcher achieves
the highest reduction in energy consumption per memory access in applications where
it also obtains the highest performance benefits, like facesim, raytrace or x264.

5.3. Summary

This section has analysed the performance and energy consumption of our migration
prefetcher, showing that the realistic implementation reduces the average NUCA la-
tency by 15%. This translates into an overall speed-up of 4% across all benchmarks, up
to 17% in the case of raytrace. Furthermore, an analysis of the banks that are accessed
in each scheme shows it is able to service significant numbers of hits from within the
prefetcher itself, providing further evidence of the benefits that this technique can
bring.

6. RELATED WORK

Prefetching is a well known technique for boosting program performance by moving
data to a nearer cache level to the core before it is required by the execution units of the
processor [Byna et al. 2009; VanderWiel and Lilja 1996]. The most relevant approaches
to our work are Tagged Prefetching [Smith 1982] that tries to capture accesses to
consecutive memory lines, Stride Prefetching [Chen and Baer 1995] that tries to capture
accesses at the same distance from one to next and Correlation Prefetching [Nesbit and
Smith 2004] that tries to identify groups of memory accesses that are related under a
common pattern against time.

Using address correlation for prefetching data from main memory has been studied
in the literature for decades [Charney and Reeves 1995; Joseph and Grunwald 1997;

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 45, Publication date: January 2012.

45:18 J. Lira et al.

Hu et al. 2003]. These works usually require large structures to deal with fine-
grained address correlation, and therefore achieve high accuracy with the implemented
prefetcher. The migration prefetcher is different to traditional prefetchers in the sense
that our scheme moves data that is already in the NUCA from one bank to another,
closer to the requesting core, while traditional prefetchers bring data from the main
memory. The migration prefetcher enables a close-bank hit latency for data that is
actually in distant banks. Its benefits are therefore restricted to the difference between
a near-bank and far-bank access latency. Traditional prefetchers, on the other hand,
reduce the latency of an access to main memory, which is increasing with each gen-
eration. Therefore, a traditional prefetcher can afford gigantic structures to deal with
complicated address correlation, whereas for our scheme this is not viable. In short,
the migration prefetcher should use simple prefetching techniques, like the next access
correlation we use in this paper.

Prefetching in a NUCA was first analysed by Beckmann and Wood [2004]. They
evaluated stride-based prefetching between the L2 cache and memory and between L1
and L2 caches. In this paper, we apply prefetching in the NUCA cache to move data
that is likely to be accessed close to the requesting core, but at the NUCA level. This
mechanism, therefore, does not provoke replacements with prefetched data.

Migration techniques in D-NUCA have been widely analysed in the literature. Kim
et al. [2002] introduced the D-NUCA concept on uniprocessors and proposed a simple
migration mechanism known as gradual promotion. This approach begins with a hit in
the NUCA cache, and moves the requested data one-step closer to the processor that
initiated the memory request. Beckmann and Wood [2004] demonstrated that block
migration is less effective for CMPs because 40-60% of hits in commercial workloads
are satisfied in the central banks. In this paper, we show how prefetching can help
migration to reduce the hit rate in the non-optimal banks.

Eisley et al. [2008] proposed a scalable migration technique that tries to allocate
data in free/invalid cache slots instead of sending data off-chip. Kandemir et al. [2008]
took a different point of view. They observed that 50% of data fetched from of-chip
memory to a shared L2 NUCA cache was used more heavily by a different core from
the one that originally requested the data. Based on this observation, they focused on
minimizing the number of migrations with a placement mechanism that tries to place
data in an optimal position. In the same vein, Hammoud et al. [2009] predicted the
optimal location of data by monitoring the behavior of programs. Finally, Chaudhuri
[2009] proposed a coarse-grained data migration mechanism assisted by the operating
system that monitors access patterns to decide where and when an entire page of data
should be migrated.

A common characteristic of these migration techniques is that they move data to the
optimal position with the cache to reduce the access latency for future accesses to the
same data. In our work, however, we analyze related data to anticipate migrations, and
thus reduce access latency for future accesses not only to the same data, but also to its
followers. Moreover, although in this paper we analyzed this technique with gradual
migration, we could implement it in conjunction with any other migration technique
proposed in the literature.

7. CONCLUSIONS

Existing data migration policies for NUCA caches succeed in concentrating the most
frequently accessed data in the NUCA banks with the smallest access latency. However,
there is still a significant percentage of hits in the NUCA cache that are resolved in
slower banks.

In order to address this situation, we have proposed a migration prefetcher. This
recognizes data access patterns to the NUCA cache, and then anticipates data

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 45, Publication date: January 2012.

The Migration Prefetcher 45:19

migrations, prefetching a copy of data and holding it close to the core. Using the
migration prefetcher, therefore, the number of hits in the NUCA cache that take the
optimal access latency increases. We find that a perfect prefetcher reduces the NUCA
access latency, on average, by 30% and improves performance by 7% compared to the
baseline configuration. Assuming a more realistic approach, the migration prefetcher
still achieves an overall latency reduction of 15%, and outperforms the baseline config-
uration by 4%, or up to 17% in one application.

REFERENCES

AGARWAL, V., HRISHIKESH, M. S., KECKLER, S. W., AND BURGER, D. 2000. Clock rate vs. IPC: The end of the road
for conventional microprocessors. In Proceedings of the 27th International Symposium on Computer
Architecture.

BARDINE, A., FOGLIA, P., GABRIELLI, G., AND PRETE, C. A. 2007. Analysis of static and dynamic energy consump-
tion in nuca caches: Initial results. In Proceedings of the Workshop on Memory Performance: Dealing
with Applications, Systems and Architecture.

BECKMANN, B. M., MARTY, M. R., AND WOOD, D. A. 2006. Asr: Adaptive selective replication for CMP caches. In
Proceedings of the 39th Annual IEEE/ACM International Symposium of Microarchitecture.

BECKMANN, B. M. AND WOOD, D. A. 2004. Managing wire delay in large chip-multiprocessor caches. In Pro-
ceedings of the 37th International Symposium on Microarchitecture.

BIENIA, C., KUMAR, S., SINGH, J. P., AND LI, K. 2008. The parsec benchmark suite: Characterization and
architectural implications. In Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques.

BORKAR, S. Y., DUBEY, P., KAHN, K. C., KUCK, D. J., MULDER, H., PAWLOWSKI, S. S., AND RATTNER, J. R. 2005.
Platform 2015: Intel processor and platform evolution for the next decade. Technol.@Intel Mag.

BYNA, S., CHEN, Y., AND SUN, X. H. May 2009. Taxonomy of data prefetching for multicore processors. J. Comput.
Sci. Tech. 24, 3, 405–417.

CHARNEY, M. J. AND REEVES, A. P. Feb 1995. Generalized correlation based hardware prefetching. Tech. rep.
EE-CEG-95-1, Cornell University.

CHAUDHURI, M. 2009. Pagenuca: Selected policies for page-grain locality management in large shared chip-
multiprocessors. In Proceedings of the 15th International Symposium on High-Performance Computer
Architecture.

CHEN, T. F. AND BAER, J. L. 1995. Effective hardware-based data prefetching for high-performance processors.
IEEE Trans. Computers 44, 5.

EISLEY, N., PEH, L. S., AND SHANG, L. 2008. Leveraging on-chip networks for cache migration in chip multipro-
cessors. In Proceedings of the 17th International Conference on Parallel Architectures and Compilation
Techniques.

GROCHOWSKI, E., RONEN, R., SHEN, J., AND WANG, H. 2004. Best of both latency and throughput. In Proceedings
of the 22nd International Conference on Computer Design.

HAMMOUD, M., CHO, S., AND MELHEM, R. 2009. Acm: An efficient approach for managing shared caches in chip
multiprocessors. In Proceedings of the 4th International Conference on High Performance and Embedded
Architectures.

HARDAVELLAS, N., FERDMAN, M., FALSAFI, B., AND AILAMAKI, A. 2009. Reactive nuca: Near-optimal block placement
and replication in distributed caches. In Proceedings of the 36th International Symposium on Computer
Architecture.

HU, Z., MARTONOSI, M., AND KAXIRAS, S. 2003. Tcp: Tag correlating prefetchers. In Proceedings of the 9th
International Symposium on High-Performance Computer Architecture.

JOSEPH, D. AND GRUNWALD, D. 1997. Prefetching using Markov predictors. In Proceedings of the 24th Interna-
tional Symposium on Computer Architecture.

KANDEMIR, M., LI, F., IRWIN, M. J., AND SON, S. W. 2008. A novel migration-based nuca design for chip multi-
processors. In Proceedings of the International Conference on Supercomputing.

KIM, C., BURGER, D., AND KECKLER, S. W. 2002. An adaptive, non-uniform cache structure for wire-delay
dominated on-chip caches. In Proceedings of the 10th International Conference on Architectural Support
for Programming Languages and Operating Systems.

MAGNUSSON, P. S., CHRISTENSSON, M., ESKILSON, J., FORSGREN, D., HALLBERG, G., HÖGBERG, J., LARSSON, F.,
MOESTEDT, A., AND WERNER, B. 2002. Simics: A full system simulator platform. Computer 35, 2, 50–58.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 45, Publication date: January 2012.

45:20 J. Lira et al.

MARTIN, M. M. K., SORIN, D. J., BECKMANN, B. M., MARTY, M. R., XU, M., ALAMELDEEN, A. R., MOORE, K. E., HILL,
M. D., AND WOOD, D. A. 2005. Multifacet’s general execution-driven multiprocessor simulator (gems)
toolset. Comput. Architect. News.

MICRON. 2009. System power calculator. http://www.micron.com/.
MOLKA, D., HACKENBERG, D., SCHONE, R., AND MULLER, M. S. 2009. Memory performance and cache coherency

effects on an intel nehalem multiprocessor system. In Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques.

MURALIMANOHAR, N., BALASUBRAMONIAN, R., AND JOUPPI, N. P. 2007. Optimizing nuca organizations and wiring
alternatives for large caches with cacti 6.0. In Proceedings of the 40th International Symposium on
Microarchitecture.

NESBIT, K. J. AND SMITH, J. E. 2004. Data cache prefetching using a global history buffer. In Proceedings of
the 10th International Symposium on High-Performance Computer Architecture.

SMITH, A. J. 1982. Cache memories. ACM Comput. Surv. 14, 3.
SPEC. 2006. Spec cpu2006. http://www.spec.org/cpu2006.
VANDERWIEL, S. AND LILJA, D. J. 1996. A survey of data prefetching techniques. In Proceedings of the 23rd

International Symposium on Computer Architecture.
WANG, H. S., ZHU, X., PEH, L. S., AND MALIK, S. 2002. Orion: A power-performance simulator for interconnection

networks. In Proceedings of the 35th International Symposium on Microarchitecture.
WENISCH, T. F., WUNDERLICH, R. E., FERDMAN, M., AILAMAKI, A., FALSAFI, B., AND HOE, J. C. 2006. Simflex:

Statistical sampling of computer system simulation. IEEE Micro 26, 4, 18–31.

Received July 2011; revised October 2011; accepted November 2011

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 45, Publication date: January 2012.

