
ParaVerser: Harnessing Heterogeneous Parallelism
for Affordable Fault Detection in Data Centers

Minli Julie Liao
University of Cambridge

ml2076@cam.ac.uk

Sam Ainsworth
University of Edinburgh
sam.ainsworth@ed.ac.uk

Lev Mukhanov
Queen Mary University of London

l.mukhanov@qmul.ac.uk

Adrian Barredo
Barcelona Supercomputing Center

adrian.barredof@gmail.com

Markos Kynigos
University of Manchester

m.kynig@gmail.com

Timothy M. Jones
University of Cambridge

timothy.jones@cl.cam.ac.uk

Abstract—Data-center operators have awoken to the fact that
silent data corruption resulting from defective silicon compute
units is endemic at scale. Software scanners have been deployed to
mitigate the issue, but either have low coverage or take months,
leaving long windows of incorrect behaviour. By contrast, the
redundancy mechanisms used in automotive double the required
power and area, so cannot be practically deployed in server-space.

We present ParaVerser, a high-coverage, low-overhead solution
to hardware-level error detection in servers. Through minor
architectural modifications, we enable conventional cores in
heterogeneous server-grade processors to act as checker cores,
thus exploiting heterogeneity, frequency scaling and the inherent
parallelism in repeat runs to provide energy-efficient error
checking. By dynamically coupling big.LITTLE-style out-of-
order superscalar cores with in-order ones, we reduce energy
overheads relative to a typical lockstep system by 70% with
identical guarantees, at only 4.3% performance degradation, and
1064B per-core area overhead.

For the purpose of open access, the author has applied a Creative Commons
Attribution (CC BY) license to any Author Accepted Manuscript version arising.

I. INTRODUCTION

The threat of silent data corruption at data-center scale is
becoming too frequent to ignore. Both Meta [1] and Google [2]
have sounded the alarm that, as transistors get smaller and
distributed computations bigger, CPUs persistently produce
incorrect results with no warning, crashes or outward signs
of error, in spite of existing Reliability, Availability and
Serviceability (RAS) mechanisms [3]–[5].

The solution space to tackle reliability has diverged, be-
tween software diagnostic techniques on one extreme [6],
to full hardware lockstep on the other [7]. In the data-
center, software scanners [6], [8], [9] to test in-production
systems for permanent faults are now used at scale. While
these are simple to deploy, they involve removing access to
resources for long periods, or only catch a small fraction
of faults. Thus it can take up to six months [6] to remove
faulty hardware from production. Automotive systems have
long deployed full hardware error detection using dual- and
triple-core lockstep [7], [10], using cores duplicated and kept
perfectly in sync to compare outputs. However, the halving
in compute performance for a given area and power budget
makes such a strategy unrealistic for data centers.

Still, promising alternatives exist. Repeat runs of compu-
tation, for fault tolerance, are strictly more parallel than the

original run [11]–[13]. It is possible to split up programs into
segments based on the data dependencies in an initial run, and
then reconstruct a full fault-tolerant trace of the computation
using induction. Each segment can be run on slow, efficient,
parallel hardware instead [11]. Heterogeneity between core
sizes has started to emerge in server environments [14], [15].
However, proposed error-detection systems use the slowest
cores feasible [13], meaning 16 checker cores for every
original “main core” that actually runs computation. While
this is efficient, tiny checker cores are infeasible for running
real applications if the server is being used for workloads that
do not need fault tolerance, and real heterogeneous systems
have much larger, superscalar “small” cores [14].

We show that error detection can be enabled in server-grade
SoCs at the microarchitectural level with adjustable reliability
and performance capabilities, resulting in negligible perfor-
mance overhead when necessary, and overheads minimised via
heterogeneous parallelism. We present ParaVerser, a hardware
mechanism for opportunistic parallel error detection, using
spare CPU resources (heterogeneous or homogeneous) to effi-
ciently duplicate computation, with minimal core modification.
Our contributions are as follows:
• We present a new microarchitecture design to detect hard

and soft hardware faults, reusing the cores available in con-
ventional server-grade chips. Our design adds an induction-
parallelism mechanism [11] to split a run into segments,
and replay and check the executed code on multiple slower,
parallel cores. Each core in a heterogeneous SoC can be
used for running workloads or redundant validation.

• We implement two operational modes: i) a full-coverage
mode able to capture all permanent and transient errors, and
ii) an opportunistic mode, which gives partial coverage by
only checking as much computation as resources are free.

• We optimise the design by (i) designing a hybrid Load-
Store-Log and data cache to reduce SRAM overheads;
(ii) implementing a Load-Store Push Unit to actively push
data direct to checker cores, eliminating local cache pressure
and coherence overheads from main-core buffering, (iii) en-
abling speculative out-of-order checking, and (iv) minimiz-
ing cross-chip network traffic via new hashing mechanisms.



• We demonstrate that the performance overhead of Par-
aVerser in full-coverage mode varies from 1% to 4%
geomean, depending on type, number and frequency of
checker cores, reducing energy overhead from 95% to just
29% between these two extremes. Opportunistic mode intro-
duces only 1% overhead, covering between 94% and 99%
of executed instructions depending on resources allocated.

• We evaluate our design and compare against prior
works [11], [13] using more detailed and reasonable
core models. We demonstrate that 12 dedicated checker
cores [11] are insufficient (9% overhead). While 16 dedi-
cated cores [13] achieves low slowdown, it is at the expense
of 35% area overhead.

ParaVerser can provide comprehensive detection of hard and
soft faults at the microarchitecture level, with minimal impact
on performance and area, and at only a third of the energy
overhead of homogeneous lockstep. Our design can facilitate
hardware predictive maintenance [16] by identifying CPUs
that may become error-prone, possibly due to aging [17], be-
fore they fail. Its flexibility also allows for automatic disabling
of the fault detecting mechanism during periods of high system
load. ParaVerser is an ideal solution for data centers seeking
the highest level of service quality while also benefiting from
reliable fault-detection capabilities.

II. RELATED WORK

Ripple and FleetScanner (section III-A) have been deployed
at scale within commercial servers [6]. However, these peri-
odic test mechanisms detect erroneous hardware within the
timescale of months and without guaranteed 100% coverage.
Bacon [8] describes the challenges and software approaches of
detecting SDCs in the Google Spanner database. Serebryany
et al. develop Silifuzz [9], which fuzzes software proxies of
CPUs (e.g., simulators or disassemblers) to generate represen-
tative tests. Harpocrates [18] extends Silifuzz with a hardware-
in-the-loop generation method using gem5 simulation, to target
specific CPU structures. All four of Ripple, FleetScanner,
Silifuzz and Harpocrates can be categorised as Built-In-Self
Test [19]–[21], whereas ParaVerser makes full Redundant
Execution feasible due to its inherent parallelism strategy.
ParaVerser is thus complementary because while BIST is
cheap, it cannot a) cover all faults (including transient faults)
like our full-coverage mode can, or b) generate representative
tests of the actual application code as it is running, like our
opportunistic mode can to cover hard faults. BIST executes
predeveloped proxies, which will only have good coverage if
workloads do not change and proxy inputs are representative.
Redundant execution can also be achieved in software, at high
overheads [22]–[24]. Several works for HPC look for SDCs via
anomaly detection on unusual data outputs [25]–[29], others
via selective instruction duplication on soft errors [30]–[32].

Major CPU vendors implement various RAS (Reliability,
Availability and Scalability) mechanisms for detecting er-
rors [3], [4], [33], [34], as well as post-silicon validation [35]
and power-on self test [19], [20]. IBM’s Power architectures
use various mechanisms to cover parts of the CPU cores,

caches, DRAM, bus, and I/O system [5], [33], such as stacked
latches and replay of instructions upon failure, but this requires
a more complex CPU design and has overheads in power,
area, and performance. Intel has implemented similar error
correction and detection mechanisms for the CPU logic as
IBM [3], but these mechanisms miss errors in Google and
Meta data centers [1], [2]. HPC systems also experience a large
number of CPU errors [36]–[39], which have been studied for
their impact on micro-architectures [40]–[42].

Fault resilience techniques conventionally deployed in
safety-critical systems involve high-overhead dual- and triple-
core lockstep, respectively [10], [43]–[46].

Meixner et al. proposed Argus [47] for finding errors in
simple cores, by tracking control flow, data flow, computation
and memory through orthogonal processes. Though this comes
at only 17% hardware overhead, it requires comprehensive
changes to the entire microarchitecture, and unlike ParaVerser,
the hardware performing the checking cannot be repurposed
for standard computation. Razor [48]–[50] employs shadow
latches to protect critical-path flip-flops against some forms of
timing error, though with vulnerabilities to metastability [51].
Similar to ParaVerser, mSWAT [52] employs a log of loads
to achieve checkpoint replayability across threads. However,
it only replays computation on certain anomalies (e.g., fatal
traps, hangs and panics), rather than checking continuously; so
while it catches many errors [53]–[55], it would miss the SDCs
that are plaguing the industry, such as the example highlighted
by Meta (an FPU returning 0 for some inputs rather than the
real value) [1], and cannot catch all such errors even with
supplemental detection techniques [56].

Aggarwal et al. [57], followed by Sorin [58] and Gupta et
al. [59], [60] approach fault resilience by compartmentalizing
and reusing faulty components. The re-use of pre-existing
components to reduce additional complexity has also been
studied [46], [61]–[63]). DIVA [64] introduces the use of
an in-order superscalar checker at the end of an out-of-
order pipeline, to repeat each output instruction individu-
ally. To reconstruct each instruction into a full run, ECC is
required on intermediate states, requiring significant design
invasion and affecting critical paths. Heterogeneous Parallel
Error Detection [11]–[13] avoids the need for inter-state or
register ECC by using a coarser grained form of thread-level
parallelism, instead checking that register checkpoints and
memory accesses can be recalculated between segments.

Prior works on redundant multithreading or process-level re-
dundancy [65]–[69] achieve error detection through redundant
execution on other core or threads, like ParaVerser. However,
ParaVerser’s method provides heterogeneous parallelism in the
redundant execution, resulting in higher power efficiency and
low performance overhead.

III. MOTIVATION

A. Errors at Server-Scale

Silicon-level faults within data centers have become en-
demic. Reports from Meta [1] and Google [2] indicate that
systems now frequently suffer from hard faults, often with no



Fig. 1: ParaVerser combines adjustable error detecting and
computing capabilities across heterogeneous cores.

crashes or warning signs, resulting in silent data corruption,
and escaping the Reliability, Availability and Serviceability
(RAS) [3] features built into the processor.

In response, operators have turned to software scanning
tools like FleetScanner and Ripple [6]. FleetScanner does
out-of-production testing, where servers must be placed in
maintenance mode, covering the full data center over a 6-
month timescale, leaving long windows of vulnerability where
errors go undetected but affect real execution. Ripple is in-
production testing, or smaller tests run at the same time as
real workloads, at significantly lower coverage. Both involve
running representative code as a facsimile of the real workload
execution. However, errors are often data-dependent [1], such
that only a small fraction of the input space triggers them,
and temperature/voltage variation causes errors to be inter-
mittent [1], [70], meaning coverage is inevitably incomplete:
Fleetscanner detects 93% of permanent faults within 6 months,
and Ripple detects 70% over shorter timescales [6].

B. Heterogeneous Parallel Error Detection

To achieve acceptable power overheads, we can use
ParaMedic-style [11], [12] heterogeneous parallel error detec-
tion. Thread-level parallelism that may not have even existed
in the original run allows extreme efficiency. The fundamental
idea (see fig. 1, error-detecting capability) is that, if a log
tracks all stores the CPU performed, and all load values it
observed, then computation of the checked workload/thread
can be split up, and the repeat execution between each
“checkpoint” can be overlapped. A new check can be started
before the previous one in program order finishes because it
is only dependent on the register files, loads and stores logged
from the original execution. An induction-style approach can
be used to detect matches: checkpoint N is correct provided
checkpoints 1...N -1 are correct, all loads and stores were to
the intended addresses, all stores match those of the original
run, and the register file at the end of segment N matches the
start of the original thread’s execution of segment N+1.

In the original papers on the subject [11]–[13], each main
core is surrounded by a sea of small, microcontroller-sized
cores dedicated to error detection. This is energy efficient,
since each checker core can be individually slow, and without
data caches. However, if used in a system that does not always
require error detection, the 25% [11] extra silicon is difficult
to justify in terms of power/performance/area overhead (PPA).
We could instead repurpose existing cores in a system, still uti-
lizing heterogeneous parallelism for energy efficiency relative
to lockstep, by running checking code across multiple existing
smaller cores, as now featured in Arm’s big.LITTLE [14], [71]
systems, AMD’s Zen4 and Zen4c cores [15], [72] and Intel’s
recent P- and E-class cores [73], or on multiple homogeneous
cores running at lower clock frequencies.

C. Opportunistic Parallel Error Detection

Our goal is to find unreliable computation within servers
both more quickly and at higher detection rates than software-
only scanners [6]. Still, high performance overheads will
detract from the core work of data centers: we need a spec-
trum of options. We can give full detection of any incorrect
computation at any point, slowing down the system when
there are too few idle resources to keep up with the checked
workload. The same system should allow a coverage reduction
to maintain performance when immediate detection is less
important than avoiding any slowdown at all, or when all the
heterogeneous resources of a system are fully utilised (fig. 1).
This is similar to sampling-based lockstep [69], but without
the need for identical hardware for the redundant execution,
or synchronisation of cycle-by-cycle lockstep.

An implication of the server domain is that we only re-
quire error detection [11], rather than hardware rollback, as
the additional performance overhead [12] is unlikely to be
justifiable unlike in safety-critical scenarios [10]. The core
goal [6] is to retire unreliable cores (rather than catching all
soft errors, e.g., cosmic-ray bit flips, though our full-coverage
mode will detect these). Software stacks in the data center are
typically already fault resilient provided the fault is captured,
as distributed nodes are assumed to fail constantly [74], [75]1.

If all we need is high coverage of hard or semi-hard errors
(which have been observed to be the main blight in server-
class systems [1]), as opposed to transient bit flips, we need not
cover 100% of executed instructions. We can opportunistically
use spare cores, or cores whose single-threaded throughput is
too low for the task at hand, when they are available.

D. Implications for Checker Cores

If we are reusing spare server cores that will sometimes
be better used for scheduling user code, rather than small,
low-performance, dedicated fault-tolerance engines [13], the
checker cores inevitably will not be as small or as parallel as

1If full correction and synchronous guarantees were needed in hardware,
due to lack of fail-safety otherwise seen in today’s data-center stacks [74],
[75], we could use rollback and dynamic-checkpointing stategies [12]. These
would add 1% overhead but change nothing else discussed in this paper.



Fig. 2: ParaVerser adds several units to each core – a Load-Store Push Unit, a Register Checkpointing Unit, a Counter, A
Load-Store Comparator (for accessing the Load-store Log Cache), and a microcode switch that triggers the LSC as appropriate.
All cores feature the same modifications, as any core can be treated as either main- or checker-core, with smaller checker
cores preferred if free. New units used main-core side in yellow, checker-core side in pink, and both sides in blue.

in previous work on efficient error detection [11], where 12–
16 tiny checker cores were placed next to each main core. In
our study, we focus primarily on heterogeneous big.LITTLE-
style [71] microarchitectures since (i) this enables energy effi-
cient error detection on little cores and (ii) future data-center
SoCs are expected to contain heterogeneous cores [14], [15],
[76], though ParaVerser can be also efficiently implemented
on homogeneous cores, as we demonstrate in section VII.

If checker cores are each higher throughput, we will need
fewer of them, even if each is larger in power and area. Since
we are extending hardware with functionality not constantly
used, the area impact must be minimal, reusing hardware
where possible: for example repurposing existing SRAM cache
memories instead of dedicated storage [11] for fault-tolerant
logging, and existing network-on-chip (NoC) layouts instead
of dedicated wiring [11] for forwarding intermediate results.

E. Why CPUs?

ParaVerser is a mechanism for detecting CPU faults. In a
modern system-on-chip the CPUs do not collectively cover
the entire chip area, nor do they perform all computation, with
much area spent on caches and accelerators such as GPUs and
NPUs [77]. We focus on CPU due to a combination of both
benefit and opportunity. On benefit, the CPU is where much of
the most error-intolerant work occurs: for example the kernel,
and lots of control-heavy code where even small changes in
input lead to drastic changes in output, as evidenced by the
recent focus on CPU errors across hyperscalers [1], [2], [18],
[78], [79]. On opportunities, caches can be covered by ECC,
whereas CPUs cannot2. Since induction parallelism [11]–[13]
allows the trailing run to be executed on more power efficient

2While controllers inside caches that actually do computation to e.g. choose
tags cannot be protected by ECC, these are small enough that homogeneous
replication (lockstep) of those structures comes at negligible cost (unlike the
cores themselves which are large so homogeneous replication is expensive,
as we explore in section VII-E).

cores, there can be very small power and area overheads com-
pared to the high-IPC cores used for maximum single-threaded
throughput, which waste lots of energy on instruction-level
parallelism. By contrast, GPU and NPUs do not aim for high
single-threaded throughput, so a similar heterogeneity trick is
unlikely to reduce overheads: we cannot make the trailing
threads more efficient by making them slower and more
parallel unlike on CPUs, so it is challenging to outperform
lockstep-style homogeneous redundancy. Last but not least, the
importance of CPUs is growing even in the AI era due to their
wide availability and greater energy efficiency in some key
LLM inference [80] scenarios compared to GPUs or NPUs.
Several hardware companies are working to extend their CPUs
to efficiently handle AI workloads [81].

IV. PARAVERSER

Figure 2 shows ParaVerser’s minor core alterations. These
allow any core to behave as either a main core3 or as a
checker core — with the intent that checker cores will be
more numerous, parallel and energy efficient. For cache- and
main-memory errors we assume ECC [4] or parity is used.
• We describe how checker resources are managed and al-

located differently between full-coverage and opportunistic
modes (section IV-A). The former pauses main computation
to let checker cores catch up if they are collectively slower,
and the latter drops excess instructions from checking.

• We augment each L1 data cache to allow a checker core to
store logged memory accesses and register checkpoints, for
parallel replay of computation segments (section IV-B).

• We add a unit to directly push recorded loads, stores and
other non-repeatable events over the existing NoC to an
arbitrary checker core’s logs, avoiding shared memory and
coherence overheads (section IV-C).

3Without loss of generality, we refer to a main core having multiple checker
cores, but there may be multiple main cores each with multiple checker cores.



• We then add a register-checkpoint unit (section IV-D), which
generates start/end register checkpoints on the main core and
stores and compares end register checkpoints on the checker
core(s), and a load-store comparator (section IV-E), which
compares memory addresses and stored data with logged
versions from the load-store log cache.

• Lastly, we add a counter unit (section IV-F) to interrupt main
and checker cores at identical instruction counts, to allow
replay. Segments are split up via checkpoints generated in
the register-checkpoint unit.
We also design new mechanisms to handle checker cores

that are themselves out-of-order and/or superscalar, perhaps
with entirely different microarchitectures from the main core
(section IV-G). This requires support for speculation and
reordering with respect to the main core’s execution, while still
observing the correct, and equivalent, logged load-and-store
behaviour of the original run. We also improve the efficiency
of the design by giving checker cores the ability to start
execution before the main core has finished the relevant check-
point (section IV-H) — and give constraints on load-and-store
behaviour to avoid inconsistency between the two that may
otherwise result. We then propose a method to reduce cross-
core data transfer to avoid slowdowns on underprovisioned
NoCs (section IV-I). Finally, we explain how multiprocess
and multicore workload behaviour is handled (section IV-J).

A. Basic Operation

For a given main core, a free checker core is chosen. A
copy of the register file is taken (section IV-D) and pushed
to the checker core, which will execute from the same point.
Loads and stores are logged by the main core and sent to the
checker core for it to replay memory accesses. Once the Load-
store log cache (section IV-B) is full, a timeout is reached or
an interrupt received, an end checkpoint is taken and sent to
the checker core for later verification.

As a main core deliberately has higher single-threaded
throughput than a checker core, the previous checkpoint is
fully verified only some time after the main core creates it.
To avoid stalling, it parallelises the error-detection process by
selecting a new checker core for the next interval while the
previous checkpoint is still being checked. In full-coverage
mode, if all possible targets are currently occupied with either
error detection (e.g., because the available checker cores can-
not collectively keep up with the main core), or are scheduled
to run other programs, the main core then pauses execution.
Once free resources are available, a new starting checkpoint
is sent to a new checker core, and computation proceeds.

In opportunistic mode, if there are no checker resources
remaining, register checkpointing and logging are briefly
switched off. While previous segments continue to be checked,
the current checkpoint is not forwarded on, and the main core
proceeds without checking to avoid performance hit. Once a
previous checkpoint has been checked, freeing the checker
core, the main core will immediately take a new checkpoint
to start getting checked again from this point.

Fig. 3: Cache layout when used as a LSL$. Cache lines become
replaced with load-store log (LSL) entry metadata starting at
index 0 – with the load-store-log end register indicating the
final valid entry. Cache lines following this retain valid data.

We let the operating system decide, based on its current
load, which CPUs it allocates as checker cores and which it
allocates as main cores4. Preference for allocation as checker
cores is given to idle cores, and lower-performance cores if
available, since checking does not require high single-threaded
performance. A core can be switched back from a checker to
a main core at the end of each checkpoint5 if the operating
system decides there are currently more checkers than required
or it needs more main-core compute.

B. Load-Store Log Cache

Previous techniques (e.g., Ainsworth and Jones [11]) use a
dedicated SRAM load-store log, which introduces a memory-
storage overhead. In contrast, we lightly modify and repurpose
the data cache that will already be available on a general-
purpose core, using it to store data to regenerate computation
and verify correctness (except in Hash Mode, section IV-I,
when metadata for verification are not stored in cache). We
call the new structure a Load-Store Log Cache (LSL$).

Data stored in the LSL$ for computation replay contain the
loaded data and the values of other non-repeatable instructions,
such as store conditionals, timers, reads/writes to system regis-
ters, and random-number generators. This allows exact replay
regardless of any multicore communication in between. Data
stored for verifying correctness include load/store addresses,
sizes and stored data. A typical LSL$ entry consists of a 7B
address followed by a 1B size and a variable-length payload
for data rounded to the nearest 8B (first loaded then stored
data in cases where both are required, e.g., a SWP in Arm)6.
The entries are first filled in the LSPU (section IV-C) in-order
at commit time from a main core and will be interpreted as the
same sequence7 on the checker. Then cache lines of entries (a

4The evaluations in section VII assume a fixed set of checker cores within
each individual experiment, to allow for simple comparison.

5Since checkpoints are limited in size (max. timeout instructions), there is
no resource-starvation issue from preventing pre-emption of checkpoints.

6In Hash Mode (section IV-I), we only store the payload: all other metadata
(used only for verifying correctness) is hashed into the SHA-256 checksum.

7The actual access order may deviate from this under out-of-order or
speculative execution within checker cores, as handled in section IV-G, but
logical in-order behaviour is preserved.



512-bit cache line stores 4 entries with a typical 64-bit result
each) are pushed over the NoC to the LSL$.

The structure of the LSL$ is shown in fig. 3, where each
cache-line tag gains one extra bit to indicate whether the data
stored is from a log (L) or a cached copy of main-memory
data (C). When a core starts being used for checking, its cache
starts being repurposed as a linear log8 rather than a content-
addressable memory of addresses9 . We start filling from the
first index and set of the checker core’s cache, evicting the
cache line in place (if valid and not already a log entry). A
word stored in a new Load-Store Log End register indicates
which line is the current end element.

C. Load-Store Push Unit

We add a Load-Store Push Unit (LSPU) to the cores,
so that load-store log (LSL) entries can be sent between
main and checker cores over the generic NoC. Unlike in
previous heterogeneous error detection techniques [11]–[13],
ParaVerser requires all-to-all communication between cores
(any core can check any other). The overheads of this cross-
core communication are mitigated by buffering a cache line’s
worth of LSL entries locally at each main core in the LSPU,
and because LSL$ entries are treated as scratch memory rather
than coherent traffic, they can be sent direct instead of going
via a directory or the last-level cache (LLC). Unless an entry
is itself larger than a cache line, entries that cannot fit in the
remaining space of the current line are put into the next line.

To allow the microarchitecture of big and little cores to
diverge, LSL$ stores data in ISA format. This requires fusing
together data from multiple micro-ops at pipeline commit. For
each load/store micro-op at commit, the main core continues to
update data in the same LSL entry in the LSPU when accesses
are from the same instruction. This merged entry covers all
loaded data starting from a single base address, followed by
any stored data from the base address10. Upon LSL$ access,
the accessed address and size are compared against the range
between the address and size in the LSL$ entry, and the
address is used as an offset into the LSL$ entry data segment
to retrieve, or check, corresponding data.

The data (section IV-B) to be pushed to the log are accessed
from the core’s load-store queue (LSQ) at commit time11.
To avoid limiting coverage, we make minor changes to the
LSQ: any error in a store that reaches memory must also
reach the checker core. Conversely, any error in the loaded
value must not reach the checker core, so that at least one
receives the correct value. For loads, ECC or parity bits from

8A main core’s cache is unaffected; it does not access logged entries itself.
9A similar form of partitioning [82], [83] is already used in Arm L1 caches

as of the X4 [84], for temporal prefetching [85]. Since our use involves direct
indexing, with no tag comparisons to find the correct value, it is far simpler.

10The exception to this format is when a single instruction has more than
one base address, such as a scatter or gather. In this case, microarchitectural
invariance is achieved by storing each address, associated data size, followed
by associated data, in sequence, with lowest address first.

11Previous work [11]–[13] has a more elaborate load-forward duplicator,
which stores entries per-ROB index. With deeper knowledge of core microar-
chitecture here, we observe it is much simpler to reuse the LSQ, which stores
the load addresses and data we need already.

the cache, whichever are used in the system, are forwarded
to the load queue, and checked before being forwarded to the
LSPU. For stores, ECC or parity bits are generated before
the store propagates to both the local cache and to the LSL$.
No common-mode errors between the main and checker cores
are propagated; parity and ECC are not needed for the NoC
communication, the checker core, or the main core, or any
register files, as errors in these components are isolated to
either the main core or checker core.

The LSPU is the same size as a cache line, the NoC width,
or the largest possible LSL$ entry generated by a single
instruction of the target ISA (whichever is larger), and is
pushed to the NoC when either it is full or an end checkpoint
is taken (and thus we change checker core). Intermediate states
may exist in the LSPU that violate ISA compatibility, if not
all micro-ops for a macro-op have yet committed, but all data
pushed over the NoC obeys ISA compatibility.

D. Register Checkpointing Unit

The register checkpointing unit (RCU) is used to take start
and end register checkpoints on the main core, and to store
end register checkpoints on the checker core. At the start
of a checkpoint, the RCU takes a copy of the architectural
register file, forwards it via the NoC to the chosen checker
core, which updates its register file and begins checking. At
the end of a checkpoint, the main core’s RCU forwards a new
copy of the architectural register file to the chosen checker
core’s RCU, and updates the newly allocated checker core if
available. Finally, once a checker core is interrupted by the
instruction counter, the architectural register file is compared
against the RCU copy. While system-visible state is checked
via loads and stores in the LSL or the hash value in Hash
Mode (section IV-I), register-file checks at the start and end
of each checkpoint are also needed to verify the full program
sequence correctness, via induction [11].

E. Load-Store Comparator

The Load-Store Comparator (LSC) compares the address
and size generated by the checker core with the ones stored
in the log for each load and store. For stores, it also compares
the logged value with the checker core’s result. For loads,
this occurs out-of-order (section IV-G): when a LSL entry is
accessed, the data payload is copied into the load queue, and
the address stored in the load queue is compared against the
value from the LSL$. For stores, this occurs at commit: when
a store is committed, the LSL$ entry is compared against the
address and data in the store queue. To avoid slowdown, there
is one comparator for every load or store unit in the core.

F. Instruction Counter

The counter is used to precisely match the checkpoint end
between main and checker cores. On the main-core side,
checkpoints are generated if either (i) the LSL$ becomes full,
(ii) there is an interrupt or context switch, or (iii) a 5000-



Fig. 4: Indices are assigned speculatively at decode. In this
example, 3 instructions (I1, I2, I3) are assigned indices 0, 2
and 4 respectively in program order (for offsets of 0, 16 and
32 bytes into the LSL$). In the checker core’s out-of-order
backend, the instructions are reordered such that I3 occurs
before I2. Still, they access the correct entries as the LSL is
accessed via index rather than sequentially. I3, a load to y,
triggers an error because the value in the LSL$ is a load to z.
This sets the precise exception (PE) bit in the reorder buffer
for this instruction. If I3 becomes non-speculative and retires,
it has requested different data from that loaded in the original
run, so an error is reported. If I3 is squashed, the load was
a misspeculation, so the index is reset and the new, correct
execution path accesses the same log entry instead.

instruction timeout [11] is reached12. At this point, a copy
of the architectural register file is taken by the RCU, and
forwarded to the checker core. On the checker core, we finish
the check, and compare register files, at the same committed-
instruction count as the time of checkpoint on the main core.

G. Speculative Out-Of-Order Checker Cores

The LSL is filled in program order, at commit time of the
main core, as in previous work [11]–[13]. However, prior work
relied on in-order access of the LSL for checking, limiting the
checkers to the simplest in-order cores, where misspeculations
never reach the data path and memory accesses could not be
reordered. This is a false assumption for typical programmable
server cores, even the smallest in our evaluation.

To fix this, we use an indexed-access scheme for the
LSL$. Out-of-order checker cores no longer access the log in
sequential order. When the checker cores decode a load/store,
we increase a speculative counter at the in-order front-end
based on the size of the expected LSL$ payload (section IV-B),
so that the index will point to the appropriate entry in the LSL$
in the program order (see fig 4). For loads, this speculative
index follows the instruction into the load queue, sitting in
the data-payload field until it is overwritten by the access
returning data. For stores, it is not stored explicitly and is

12ParaVerser will fill the entire L1 unless it reaches the 5000-instruction
timeout first – whenever a checkpoint finishes (which is when a workload
becomes eligible to context switch in and take the core), all of this space is
freed. So ParaVerser using this space is no different from any other thread
filling the cache with data. A checker thread itself needs no data cache, as
it cannot read data, so there are no tradeoffs in cache-space usage. 64KiB
shared with the data cache is more than ample to make checkpoint frequency
rare and thus inexpensive, whereas 3KiB of dedicated SRAM [11] is not, and
the cache is otherwise unused by a checker thread.

instead regenerated at commit time, when the access to the
log proceeds. Where a load/store instruction is broken down
into micro-ops, these micro-ops share the same index.

Due to the speculative nature of the index, an access to the
LSL$ may not match the indexed entry despite no error having
occurred: the misspeculated instruction will be squashed, and
the accessed entry is intended for an instruction that will be
executed on the return to correct execution. Thus suspected
faults must be handled as precise exceptions: we record errors
on LSL$ access but do not raise them until commit.

Speculative indices must be adjusted when instructions are
squashed to match the commit order. We handle this by
deducting from the frontend’s speculative index on every
squashed instruction. Also, this index is reset to 0 when the
checker starts checking a new LSL$ segment/checkpoint.

H. Eager Checker-Core Waking

In previous work [11]–[13], checker cores are only woken
once a checkpoint has finished, to ensure consistency of
execution. If checker cores are sufficiently simple to be almost
free, this is sensible, but if checker cores are the size of a
conventional core, this wastes resources by meaning at least
one core is always stalled waiting for a checkpoint to finish.

A checker core can commence early as long as it never
executes ahead of the main core, and so never reads an
invalid LSL$ entry, and cannot execute instructions never
executed by the main core, due to timeout being reached or an
interrupt (section IV-J). To enable this while ensuring matching
behaviour and preventing the checker core from running ahead,
we use the LSL$ as a limiter. A checker core cannot execute
any instruction past the last LSL$ entry currently pushed to
the checker core. If it tries to do so, and the RCU checkpoint
has not yet been set, the checker core sleeps until a push of a
cache line into its LSL$ or the RCU checkpoint being set.

A memory-access instruction attempting to read the last
valid entry13 in the LSL$ causes all following instructions to
squash (except any micro-ops as part of the same macro-op).
When a new log cache line arrives or a checkpoint register
file is received to indicate the end of the checkpoint, fetch
is restarted from the first squashed instruction. If this access
of the last valid entry itself is squashed, instruction fetch is
similarly restarted, with the core returning to sleep on any
subsequent attempt to read the final current LSL$ entry.

I. Hash Mode

ParaVerser uses considerable NoC traffic to send LSL$
entries from the main core to the checker core. To limit this,
we also provide a Hash Mode where only data required to
reproduce execution (e.g., loaded data) are recorded in LSL$
entries and transferred over the NoC (entries are still stored
in-order contiguously). Data used only to verify correctness
(e.g., addresses and stored data) are checksummed, and only
the hashed value is transferred over the NoC and compared
at the end of a checkpoint. Hash Mode reduces the traffic by

13Or beyond the last valid entry in an out-of-order core, in which case the
memory-access instruction itself is also squashed.



50% for loads and eliminates it entirely for stores, but the
reliability will depend on the hash-function properties. Hash
functions that cannot detect repeated error on the same bit or
reordering should be avoided — here we use SHA-256 [86].

Hash Mode requires several modifications to the mecha-
nisms mentioned previously. In Hash Mode, the LSL$ entries
only contain data required to reproduce execution in commit
order, so the out-of-order cores’ speculative index also only
increments when the instruction has such data. For micro-
ops, the offset into the entry is calculated at decode time and
stored alongside the index until the LSL$ is accessed. Both
the main and the checker cores use the LSPU to buffer data to
be digested for the hash calculation at instruction commit to
maintain the access order. The LSC is no longer used by the
checker core to detect LSL$ access errors. Instead, the hash
value is calculated in the RCU, and is sent along with the
register checkpoint to the checker’s RCU for comparison.

J. Multiprocess and Multicore

To avoid the need to replay interrupts at the same time be-
tween main and checker cores, register checkpoints are taken
whenever an interrupt occurs. This is also true for context
switches: as a result, each register checkpoint is associated
with only one process. Checks from multiple processes on
one main core may be checked on multiple checker cores
concurrently, just as multiple processes on multiple main
cores may be checked concurrently. If an error occurs in
any particular process’s checkpoints, the error is raised as an
exception to that process. ParaVerser is not an error correction
system, as it incurs latency in between execution and checking
to achieve thread-level parallelism, and so software must clean
up after itself if errors are discovered (section III-C).

ParaVerser’s logging extends to multicore shared-memory
workloads with no modification [12]. Because the exact loads
and stores seen by the main core are then propagated to
checker cores, any resulting cross-thread communication is
mimicked and checked exactly. Because load-store logging
records loads at the time the first, main-core execution(s)
occurred, any race conditions, and cross-thread communication
more generally, between threads replay exactly as they did
on their first run (contrast e.g. with a scenario where the
checker threads truly repeated the loads from memory, where
they would be impacted by what happened in what order).
Likewise, this means synchronisation between threads only
affects what is written to the load-store log, rather than having
a direct impact on e.g. checkpoint lengths (section IV-F). In
terms of checker-core allocation, we treat each main core as a
separate checking task, in turn split up across many checkers.

V. SPHERE OF REPLICATION

ParaVerser is a redundancy mechanism for computation,
and thus the sphere of replication is the core itself, with
the boundary at the LSQ where the contents are replicated
and transferred to the checker core through the LSL. Caches
are outside the sphere of replication and need parity or ECC

i

i

i

i

ii

iv

0

ii

iv

iii

iii

ii

iii

2

iv

ii

iii

iv

1

3
¼ 

LLC

¼ 
LLC

¼ 
LLC

¼ 
LLC

(0,0)

(0,3) (3,3)

(3,0)

Core

LLC slice

Demand 
traffic

Extra
LSL traffic

Fig. 5: NoC-tile layout, where arabic numbers denote main
cores and roman numerals denote the checker cores in the
same colour as the main cores they check.

to ensure their correctness, along with redundancy on any
computation inside the cache system (such as for coherence).

Checker-core execution does not repeat data-address trans-
lation and assumes that the load data recorded in the LSL is
correct; additional redundancy in the page-table walker [12]
and LSQ should be added if coverage of every transistor
of the core is desired. In the latter case, this involves both
propagating and checking parity bits on data before they are
sent to the LSL, as well as redundancy to catch errors from
faults in the LSQ logic itself (e.g., an access-order violation
misdetected due to bit flips [87]).

Under full-coverage mode, ParaVerser detects both hard and
soft errors from compute in the system. Opportunistic mode
only targets hard errors that can be eventually detected, but
will also detect soft errors in the checked segments. Since we
do not distinguish between hard and soft errors, the operator
will need to run their own tests after we detect an error
to determine whether the core has a hard fault and needs
retiring. If more precise forensics are desirable, our starting
register checkpoints allow repeat replays to identify culprits,
at the expense of a further 776B overhead per core. Errors
that do not change execution will still be detected if the
contents of the LSL, the hash value in Hash Mode, or the
register values at the start or end of a register checkpoint are
changed, and we cannot directly distinguish whether errors
are from the main or checker core. These can be considered
as false positives since the detected errors do not affect the
main core’s execution. However, these still represent real errors
that occurred somewhere in the system; they thus still help in
retiring faulty cores early if they were hard errors. In Hash
Mode, we use SHA-256 hashing since collision of hash values
produced by values with and without error is highly unlikely,
with 128-bit security of collision resistance [88].

VI. EXPERIMENTAL SETUP

To evaluate ParaVerser, we ported the ParaDox simula-
tor [13] to gem5 v22.0.0.1. We added the new mechanisms
described in section IV, and designed CPU models for high-



1
1.05

1.15

1.25

1.35

1.5

bwaves gcc mcf

xalancbmk

deepsjeng
leela

exchange2 xz

cactuBSSN lbm wrf
cam4

pop2
imagick nab

fotonik3d
roms

x264

perlbench
omnetpp

geomean

S
lo

w
d

o
w

n
DSN18

Paradox
Homogeneous

2*X2 @ 1.5GHz
4*A510 @ 2GHz

4*A510 min ED2P

1.70

Fig. 6: Slowdown of main core (3GHz X2) with different checker-core configurations, with full-coverage mode enabled.

TABLE I: Core and Memory Experimental Setup.

Big Cores

Core 5-Wide, out-of-order, 3GHz in Main Mode
(up to 3GHz in Checker Mode)

Pipeline 288-Entry ROB, 120-entry IQ, 85-entry LQ,
90-entry SQ, 150 Int / 256 FP registers, 2
Branch ALUs, 2 Simple Int, 2 Complex Int,
4 FP/SIMD, 1 Load-Only, 1 Load-Store

L1 ICache 64KiB, 4-way, 2-cycle hit lat, 16 MSHRs
L1 DCache 64KiB, 4-way, 4-cycle hit lat, 16 MSHRs
L2 Cache 1MiB, 8-way, 9-cycle hit lat, 32 MSHRs
Branch 64KiB MPP-TAGE
Reg. Checkpoint 8-Cycle latency, 5,000-instruction timeout

Little Cores

Cores 3-Wide, in-order, up to 2GHz
Pipeline 16-Entry LSQ, 1 Branch ALU, 3 Int, 1 Div,

2 FP/SIMD, 1 Load-Only, 1 Load-Store
L1 ICache 32KiB, 4-way, 1-cycle hit lat, 12 MSHRs
L1 DCache 32KiB, 4-way, 1-cycle hit lat, 12 MSHRs
L2 Cache 256KiB, 8-way, 9-cycle hit lat, 16 MSHRs
Branch Predictor 8KiB MPP-TAGE

System

L3 Cache 8MiB, 8-way 25-cycle hit lat, 48 MSHRs
Memory DDR4 2400 8x8
NoC 2D Bidir. Mesh, 256 bit width, 2GHz
slowNoC 2D Bidir. Mesh, 128 bit width, 1.5GHz

performance server-style Arm14 cores (table I), based on
publicly available information on both big Cortex-X2 [90]–
[92] and little Cortex-A510 cores [93], [94]15, which form the
basis of Arm’s heterogeneous data-center Neoverse V2 and
E2 [14]. Our main cores are always out-of-order at 3GHz;
we run varying numbers and types (big, little) of checker
cores at various clock frequencies. Prior works [11], [13] used
the generic MinorCPU model from gem5 in their evaluation,
which, for example, models an overly simplistic FPU with un-

14While we explore Arm here, the same concepts apply to other ISAs such
as x86. One minor issue we foresee is that there may be some instructions in
x86 where a single macro-op, such as REP MOVS, processes more data than
can fit into the LSL$. In those cases only, micro-op behaviour must match
more closely between big and little cores, rather than only macro-ops needing
to match for ISA compatibility. X86’s ISA being more complex possibly puts
a limit on how small/power-efficient checker cores can be, but we still expect a
good energy-efficiency improvement from heterogeneous checking. Likewise,
though Intel’s standard gen-14 cores are also heterogeneous [73] cores, our
own testing [89] revealed that the little cores do not have a separate voltage
domain from the big cores unlike Arm/Apple systems where we found they
did, limiting energy-efficiency gains, but that is likely to change in future.

15In the rest of the paper, we call the big cores based on Arm Cortex-X2
“X2” and the little cores modeled on Arm Cortex-A510 cores “A510”.

realistic 6-cycle latency for all floating-point operations when
instructions such as divisions can take up to 22 cycles [93],
[95]. Even for integers, it lacks modeling of variable latency
for operations sharing the same functional units, unlike in
gem5’s HPI core, which we modified for our A510 model.
This means that the core model used in prior works does not
provide a reasonable comparison against our more detailed
X2 and A510 core models. Therefore, to compare against prior
works DSN18 [11] and Paradox [13], we also model dedicated
checker cores based on Cortex-A55 [95] and limit them to
be scalar to emulate the performance of Cortex-A34/35 [96]
cores (due to the lack of documentation): the smallest in-order
Cortex-A processors supporting AArch64 [97].

We evaluate on the SPECspeed 2017 benchmarks. Statistics
are taken from detailed simulation for 1B instructions after
fast-forwarding for 10B unless stated otherwise. To explore
data-oriented workloads, we also run GAP [98], skipping
initialisation, and for parallel workloads we run PARSEC
on simmedium to completion [99]. Slowdowns are presented
relative to a baseline without checking. When evaluating
full-coverage mode, we assess performance overhead. With
opportunistic mode, we assess checking coverage as well.

We model NoC latencies by feeding the gem5 network
parameters into an MM1 queueing network model of a 2D
mesh. Figure 5 illustrates the layout used for our experiments,
with main cores denoted with Arabic number 0–3, and checker
cores for the same-coloured main core denoted with Roman
numerals i–iv. The NoC is configured with 256-bit width and
operates at 2GHz unless stated otherwise, similar to ARM
Neoverse CMN-700’s mesh [100]. The four crosspoints in the
middle each have an LLC slice and a core attached; each LLC
slice is assumed to provide 1

4 of demand data for each main
core. Except for the four corners, each crosspoint has two cores
attached. We chose cores on crosspoints without LLC slices
attached to be used as main cores since this case is more
common in our layout, and the cores adjacent to the main
core are used as its checker cores. When using heterogeneous
main and checker cores, this layout represents a tiled system
with both big and small cores distributed throughout the mesh,
rather than clustered in homogeneous groups16. Evaluations

16If cores were more homogeneously clustered, we expect checker-core
traffic to have higher average hop counts, and thus conflict more often with
latency-sensitive LLC accesses. We expect minimal difference to the presented
results for other minor variations in structure, such as further distribution of
the LLC, which would move the baseline traffic around but not typically
increase it beyond the contention caused by using only checker core i.



 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

bw
av

es gc
c
m

cf

xa
la
nc

bm
k

de
ep

sj
en

g
le
el
a

ex
ch

an
ge

2 xz

ca
ct
uB

SSN
lb
m w

rf

ca
m

4
po

p2

im
ag

ic
k
na

b

fo
to

ni
k3

d
ro

m
s
x2

64

pe
rlb

en
ch

om
ne

tp
p

ge
om

ea
n

S
lo

w
d

o
w

n
Homogeneous
2*X2 geomean

4*A510 geomean
range

Fig. 7: Slowdown of main core (3GHz X2) with different
checker-core configurations, with opportunistic mode enabled.
Error bar shows the range of slowdown with different config-
urations of the same type of checker cores.

with one main core use core 0 as the main core; those with
two main cores use cores 0 and 1. When selecting checker
cores, checker core i, which incurs contention on demand
traffic and results in worse performance overhead, is used first.
If more checker cores are needed, cores ii–iv are used. Unused
main and checker cores generate no traffic. We backpropagate
the observed average latency from additional LSL$ traffic into
gem5’s LLC access latency to estimate overhead, and explore
NoC-bandwidth impact in section VII-D.

VII. EVALUATION

A. Full-Coverage Mode

Figure 6 shows the slowdown of the main core with
various checker-core configurations in full-coverage mode (all
dynamic instructions are checked), compared to prior works
DSN18 [11] with 12 and Paradox [13] with 16 dedicated
checker cores. By configuring the checker core as identical
to the 3GHz main core in a homogeneous system, the checker
core keeps up with the progression of the main core with
a geomean slowdown of 1.6%. The DSN18 configuration
shows a geomean slowdown of 9%, insufficient to keep up
with our X2 main-core performance. While Paradox with 16
dedicated checker cores shows only 1.2% slowdown, this is
at the expense of 35% area overhead (section VII-E), limiting
the silicon directly usable for compute. ParaVerser provides
checking capabilities with cores already in the system, and
does not affect the performance when checking is disabled.

Employing 2 X2 checker cores operating at half frequency
(1.5GHz) results in almost the same slowdown as a homoge-
neous system. While the LSL traffic contending with demand
traffic on the NoC is reduced, the benefit is balanced off by
the slight extra performance overhead coming from unshared
components, such as icache prefetch and branch-prediction
training, resulting in slightly more misses and mispredicts.

With 4 A510 cores operating at 2GHz as checker cores, the
slowdown is 3.4%. The checker cores’ collective performance
typically matches the main core except in bwaves. The large
number of fdiv instructions in bwaves and the large difference
in floating-point division performance between the big X2
core [90] and small A510 core [93] results in the checker cores

 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

bw
av

es gc
c
m

cf

de
ep

sj
en

g
le
el
a

ex
ch

an
ge

2 xz w
rf

ca
m

4
po

p2

im
ag

ic
k
na

b

fo
to

ni
k3

d
ro

m
s

pe
rlb

en
ch
x2

64

xa
la
nc

bm
k

om
ne

tp
p

ca
ct
uB

SSN
lb
mE

rr
o

r 
D

e
te

c
ti
o

n
 C

o
v
e

ra
g

e

2*A510 @ 2GHz
1*A510 @ 2GHz

1*A510 @ 1GHz
1*A510 @ 0.5GHz

Fig. 8: Error detection coverage under opportunistic mode with
different checker-core configurations. Legend shows minimum
required configuration to cover such portions of errors.

at their worst struggling to keep up with the main core at its
best. Via DVFS, we also vary the A510 checkers’ frequency
from 2GHz to 1.4GHz and the voltage accordingly to find the
best ED2P point per benchmark. Slowdown is still only 4.3%.

Next we consider the causes of overheads:
Register Checkpointing While in previous work [11] reg-

ister checkpointing accounted for a significant overhead, by
delaying the main core’s commit to copy the register file,
the overhead in ParaVerser is negligible. By repurposing a
conventional core’s cache, we have much larger LSL (64KiB
versus 3KiB [11]), and so checkpoints happen less frequently.

Stalling Overhead In full-coverage mode, the main core
must stall until a checker core is available when checker cores
cannot keep up with it. This is the main factor as checker cores
reduce in clock frequency, number, and out-of-order ability.

Instruction Fetch While checker cores never cause accesses
to main memory or shared caches from data, as their loads and
stores are served via the LSL$, they still access instructions
through them. This causes a slight contention effect in both
full-coverage and opportunistic mode, particularly in work-
loads such as gcc, which have frequent L1 icache misses.

NoC Overhead Loads and stores are logged and forwarded
to checker cores over the NoC in groups based on bus
width (section IV-C). While this causes no significant latency
for checker cores, which are pushed messages instead of
requesting them, it causes secondary contention effects for
other requests on the same network, particularly LLC accesses.
We investigate the impact of this further in section VII-D.

B. Opportunistic Mode

Figure 7 shows slowdown with the same checker-core
configurations as in section VII-A, but using opportunistic
mode17, which reduces coverage instead of stalling when out
of resources. Unsurprisingly, overhead is lower than in full-
coverage mode at 1.4% geomean slowdown for homogeneous
and less than 1% for 2 X2 or 4 A510s. Overhead is mostly
from NoC contention, thus is flat regardless of core frequency.

17Results with the same type of checker cores are similar, hence we
only show the geomean and range. Checker core configurations with 2*X2
cores include 2*X2@1.35GHz and 2*X2@1.5GHz; with 4*A510 include
4*A510@1.6GHz, 4*A510@1.8GHz and 4*A510@2GHz.



To investigate opportunistic mode’s hard-error coverage,
we inject hard errors based on standard models from the
literature [53], with various checker-core configurations, in
fig. 8. Since the error detection is symmetrical, to avoid
injected errors impeding the main core’s execution, errors are
injected on the checker core. We model the hard error as a
single-bit stuck-at error, and inject the error on the output value
from functional units modeled in gem5. Errors are injected
to the output register for instructions using integer ALUs or
FPUs and to the load/store addresses in LSQ. For ALUs and
FPUs, a random bit in the output of a random functional unit
is stuck at 1 or 0 to model an error in the logic rather than
in the registers. Errors are injected depending on the type of
operation and which functional unit is used: when there are
multiple functional units available for an instruction, errors
may not be injected depending on which unit is used. Under
full-coverage mode, we injected errors for 10M instructions,
and saw that 76% of injected errors were detected in full-
coverage mode, and the remaining errors were (correctly)
masked since they did not change execution. In fig. 8 almost
all non-masked injected errors are detected with only one
A510 running at 500MHz within 100M instructions. For most
workloads this configuration detects all effective errors; only
bwaves, deepsjeng, imagick and perlbench have lower rates of
87-99%. All except imagick achieve 100% with one A510 at
1GHz, and imagick achieves 100% with two A510s at 2GHz18.

We also found that the the run-time instruction coverage, or
proportion of executed main-core instructions that are checked,
was high in opportunistic mode given sufficient checker cores.
With a 3GHz X2 checker core, the geomean coverage is as
high as over 98% with negligible performance overhead. With
a lower checker-core frequency of 2.7GHz, it is reduced to
94%. With 4 A510 checker cores, the geomean coverage is
97%, 96% and 95% with their frequency at 2GHz, 1.8GHz and
1.6GHz respectively. Similar to the full-coverage slowdown,
the run-time instruction coverage of bwaves is significantly
lower than other benchmarks, at only 71% even with 2GHz
A510s, due to its abundance of floating-point instructions.

C. Data-Oriented, Parallel and Multi-process Workloads

To show broader server-side workloads, we also look at the
GAP suite [98] of graph workloads. GAP is so memory bound
that even a small number of checker cores can keep up with
the main core; fig. 9 shows that even in full-coverage mode
2 A510s are sufficient except for PageRank. ParaVerser also
handles parallel workloads. Figure 9 also shows slowdown of
ParaVerser in full-coverage mode on 2-threaded PARSEC [99].
Though PARSEC is not as memory bound as GAP, only 7.6%
slowdown occurs when using 3 A510s per main core.

18The detection rates are high enough for most workloads that we envision
using time-based sampling [69] in addition to heterogeneity would further
increase efficiency, while keeping high hard-errors coverage. Still, calculating
the precise proportion of compute that must be sampled to achieve high
coverage probably highly depends on the exact fault behaviours of particular
cores on particular silicon, so we do not directly investigate them here.

 1

 1.5

 2

 2.5

 3

 3.5

bc bfs cc pr

geomean

GAP

S
lo

w
d

o
w

n

1*X2 @ 1.5GHz
2*X2 @ 1.5GHz

1*A510 @ 2GHz

blackscholes

bodytrack

fluidanimate
freqmine

streamcluster

swaptions

geomean

2-Core Parsec

2*A510 @ 2GHz
3*A510 @ 2GHz
4*A510 @ 2GHz

Fig. 9: Slowdown in full-coverage mode with varying checker-
cores per main core, for GAP [98] and PARSEC [99].

 0.99

 1

 1.01

 1.02

 1.03

 1.04

mix1 mix2 mix3 mix4 mix5 geomean

S
lo

w
d

o
w

n

Homogeneous
2*X2 @ 1.5GHz

 4*A510 @ 2GHz

NoC overhead

Fig. 10: Slowdown in full-coverage mode with varying checker
core configurations for 4-core multi-process SPECspeed 2017.
Coloured bars show overhead without LSL NoC-traffic impact.

To evaluate the impact of ParaVerser on multi-process
workloads, we ran random mixes19 of SPECspeed 2017 bench-
marks on 4 main cores. We simulated for over 1 billion total
instructions across 4 cores combined (after fast-forwarding for
10 billion instructions on the fastest core), with at least 250
million instructions on each core for mixes 1-4 and at least 100
million instructions on each core for mix5 due to simulation-
time constraints. Figure 10 shows the slowdown on the total
CPI with different checker core configurations. While the addi-
tional LSL traffic from one process contends with the demand
traffic for other processes, the overall performance overhead
is small with a geomean of only 1% with a homogeneous
checker core or 2 X2 checker cores at 1.5GHz configurations,
and less than 0.6% for 4 A510 checker cores at 2GHz.

D. NoC Sensitivity Study

To measure the impact of LSL traffic, we perform a sensi-
tivity study with the checker cores configured at the highest
frequencies and a slower NoC configuration of 128-bit width
and 1.5GHz frequency. We also show the impact of enabling
hash mode (section IV-I) on this slower NoC. Figure 11
shows that some benchmarks suffer significantly, resulting in
a geomean overhead of over 15%. With hash mode reducing
the LSL traffic by at least half, the NoC pressure is greatly
alleviated, bringing down the geomean overhead to be within
0.8% of that of a faster NoC (256-bit width and 2GHz clock
rate), which shows 1.5% NoC overhead for homogeneous
checker cores and less than 1% with heterogeneous cores.

19mix1: bwaves, gcc, mcf, deepsjeng. mix2: cam4, imagick, nab, fotonik3d.
mix3: leela, excahnge2, xz, wrt. mix4: pop2, roms, perlbench, x264. mix5:
xalancbmk, omnetpp, cactuBSSN, lbm.



1
1.05

1.15

1.25

1.35

1.5

1.75

2

bw
av

es gc
c
m

cf

xa
la
nc

bm
k

de
ep

sj
en

g
le
el
a

ex
ch

an
ge

2 xz

ca
ct
uB

SSN
lb
m w

rf

ca
m

4
po

p2

im
ag

ic
k
na

b

fo
to

ni
k3

d
ro

m
s
x2

64

pe
rlb

en
ch

om
ne

tp
p

ge
om

ea
n

S
lo

w
d

o
w

n
Homogeneous

2*X2 @ 1.5GHz
 4*A510 @ 2GHz

slowNoC
hashed slowNoC

NoC overhead

Fig. 11: Comparison of using a slower NoC configuration with
hashed and non-hashed LSL at the highest core frequency, over
100 million instructions in full-coverage mode. Coloured bars
show overhead without NoC impact.

E. Power and Area Overheads

ParaVerser adds only 1064B of storage overhead per core:
48B for a 2-wide LSC, 2 parity bits for each load- and store-
queue entry (if not already present), 16 bits each for the front-
and back-end LSL$ indices, 512 bits (or a cache line) for the
LSPU, 1 bit per cache line in the LSL$, 13 bits for the instruc-
tion timer, and 776B for the RCU. Prior work [13] estimated
the area overhead of dedicated checker cores to be less than a
third of 2014’s Cortex A57, but the dedicated checker cores’
area were estimated based on RISC-V cores and compared
to an ARM main core, despite both our ParaVerser and prior
heterogeneous error detection techniques [13] requiring same-
ISA, meaning for a fair comparison, all cores used for area
estimation should be Arm in both cases. We re-evaluate this
based on pixel count from die shots of the X2 and A510
cores [77], giving around 2.43mm2 and 0.44mm2 respectively
with 4LPE Samsung technology. By extrapolating [101], [102]
A35 sizes [96] from 28nm TSMC, we estimate the area of 16
A35s to be around 0.84mm2, resulting in 35% area overhead.

While checker cores are repurposed from existing compute
units rather than added new, using checker cores inevitably
uses more power than leaving them idle. We examine the
overhead via McPAT [103] configured at 22nm. For 4 A510
checkers running at 2GHz, we saw energy overheads (static
and dynamic) of 49% geomean relative to a baseline with all
checker cores power gated. For 2 X2 checkers at 1.5GHz, we
also saw energy overheads of 45%, and for 1 X2 checker
at 3GHz (homogeneous, so comparable to dual-core lock-
step [10], [45], [46]) we saw energy overheads of 95%.
By varying the frequency and voltage of 4 A510 cores, to
reduce from 2GHz when possible, we can reduce further: an
ED2P-minimal configuration with 4 A510s gives 29% energy
overhead at 4.3% slowdown (versus 49% energy and 3.4%
slowdown at full speed). In comparison, for prior work’s ded-
icated checker cores [11], [13], we saw 25% energy overhead.
Considering the extra 35% area overhead, this does not provide
much energy savings compared to using the 4 A510s already
in the system with ED2P-minimal configurations.

F. Compute Opportunity Costs

An alternative perspective is the extra compute that could
be performed on cores used for checking. For single-threaded
workloads, including most applications within SPEC, this is ir-
relevant: programs are not faster on multiple cores. Intuitively
for parallel workloads, repeating all computation would result
in a 2× slowdown. However, even parallel applications scale
less well than checking, are more memory-intensive, and cause
contention that slows down all cores. For GAP on 1 big core
and 2 little cores20, we see just a 1.52× speedup compared to 1
big core alone: the same number of little cores achieves full-
coverage checking at 10% performance overhead. Likewise
for PARSEC on 1 big core and 3 little cores, only a 1.44×
speedup is observed, versus 7.6% overhead for the same setup
with little cores devoted to checking. This compares favorably
with a homogeneous setup, where using two big cores results
in a 1.9× and 1.8× speedup for GAP and Parsec, respectively.

More generally though, there is no “free lunch” when it
comes to duplicate execution, even if ParaVerser allows the
use of highly power-efficient checker cores. Some systems will
have all of their free resources used by programs carefully
crafted to use every resource, and full-coverage mode will
always come with compute-opportunity-cost overheads in such
scenarios – in theory, with a worst case of 2× if all resources
were perfectly utilised, though we do not see that in real
workloads here. At this point, either more (power-efficient
heterogeneous) resources would have to be added for fault
tolerance, or coverage of only hard errors, via opportunistic
mode, must be accepted – with varying guarantees depending
on what limited resource can be spared (section VII-B).

VIII. CONCLUSION

ParaVerser is the first system to enable high-coverage,
inexpensive error detection capability tailored to the stringent
power/performance/area (PPA) constraints of HPC and data
centers. With unobtrusive modification, the next generation of
servers can achieve both strong comprehensive guarantees, and
high-coverage sampling when uncompromised performance
is the highest priority. The emerging blight of silent-error
detection can be mitigated more effectively at the hardware
level than with software scanners alone, and heterogeneity,
achieved via induction parallelism, realises efficient guarantees
otherwise only provided by expensive lockstep. Since Para-
Verser repurposes compute units rather than adding dedicated,
high-overhead components, systems that need guarantees and
systems that do not will be able to make use of the same
devices. ParaVerser offers, for the first time, the promise of a
practical solution to silent data corruption at scale. Source code
is available for this project at https://doi.org/10.5281/zenodo.
15080017 or https://github.com/CompArchCam/DSN25-AE.

20To allow us to run these workloads to completion, and thus cancel out
the effects of multicore workloads requiring more instructions for the same
amount of work, the compute experiments were run on a Rockchip RK3588
SoC with A76 big cores at 2.4GHz, and A55 small cores at 1.8GHz.

https://doi.org/10.5281/zenodo.15080017
https://doi.org/10.5281/zenodo.15080017
https://github.com/CompArchCam/DSN25-AE


REFERENCES

[1] H. D. Dixit, S. Pendharkar, M. Beadon, C. Mason, T. Chakravarthy,
B. Muthiah, and S. Sankar, “Silent data corruptions at scale,” CoRR,
vol. abs/2102.11245, 2021.

[2] P. H. Hochschild, P. Turner, J. C. Mogul, R. Govindaraju, P. Ran-
ganathan, D. E. Culler, and A. Vahdat, “Cores that don’t count,” in
HotOS, 2021.

[3] K. T. Nguyen, “New reliability, availability, and serviceability
(RAS) features in the Intel Xeon processor family.” https:
//www.intel.com/content/www/us/en/developer/articles/technical/new-
reliability-availability-and-serviceability-ras-features-in-the-intel-
xeon-processor.html, 2017.

[4] Arm Ltd., “Arm cortex-x2 core technical reference manual. cache
protection behavior,” 2023.

[5] I. B. Daniel Henderson, “Introduction to IBM Power® Reliability,
Availability, and Serviceability for POWER9® processor-based sys-
tems using IBM PowerVM™ with updates covering the latest Power10
processor-based systems,” tech. rep., IBM Systems Group, 2021.

[6] H. D. Dixit, L. Boyle, G. Vunnam, S. Pendharkar, M. Beadon, and
S. Sankar, “Detecting silent data corruptions in the wild,” in The 18th
IEEE Workshop on Silicon Errors in Logic – System Effects, 2022.

[7] M. Baleani, A. Ferrari, L. Mangeruca, A. Sangiovanni-Vincentelli,
M. Peri, and S. Pezzini, “Fault-tolerant platforms for automotive safety-
critical applications,” in CASES, 2003.

[8] D. F. Bacon, “Detection and prevention of silent data corruption in an
exabyte-scale database system,” in The 18th IEEE Workshop on Silicon
Errors in Logic – System Effects, 2022.

[9] K. Serebryany, M. Lifantsev, K. Shtoyk, D. Kwan, and P. Hochschild,
“Silifuzz: Fuzzing cpus by proxy,” in The 18th IEEE Workshop on
Silicon Errors in Logic – System Effects, 2022.

[10] X. Iturbe, B. Venu, E. Ozer, J.-L. Poupat, G. Gimenez, and H.-U.
Zurek, “The Arm triple core lock-step (TCLS) processor,” ACM Trans.
Comput. Syst., vol. 36, June 2019.

[11] S. Ainsworth and T. M. Jones, “Parallel error detection using hetero-
geneous cores,” in DSN, 2018.

[12] S. Ainsworth and T. M. Jones, “Paramedic: Heterogeneous parallel
error correction,” in DSN, 2019.

[13] S. Ainsworth, L. Zoubritzky, A. Mycroft, and T. M. Jones, “Paradox:
Eliminating voltage margins via heterogeneous fault tolerance,” in
HPCA, 2021.

[14] R. Smith, “Arm announces Neoverse V2 and E2: The next generation of
Arm server CPU cores.” https://www.anandtech.com/show/17575/arm-
announces-neoverse-v2-and-e2-the-next-generation-of-arm-server-
cpu-cores, 2022.

[15] P. Alcorn, “Amd to make hybrid CPUs, also using
AI for chip design: CTO Papermaster at ITF World.”
https://www.tomshardware.com/news/amd-to-make-hybrid-cpus-
using-ai-for-chip-design-cto-papermaster-at-itf-world, 2023.

[16] J. Tyrrell, “Efficiency gains: predictive maintenance supports data
center operations.” https://techhq.com/2022/07/machine-learning-data-
center-maintenance/, 2022.

[17] E. Maricau and G. Gielen, “Transistor aging-induced degradation of
analog circuits: Impact analysis and design guidelines,” in ESSCIRC,
2011.

[18] N. Karystinos, O. Chatzopoulos, G.-M. Fragkoulis, G. Papadimitriou,
D. Gizopoulos, and S. Gurumurthi, “Harpocrates: Breaking the silence
of cpu faults through hardware-in-the-loop program generation,” in
ISCA, 2024.

[19] D. Gizopoulos, M. Psarakis, S. V. Adve, P. Ramachandran, S. K. S.
Hari, D. Sorin, A. Meixner, A. Biswas, and X. Vera, “Architectures for
online error detection and recovery in multicore processors,” in DATE,
2011.

[20] M. Psarakis, D. Gizopoulos, M. Hatzimihail, A. Paschalis, A. Raghu-
nathan, and S. Ravi, “Systematic software-based self-test for pipelined
processors,” in DAC, 2006.

[21] S. Hukerikar and N. Saxena, “Runtime fault diagnostics for GPU tensor
cores,” in ITC, 2022.

[22] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“Swift: Software implemented fault tolerance,” in CGO, 2005.

[23] M. Didehban and A. Shrivastava, “NZDC: A compiler technique for
near zero silent data corruption,” in DAC, 2016.

[24] K. Mitropoulou, V. Porpodas, and T. M. Jones, “COMET:
Communication-optimised multi-threaded error-detection technique,”
in CASES, 2016.

[25] L. Bautista Gomez and F. Cappello, “Detecting silent data corruption
through data dynamic monitoring for scientific applications,” in PPoPP,
2014.

[26] L. Bautista-Gomez and F. Cappello, “Detecting silent data corruption
for extreme-scale MPI applications,” in EuroMPI, 2015.

[27] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and
R. Brightwell, “Detection and correction of silent data corruption for
large-scale high-performance computing,” in SC, 2012.

[28] S. Di, E. Berrocal, and F. Cappello, “An efficient silent data corruption
detection method with error-feedback control and even sampling for
hpc applications,” in CCGrid, 2015.

[29] S. Di and F. Cappello, “Adaptive impact-driven detection of silent data
corruption for hpc applications,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 10, 2016.

[30] X. Ni and L. V. Kale, “Flipback: automatic targeted protection against
silent data corruption,” in SC, 2016.

[31] Z. He, Y. Huang, H. Xu, D. Tao, and G. Li, “Demystifying and
mitigating cross-layer deficiencies of soft error protection in instruction
duplication,” in SC, 2023.

[32] Y. Huang, S. Guo, S. Di, G. Li, and F. Cappello, “Mitigating silent
data corruptions in hpc applications across multiple program inputs,”
in SC22: International Conference for High Performance Computing,
Networking, Storage and Analysis, 2022.

[33] D. Henderson, “Power8 processor-based systems RAS,” tech. rep., IBM
Systems Group, 2016.

[34] M. I. . Strategy, “AMD EPYC brings new RAS Capability,” tech. rep.,
2017.

[35] D. Lin, T. Hong, Y. Li, E. S, S. Kumar, F. Fallah, N. Hakim, D. S.
Gardner, and S. Mitra, “Effective post-silicon validation of system-on-
chips using quick error detection,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 33, no. 10, 2014.

[36] S. Gupta, T. Patel, C. Engelmann, and D. Tiwari, “Failures in large
scale systems: Long-term measurement, analysis, and implications,” in
SC, 2017.

[37] S. Di, H. Guo, E. Pershey, M. Snir, and F. Cappello, “Characterizing
and understanding hpc job failures over the 2k-day life of ibm blue-
gene/q system,” in DSN, 2019.

[38] C. Di Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop, and
W. Kramer, “Lessons learned from the analysis of system failures at
petascale: The case of blue waters,” in DSN, 2014.

[39] C. Di Martino, W. Kramer, Z. Kalbarczyk, and R. Iyer, “Measuring
and understanding extreme-scale application resilience: A field study
of 5,000,000 HPC application runs,” in DSN, 2015.

[40] G. Papadimitriou and D. Gizopoulos, “AVGI: Microarchitecture-driven,
fast and accurate vulnerability assessment,” in HPCA, 2023.

[41] O. Chatzopoulos, G. Papadimitriou, V. Karakostas, and D. Gizopoulos,
“Gem5-marvel: Microarchitecture-level resilience analysis of heteroge-
neous soc architectures,” in HPCA, 2024.

[42] G. Papadimitriou and D. Gizopoulos, “Demystifying the system vulner-
ability stack: Transient fault effects across the layers,” in ISCA, 2021.

[43] T. J. Slegel, R. M. Averill III, M. A. Check, B. C. Giamei, B. W.
Krumm, C. A. Krygowski, W. H. Li, J. S. Liptay, J. D. MacDougall,
T. J. McPherson, J. A. Navarro, E. M. Schwarz, K. Shum, and C. F.
Webb, “IBM’s S/390 G5 microprocessor design,” IEEE Micro, vol. 19,
no. 2, 1999.

[44] A. Wood, “Data integrity concepts, features, and technology,” White
paper, Tandem Division, Compaq Computer Corporation, 1999.

[45] N. Werdmuller, “Addressing functional safety applications with ARM
Cortex-R5.” https://community.arm.com/groups/embedded/blog/2015/
01/22/addressing-functional-safety-applications-with-arm-cortex-r5,
2021.

[46] C. LaFrieda, E. Ipek, J. F. Martinez, and R. Manohar, “Utilizing
dynamically coupled cores to form a resilient chip multiprocessor,”
in DSN, 2007.

[47] A. Meixner, M. E. Bauer, and D. Sorin, “Argus: Low-cost, comprehen-
sive error detection in simple cores,” in MICRO, 2007.

[48] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: a low-power
pipeline based on circuit-level timing speculation,” in MICRO, 2003.

https://www.intel.com/content/www/us/en/developer/articles/technical/new-reliability-availability-and-serviceability-ras-features-in-the-intel-xeon-processor.html
https://www.intel.com/content/www/us/en/developer/articles/technical/new-reliability-availability-and-serviceability-ras-features-in-the-intel-xeon-processor.html
https://www.intel.com/content/www/us/en/developer/articles/technical/new-reliability-availability-and-serviceability-ras-features-in-the-intel-xeon-processor.html
https://www.intel.com/content/www/us/en/developer/articles/technical/new-reliability-availability-and-serviceability-ras-features-in-the-intel-xeon-processor.html
https://www.anandtech.com/show/17575/arm-announces-neoverse-v2-and-e2-the-next-generation-of-arm-server-cpu-cores
https://www.anandtech.com/show/17575/arm-announces-neoverse-v2-and-e2-the-next-generation-of-arm-server-cpu-cores
https://www.anandtech.com/show/17575/arm-announces-neoverse-v2-and-e2-the-next-generation-of-arm-server-cpu-cores
https://www.tomshardware.com/news/amd-to-make-hybrid-cpus-using-ai-for-chip-design-cto-papermaster-at-itf-world
https://www.tomshardware.com/news/amd-to-make-hybrid-cpus-using-ai-for-chip-design-cto-papermaster-at-itf-world
https://techhq.com/2022/07/machine-learning-data-center-maintenance/
https://techhq.com/2022/07/machine-learning-data-center-maintenance/
https://community.arm.com/groups/embedded/blog/2015/01/22/addressing-functional-safety-applications-with-arm-cortex-r5
https://community.arm.com/groups/embedded/blog/2015/01/22/addressing-functional-safety-applications-with-arm-cortex-r5


[49] S. Das, D. Roberts, S. Lee, S. Pant, D. Blaauw, T. Austin, K. Flautner,
and T. Mudge, “A self-tuning DVS processor using delay-error de-
tection and correction,” IEEE Journal of Solid-State Circuits, vol. 41,
April 2006.

[50] D. Blaauw, S. Kalaiselvan, K. Lai, W. Ma, S. Pant, C. Tokunaga,
S. Das, and D. Bull, “Razor II: In situ error detection and correction
for PVT and SER tolerance,” in ISSCC, 2008.

[51] S. Beer, M. Cannizzaro, J. Cortadella, R. Ginosar, and L. Lavagno,
“Metastability in better-than-worst-case designs,” in ASYNC, 2014.

[52] S. K. S. Hari, M.-L. Li, P. Ramachandran, B. Choi, and S. V.
Adve, “mSWAT: Low-cost hardware fault detection and diagnosis for
multicore systems,” in MICRO, 2009.

[53] M.-L. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, and
Y. Zhou, “Understanding the propagation of hard errors to software
and implications for resilient system design,” in ASPLOS, 2008.

[54] P. Ramachandran, Detecting and recovering from in-core hardware
faults through software anomaly treatment. PhD thesis, University of
Illinois, 2011.

[55] P. Ramachandran, S. K. S. Hari, S. V. Adve, and H. Naeimi, “Under-
standing why symptom detectors work by studying data-only appli-
cation values,” in Workshop on silicon errors in logic–system effects
(SELSE), 2011.

[56] S. Feng, S. Gupta, A. Ansari, and S. Mahlke, “Shoestring: Probabilistic
soft error reliability on the cheap,” in ASPLOS, 2010.

[57] N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E. Smith, “Con-
figurable isolation: Building high availability systems with commodity
multi-core processors,” in ISCA, 2007.

[58] B. F. Romanescu and D. J. Sorin, “Core cannibalization architecture:
Improving lifetime chip performance for multicore processors in the
presence of hard faults,” in PACT, 2008.

[59] M. D. Powell, A. Biswas, S. Gupta, and S. S. Mukherjee, “Architectural
core salvaging in a multi-core processor for hard-error tolerance,” in
ISCA, 2009.

[60] A. Ansari, S. Feng, S. Gupta, and S. Mahlke, “Necromancer: Enhancing
system throughput by animating dead cores,” in ISCA, 2010.

[61] S. Gupta, S. Feng, A. Ansari, J. Blome, and S. Mahlke, “The StageNet
fabric for constructing resilient multicore systems,” in MICRO, 2008.

[62] S. Gupta, A. Ansari, S. Feng, and S. Mahlke, “StageWeb: Interweaving
pipeline stages into a wearout and variation tolerant CMP fabric,” in
DSN, 2010.

[63] A. Naithani, S. Eyerman, and L. Eeckhout, “Reliability-aware schedul-
ing on heterogeneous multicore processors,” in HPCA, 2017.

[64] T. Austin, “Diva: a reliable substrate for deep submicron microarchi-
tecture design,” in MICRO, 1999.

[65] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt, “Detailed design and
evaluation of redundant multithreading alternatives,” in ISCA, 2002.

[66] S. Reinhardt and S. Mukherjee, “Transient fault detection via simulta-
neous multithreading,” in ISCA, 2000.

[67] A. Shye, T. Moseley, V. J. Reddi, J. Blomstedt, and D. A. Connors,
“Using process-level redundancy to exploit multiple cores for transient
fault tolerance,” in DSN, 2007.

[68] C. Wang, H.-s. Kim, Y. Wu, and V. Ying, “Compiler-managed software-
based redundant multi-threading for transient fault detection,” in CGO,
2007.

[69] S. Nomura, M. D. Sinclair, C.-H. Ho, V. Govindaraju, M. de Kruijf,
and K. Sankaralingam, “Sampling + DMR: Practical and low-overhead
permanent fault detection,” in ISCA, 2011.

[70] C. Constantinescu, “Intermittent faults and effects on reliability of
integrated circuits,” in RAMS, 2008.

[71] A. Cunningham, “Arm goes 64-bit with new cortex-a53 and cortex-
a57 designs.” https://arstechnica.com/information-technology/2012/10/
arm-goes-64-bit-with-new-cortex-a53-and-cortex-a57-designs/, 2012.

[72] J. Olšan, “big.LITTLE by AMD: Zen 4c has the same IPC as the
big Zen 4.” https://www.hwcooling.net/en/big-little-by-amd-zen-4c-
has-the-same-ipc-as-the-big-zen-4-architecture-analysis/, 2023.

[73] Intel, “How 13th gen intel core processors work.”
https://www.intel.com/content/www/us/en/gaming/resources/how-
hybrid-design-works.html, 2022.

[74] Chaos Community, “Principles of chaos engineering.” http://
principlesofchaos.org/, 2019.

[75] T. Benacchio, L. Bonaventura, M. Altenbernd, C. D. Cantwell, P. D.
Düben, M. Gillard, L. Giraud, D. Göddeke, E. Raffin, K. Teranishi, and
N. Wedi, “Resilience and fault tolerance in high-performance comput-
ing for numerical weather and climate prediction,” The International

Journal of High Performance Computing Applications, vol. 35, no. 4,
2021.

[76] T. P. M. The next platform, “Fujitsu to fork arm server chip line
to chase clouds.” https://www.nextplatform.com/2023/03/15/fujitsu-to-
fork-arm-server-chip-line-to-chase-clouds/, 2023.

[77] A. Ganti, “Exynos 2400, 2200, 2100 die shots highlight the chips’
evolution over the years.” https://www.notebookcheck.net/Exynos-
2400-2200-2100-die-shots-highlight-the-chips-evolution-over-the-
years.832760.0.html, 2024.

[78] S. Wang, G. Zhang, J. Wei, Y. Wang, J. Wu, and Q. Luo, “Under-
standing silent data corruptions in a large production cpu population,”
in SOSP, 2023.

[79] Intel, “OpenDCDiag.” https://github.com/opendcdiag, 2025.
[80] J. Wittich, “How cpus will address the energy challenges of gen-

erative ai.” https://www.infoworld.com/article/2336903/how-cpus-will-
address-the-energy-challenges-of-generative-ai.html, 2024.

[81] https://www.arm.com/markets/artificial-intelligence/cpu-inference.
[82] A. Pellegrini, “Arm neoverse n2: Arm’s 2nd generation high perfor-

mance infrastructure cpus and system ips.” https://hc33.hotchips.org/
assets/program/conference/day1/20210818 Hotchips NeoverseN2.pdf.

[83] “Arm cortex-x2 core technical reference manual r2p0,
imp cpuectlr el1, cpu extended control register.” https:
//developer.arm.com/documentation/101803/0200/AArch64-system-
registers/AArch64-generic-system-control-register-summary/IMP-
CPUECTLR-EL1--CPU-Extended-Control-Register.

[84] D. Schor, “Arm introduces the cortex-x4, its newest flagship perfor-
mance core.” https://fuse.wikichip.org/news/7531/arm-introduces-the-
cortex-x4-its-newest-flagship-performance-core, 2023.

[85] H. Wu, K. Nathella, J. Pusdesris, D. Sunwoo, A. Jain, and C. Lin,
“Temporal prefetching without the off-chip metadata,” in MICRO,
2019.

[86] Q. H. Dang, “Secure hash standard,” tech. rep., NIST, 2015.
[87] M. W. Rashid and M. C. Huang, “Supporting highly-decoupled thread-

level redundancy for parallel programs,” in HPCA, 2008.
[88] J. Tchórzewski and A. Jakóbik, “Theoretical and experimental analysis

of cryptographic hash functions,” Journal of Telecommunications and
Information Technology, 2019.

[89] B. Zhang, S. Ainsworth, L. Mukhanov, and T. M. Jones, “Parallaft:
Runtime-based cpu fault tolerance via heterogeneous parallelism,” in
CGO, 2025.

[90] Arm Ltd., “Arm cortex-x2 core software optimization guide.” https:
//developer.arm.com/documentation/PJDOC-466751330-14955/latest,
2021.

[91] WikiChip, “Cortex-X1 - Microarchitectures - ARM.” https://en.
wikichip.org/wiki/arm holdings/microarchitectures/cortex-x1, 2023.

[92] A. Frumusanu, “Arm announces mobile Armv9 cpu
microarchitectures: Cortex-X2, Cortex-A710 & Cortex-A510.”
https://www.anandtech.com/show/16693/arm-announces-mobile-
armv9-cpu-microarchitectures-cortexx2-cortexa710-cortexa510, 2021.

[93] Arm Ltd., “Arm cortex-a510 core software optimization guide.” https:
//developer.arm.com/documentation/PJDOC-466751330-536816/latest,
2021.

[94] WikiChip, “Cortex-A510 - Microarchitectures - ARM.” https://en.
wikichip.org/wiki/arm holdings/microarchitectures/cortex-a510, 2023.

[95] Arm Ltd., “Arm cortex-a55 software optimization guide.” https://
developer.arm.com/documentation/EPM128372/0400/?lang=en, 2022.

[96] A. Frumusanu, “Arm announces new Cortex-A35 CPU - ultra-high
efficiency for wearables & more.” https://www.anandtech.com/show/
9769/arm-announces-cortex-a35, 2015.

[97] Arm Ltd., “Arm Cortex-A processor comparison table.” https://
developer.arm.com/documentation/102826/0500, 2024.

[98] S. Beamer, K. Asanovic, and D. A. Patterson, “The GAP benchmark
suite,” CoRR, vol. abs/1508.03619, 2015.

[99] C. Bienia, Benchmarking Modern Multiprocessors. PhD thesis, Prince-
ton University, January 2011.

[100] A. Frumusanu, “Arm announces Neoverse V1, N2 Platforms & CPUs,
CMN-700 mesh: More performance, more cores, more flexibility.”
https://www.anandtech.com/show/16640/arm-announces-neoverse-v1-
n2-platforms-cpus-cmn700-mesh/7, 2021.

[101] D. Schor, “Tsmc n3, and challenges ahead.” https://fuse.wikichip.org/
news/7375/tsmc-n3-and-challenges-ahead/, 2023.

[102] D. Schor, “Samsung 3nm gaafet enters risk production; discusses next-
gen improvements.” https://fuse.wikichip.org/news/6932/samsung-

https://arstechnica.com/information-technology/2012/10/arm-goes-64-bit-with-new-cortex-a53-and-cortex-a57-designs/
https://arstechnica.com/information-technology/2012/10/arm-goes-64-bit-with-new-cortex-a53-and-cortex-a57-designs/
https://www.hwcooling.net/en/big-little-by-amd-zen-4c-has-the-same-ipc-as-the-big-zen-4-architecture-analysis/
https://www.hwcooling.net/en/big-little-by-amd-zen-4c-has-the-same-ipc-as-the-big-zen-4-architecture-analysis/
https://www.intel.com/content/www/us/en/gaming/resources/how-hybrid-design-works.html
https://www.intel.com/content/www/us/en/gaming/resources/how-hybrid-design-works.html
http://principlesofchaos.org/
http://principlesofchaos.org/
https://www.nextplatform.com/2023/03/15/fujitsu-to-fork-arm-server-chip-line-to-chase-clouds/
https://www.nextplatform.com/2023/03/15/fujitsu-to-fork-arm-server-chip-line-to-chase-clouds/
https://www.notebookcheck.net/Exynos-2400-2200-2100-die-shots-highlight-the-chips-evolution-over-the-years.832760.0.html
https://www.notebookcheck.net/Exynos-2400-2200-2100-die-shots-highlight-the-chips-evolution-over-the-years.832760.0.html
https://www.notebookcheck.net/Exynos-2400-2200-2100-die-shots-highlight-the-chips-evolution-over-the-years.832760.0.html
https://github.com/opendcdiag 
https://www.infoworld.com/article/2336903/how-cpus-will-address-the-energy-challenges-of-generative-ai.html
https://www.infoworld.com/article/2336903/how-cpus-will-address-the-energy-challenges-of-generative-ai.html
https://www.arm.com/markets/artificial-intelligence/cpu-inference
https://hc33.hotchips.org/assets/program/conference/day1/20210818_Hotchips_NeoverseN2.pdf
https://hc33.hotchips.org/assets/program/conference/day1/20210818_Hotchips_NeoverseN2.pdf
https://developer.arm.com/documentation/101803/0200/AArch64-system-registers/AArch64-generic-system-control-register-summary/IMP-CPUECTLR-EL1--CPU-Extended-Control-Register
https://developer.arm.com/documentation/101803/0200/AArch64-system-registers/AArch64-generic-system-control-register-summary/IMP-CPUECTLR-EL1--CPU-Extended-Control-Register
https://developer.arm.com/documentation/101803/0200/AArch64-system-registers/AArch64-generic-system-control-register-summary/IMP-CPUECTLR-EL1--CPU-Extended-Control-Register
https://developer.arm.com/documentation/101803/0200/AArch64-system-registers/AArch64-generic-system-control-register-summary/IMP-CPUECTLR-EL1--CPU-Extended-Control-Register
https://fuse.wikichip.org/news/7531/arm-introduces-the-cortex-x4-its-newest-flagship-performance-core
https://fuse.wikichip.org/news/7531/arm-introduces-the-cortex-x4-its-newest-flagship-performance-core
https://developer.arm.com/documentation/PJDOC-466751330-14955/latest
https://developer.arm.com/documentation/PJDOC-466751330-14955/latest
https://en.wikichip.org/wiki/arm_holdings/microarchitectures/cortex-x1
https://en.wikichip.org/wiki/arm_holdings/microarchitectures/cortex-x1
https://www.anandtech.com/show/16693/arm-announces-mobile-armv9-cpu-microarchitectures-cortexx2-cortexa710-cortexa510
https://www.anandtech.com/show/16693/arm-announces-mobile-armv9-cpu-microarchitectures-cortexx2-cortexa710-cortexa510
https://developer.arm.com/documentation/PJDOC-466751330-536816/latest
https://developer.arm.com/documentation/PJDOC-466751330-536816/latest
https://en.wikichip.org/wiki/arm_holdings/microarchitectures/cortex-a510
https://en.wikichip.org/wiki/arm_holdings/microarchitectures/cortex-a510
https://developer.arm.com/documentation/EPM128372/0400/?lang=en
https://developer.arm.com/documentation/EPM128372/0400/?lang=en
https://www.anandtech.com/show/9769/arm-announces-cortex-a35
https://www.anandtech.com/show/9769/arm-announces-cortex-a35
https://developer.arm.com/documentation/102826/0500
https://developer.arm.com/documentation/102826/0500
https://www.anandtech.com/show/16640/arm-announces-neoverse-v1-n2-platforms-cpus-cmn700-mesh/7
https://www.anandtech.com/show/16640/arm-announces-neoverse-v1-n2-platforms-cpus-cmn700-mesh/7
https://fuse.wikichip.org/news/7375/tsmc-n3-and-challenges-ahead/
https://fuse.wikichip.org/news/7375/tsmc-n3-and-challenges-ahead/
https://fuse.wikichip.org/news/6932/samsung-3nm-gaafet-enters-risk-production-discusses-next-gen-improvements/


3nm-gaafet-enters-risk-production-discusses-next-gen-improvements/,
2022.

[103] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO, 2009.

https://fuse.wikichip.org/news/6932/samsung-3nm-gaafet-enters-risk-production-discusses-next-gen-improvements/

	Introduction
	Related Work
	Motivation
	Errors at Server-Scale
	Heterogeneous Parallel Error Detection
	Opportunistic Parallel Error Detection
	Implications for Checker Cores
	Why CPUs?

	ParaVerser
	Basic Operation
	Load-Store Log Cache
	Load-Store Push Unit
	Register Checkpointing Unit
	Load-Store Comparator
	Instruction Counter
	Speculative Out-Of-Order Checker Cores
	Eager Checker-Core Waking
	Hash Mode
	Multiprocess and Multicore

	Sphere of Replication
	Experimental Setup
	Evaluation
	Full-Coverage Mode
	Opportunistic Mode
	Data-Oriented, Parallel and Multi-process Workloads
	NoC Sensitivity Study
	Power and Area Overheads
	Compute Opportunity Costs

	Conclusion
	References

