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Abstract
Faults within CPU circuits, which generate incorrect results
and thus silent data corruption, have become endemic at
scale. The only generic techniques to detect one-time or
intermittent soft errors, such as particle strikes or voltage
spikes, require redundant execution, where copies of each
instruction in a program are executed twice and compared.

The only software solution for this task that is open source
and available for use today is nZDC, which aims to achieve
“near-zero silent data corruption” through control- and data-
flow redundancy. However, when we tried to apply this to
large-scale workloads, we found it suffered a wide set of false
positives, negatives, compiler bugs and run-time crashes,
which meant it was impossible to benchmark against. This
document details the wide set of fixes and workarounds we
had to put in place to make nZDC work across full suites. We
provide many new insights as to the edge cases that make
such instruction duplication tricky under complex ISAs such
as AArch64 and their similarly complex ABIs. Evaluation
across SPECint 2006 and PARSEC with our extensions takes
us from no workloads executing to all bar four, with 2× and
1.6× geomean overhead respectively relative to execution
with no fault tolerance.

CCS Concepts: • Software and its engineering→ Soft-
ware reliability.
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1 Introduction
The threat of silicon faults, causing processors to produce
incorrect results, has rapidly become a real problem at scale,
with data-centre operators observing a litany of real-world
silent data corruptions [10, 15] in spite of today’s existing Re-
liability, Availability and Serviceability (RAS) mechanisms[1,
13, 21, 29]. Full lockstep core duplication [2, 16] has only seen
wide deployment in highly safety critical environments such
as automotive due to its expense, so software mechanisms
for repetition and verification of execution are desirable and
have seen much research effort [5–7, 9, 17, 26–28, 30, 32, 33].

Despite this wide set of work, the only tool we are aware of
that is available with a source-code release [19] is nZDC [6].
nZDC runs duplicate instruction copies on duplicate shadow
registers inside each thread, along with careful handling of
memory and control flow to achieve “near-zero silent data
corruption”, in order to detect transient execution faults,
where units intermittently produce the wrong value. It is
implemented as an LLVM backend pass for the AArch64 ISA.
However, the original paper evaluates its correctness only
on simple Mibench [12] workloads under gem5 simulation.
Here we look at nZDC’s behaviour on real systems and

diverse workloads. We discover that even at the scale of
complexity of benchmarks such as SPEC CPU2006 [14] and
PARSEC [3], the only publicly available CPU soft-error re-
dundancy mechanism hits a wide set of both compilation
failures, memory exceptions, false positives and false nega-
tives, that greatly harm its viability.
This paper analyses the problems we encountered when

applying the nZDC implementation to complex benchmarks.
We carefully categorise these and explain why the errors we
observed lead to interesting new insights where redundant
execution is tricky, prone to edge cases, or is truly intractable.
We give the steps we took to fix them where feasible, and
workarounds where not. We hope that this paper provides
some insights on what to be careful of to researchers devel-
oping similar techniques, and provides some hints on how
to debug to researchers attempting to reproduce and extend
similar techniques from the literature. We also release our
large set of modifications that take nZDC from executing no
workloads from SPEC and PARSEC (and only one compiling)
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to executing all bar four, giving analysis of the remaining
failures and false negatives where full behavioural fixes were
infeasible, impossible, or require novel research effort and/or
complex re-engineering.
We introduce the nZDC scheme in section 2. We then

present the high-level problems we have discovered, their
root causes, fixes, workarounds and lessons learned when
trying to use it in section 3. Performance results and success
rates in execution from our evaluated workloads are given
in (section 4), followed by a discussion of other works in
the area (section 5). The source code for our modified nZDC
is available at https://github.com/CompArchCam/CC25-AE,
and archived at https://doi.org/10.5281/zenodo.14678385.

2 Overview of nZDC
nZDC is a software-based reliability technique that detects
faults through instruction duplication. Some registers are
reserved and used as redundant copies (shadows) of other
registers, and instructions are duplicated with shadow reg-
isters used in the copy. The values from the original and
the shadow registers are then compared, where any differ-
ences would indicate an error occurred. Specifically, with
nZDC, all computation, memory-read, compare, and direct-
branch instructions are duplicated, and stores and condi-
tional branches are protected with custom strategies.
To set up shadow register values, values from original

registers are copied to the corresponding shadow registers at
the beginning of the main function and after each function
call, as shown in figure 11. Instructions except stores and
conditional branches are duplicated using shadow registers.
The checking by comparing the original register value with
that from its shadow version happens before function calls
(and also immediately after stores as discussed below). A
conditional branch is inserted after each check, to branch to
error handling code if an error is detected.

Stores are protected by a following checking load that uses
the shadow register for the memory-access base address,
but not for the destination (as shown in figure 2). Then, the
re-loaded value is compared against the value in the shadow
register to check if the store was successful. A conditional
branch is inserted after the compare to take the execution
to the error handling code in the case of error where the
re-loaded value differs. The base address register’s value is
also compared against that in its shadow register to check if
the store was to the correct memory location.

1Note that the copying after calls means that the return values are
unchecked. This is the behaviour seen from the implementation in the
repository [19], and prior work SWIFT [26] mentions that while this is a
vulnerability, shadowing the return register would require modifying the
calling convention to accommodate multiple return registers, hence values
are copied after return to avoid calling-convention modifications.

m
ai

n
fu

nc

mov X1*  X1
mov X2*  X2
… // Other copies
ldr X1  [X2]

add X2  X2 + 4
add X2*  X2* + 4

cmp X1, X1*
ldr X1*  [X2*]

call func
… // Other checks

mov X1*  X1

ldr X1  [X2]
call func

Duplicate
load

No set up 
except for the 
link register 
at the 
beginning of 
other 
functions 

Check for 
error before
function calls

Original nZDC

Inserted to set up shadow registers by copying the value 
from corresponding original registers

Duplicate instruction with shadow registers
Original instructions

Inserted to compare shadow and original, same unless error
Inserted to branch to error handling code on error detection

… // Some code

if(!eq) b .error
cmp X2, X2*
if(!eq) b .error

mov X2*  X2
… // Other copies
… // Some code + 

duplicate

add X2  X2 + 4
ret

ret

Set up 
shadow at 
the beginning 
of main

Set up 
shadow after
function calls

Duplicate
arithmetic

mov LR*  LR

Figure 1. Shadow registers get their values from original
registers at the beginning of main and after each function call,
duplicate instructions using shadow registers are inserted for
redundant execution, and register values are checked before
each function call (X1*, X2* and LR* are shadow registers of
X1, X2 and LR respectively).

store X1  [X2]store X1  [X2]

Original nZDC

load X1  [X2*]
cmp X1, X1*
if(!eq) b .error

Inserted checking-load 
Inserted compare to check for stored value
Inserted to branch to error handling code on error detection

Compare re-
loaded value 
with shadow

Only memory
address from
shadow, store 
value register 
overwritten

Original store instruction

Figure 2. nZDC protects stores through inserting checking-
loads (X1* & X2* are shadow regs of X1 & X2 respectively).

For conditional branches, two extra registers are reserved
for checking2. As shown in figure 3 (adapted from fig. 6 in

2These registers are correctly reserved (X27 and X28 in the source code,
currently) in the original implementation, and here. However, due to calling-
convention issues we found working with LLVM in practice (sections 3.3.4
and 3.4.3), these registers occasionally get overwritten around call bound-
aries even though no user code stores in them, and there are too few registers
that never get overwritten to reserve two other, safe registers for this pur-
pose. Since branch checking is not actually implemented (section 3.2), this

https://github.com/CompArchCam/CC25-AE
https://doi.org/10.5281/zenodo.14678385


A Deep Technical Review of nZDC Fault Tolerance CC ’25, March 1–2, 2025, Las Vegas, NV, USA

… // Body of BB2

… // Body of BB3

B
B1

B
B2

B
B3

… // Body of BB1
subs CDR  X1 – X2
if (eq)  CDR  invert(CDR)
XOR CDR CDR, #sigBB3

if(eq) b .BB3
If(eq) b .error
if (!eq)  CDR  invert(CDR)
XOR CDR CDR, (#sigBB2

XOR #sigBB3)

subs CCR  X1* – X2*

XOR CDR CDR, #sigBB2
XNOR CCR CCR, CDR
… // Body of BB2
if(CCR != 0) b .error

XOR CDR CDR, #sigBB3
XNOR CCR CCR, CDR
… // Body of BB3
if(CCR != 0) b .error

… // Body of BB1
cmp X1, X2
if(eq) b .BB3

N
ot

 ta
ke

n

Invert if not
equal from 
duplicate

Invert if 
equal from 
substitute

Invert CDR  
only once 

unless 
flags differ

#sigBB3 XORed twice, 
only #sigBB2 XORed in

Revert CDR 
by XORing 
twice unless 
target error

CDR should 
be invert of 
CCR from 
duplicate 
unless error 

Branch to error handling 
code if CCR not 0

Not taken 
unless 
error on 
branch 
taken to 
BB3

Original nZDC

Inserted to check for flag/branch direction error 

Duplicate compare with shadow register, result in CCR 
(sets flags used by subsequent conditional instructions)

Substitute compare with original register + result in CDR 
(sets flags used by subsequent conditional instructions)

Original instructions

Inserted to check for branch target error
Inserted to branch to error handling code on error detection
Basic block xBBx
Static signature of basic block x#sigBBx

Figure 3. Example of the nZDC transformation to protect
conditional branches with reserved CDR and CCR registers
(X1* and X2* are shadow registers of X1 and X2 respectively).

Didehban et al. [9]), the destination of the condition-flag-
setting instruction is changed to be one of the extra reserved
registers (referred to as the CDR), and then conditionally
inverted to check for errors in the flags. The other extra re-
served register is used in the duplicate condition-flag-setting
instruction that uses the shadow registers for its source (CCR).
Additional instructions are also added to check for branch
direction and target error by adding in a static signature.

3 Problems of nZDC
While trying to use the public source code for nZDC [19] and
apply it to SPEC and PARSEC benchmarks3, we identified

is innocuous, though we expect challenges were a true branch-checking
implementation attempted.
3It can be argued that all research artefacts are only tested on the workloads
used in the original authors’ experiments, and so one should expect minor
issues when applying techniques to new code. The reason we believe that
applying nZDC to SPEC CPU2006 and PARSEC is instructive, and why this
process produced enough interesting bugs to fill a full paper, is in major
part due to the simplicity of the MiBench [12] suite originally evaluated [6].

several problems, both with the source code itself and with
the fundamental mechanism. We first detail the key concepts
and insights behind each issue before giving examples, root-
cause analysis and either workarounds that allow execution
without full error detection, or fixes when easily feasible.

We start with problems with the design of nZDC. First, on
Arm ISAs, there are issues aroundword length between types
of instructions that cause a store-and-reload of supposedly
the same data to generate false positives on being checked
(section 3.1). Second, flags for conditional branches can be
set in multiple ways in Arm, and this causes interference
between control-flow and data-flow checking (section 3.2).
Third, oversights around complexities in the application-
binary interface (ABI), such as calling-convention behaviour
when moving to library code not protected by nZDC, or on
exceptions, causes a variety of unintended consequences
(section 3.3). We then look at a set of interesting corner cases
that break inside the implementation itself (section 3.4), be-
fore briefly listing other similar issues with less fundamental
insights (section 3.5). Finally, we also encountered a couple
of problems that are not due to nZDC (e.g. compatibility of
new tools with the old code base), and discuss solutions in
detail for these as well (section 3.6).

3.1 Checking-Reload False Positive
This section describes a fundamental problem that arises
from the design of nZDC under its target AArch64 ISA.

In the method for store checking, nZDC assumes that the
checking-load is a perfect symmetry of the checked store to
load back what is stored, hence the register with the reloaded
value should match that of the shadow of the stored value.
However, as shown in figure 4, this assumption is not always
correct, because of subtleties around result length in ARMv8
AArch64 (nZDC’s [6] target ISA). Stores of sub-register size
(e.g. STRB or STRH) will only store a portion of the value
in the (32- or 64-bit) register without changing the register
value. However, with AArch64, loads of sub-register size will
have the loaded value extended to fill up the full register
size. 32-bit loads also fill the top 32 bits of 64-bit registers
with 0s. This means that even if the store is correct and the
stored bits are the same as before, the checking load will

While MiBench is easy to compile, using a small subset of only the C
language, making it suited to embedded systems research, and is easy to
simulate in a short amount of time in e.g. gem5 as the original nZDC authors
used, we saw significantly higher code diversity and much longer run-times
from SPEC and PARSEC. For example, the qsort workload in MiBench is
really just a call to the C library function of the same name. This is one
reason why SPEC and PARSEC are more widely used in the literature,
and the ability to run widely accepted workloads is critical to allow future
research to perform acceptable comparisons and evaluations. This does
not mean our version has complete coverage for all types of code (as we
discuss, we do not even cover all SPEC workloads, with some failing for
documented reasons), but SPEC and PARSEC together are diverse enough
for us to discover what we hope are the bulk of interesting edge cases.
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0x1234_5678_ABCD_EF90

nZDC code X1 register content

0x0000_0000_ABCD_EF90

Inserted sub-register-sized checking-load inducing error

store W1  [X2]
load W1  [X2*]

X1 (64 bits)

W1
(32 bits)

Original sub-register-sized store instructions

Stores the bottom 
32 bits of X1

X1 not
modified

X1 
modified
even with 
error-free 

store 

Loads to the bottom 32 
bits of X1 and sets the 
top 32 bits of X1 to 0

Figure 4. Sub-register-sized checking-load induces error
because it also modifies the bits that were not loaded in the
destination register (X2* is the shadow registers X2).

still modify the other bits of the register value, resulting in
differences with the copy in the shadow register.

We provide an example and workaround here. Comments
are shown as blue-coloured text above lines of code.
Cause nZDC re-loads stored values to the same register to
check for errors, however, sub-register size re-loads may
change upper register bits beyond the loaded size.

Example From perlbench, in the generated assembly file
(assume x24 shadows x1, x12 shadows x19).

// Original store, x1 has non-zero upper 32-bits
str w1, [x19, #48]
// Inserted checking-load, upper 32-bit of x1 now
// changed to zero
ldr w1, [x12, #48]
// Check for store success, check only lower bits
sub w25, w1, w24
// True negative store success
cbnz w25, .LBB1162_154
// Duplicate shift right
lsr x24, x24, #32
// Original shift right with zeroed out upper bits,
// lower bits after shift doesn’t match x24
lsr x1, x1, #32
// Original store with wrong value
str w1, [x19, #52]
// Inserted checking-load
ldr w1, [x12, #52]
// Check for store success
sub w25, w1, w24
// False +ve due to checking-load incurred error
cbnz w25, .LBB1162_154

Error Manifest as segmentation fault or as false-positive
error detected during execution.

Reason Not fixable without reserving an extra register be-
cause the AArch64 ISA defines that a 32-bit load would
write 0s to the upper 32 bits of a 64-bit register, and 16/8-
bit loads would sign/zero-extend. There is no instruction

Figure 5. The original nZDC store check (which fails on
checking upper bits), our implemented workaround (which
has the same overheads as a proper check, but overwrites
the incomplete shadow to correct the upper bits, so does not
find errors), and a full fix, currently unimplemented.

in the ISA that can load sub-register size values without
overwriting the other bits of the destination register.
The original register value cannot be recovered unless
an additional register is used to cache that information,
which would result in a store checking method different
in theory to that of nZDC.

Workaround Workaround by inserting instruction to copy
register value from shadow back to original register to
suppress false-positive errors in LLVM.

Residual False Negative The above workaround preserves
overheads but leaves stores unchecked,meaning thewrong
value could propagate to memory.

Lesson Loads and stores are not perfect symmetries, and
loads will change the register value beyond the loaded
bytes. When loading back the stored bytes and checking
for correctness, the other bytes of shadow register need
to be preserved.
Sub-word loads and stores are extremely common, and

so the majority of SPEC and PARSEC workloads were af-
fected by false positives as a result. On top of false posi-
tives, the checking-load is actually inducing errors: the perl-
bench benchmark for example has errors in the output with
checking-loads added, even with all error detections ignored,
because the original register value used by the execution
that is independent to checking has been changed.
A fix for this behaviour requires being able to hold and

restore the upper bits that the load should not have overwrit-
ten (figure 5). This could be done by replacing the original
compare instruction (e.g. the cmp instructions in the exam-
ple4 with an xor of the reloaded value in a new register with
the stored value in the original register (which should be
4Though the original paper [6] describes this check as being a cmp in-
struction followed by a b.ne, as in figure 5, the actual source code they
provide [19] implements this instead as sub followed by cbnz, as in the
error example we give. The reason this matters is that the former only
affects flags, whereas the latter requires the reservation of an extra register:
X25/W25. We are unsure why this difference exists, though this would allow
us to use the same X25 register instead for the reload and xor in our poten-
tial fix (X_new in figure 5). Still, in general NZDC is very register-limited
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zero in the lower bits if correct), followed by an ands with
mask that also sets the condition flag, to verify the lower bits
are all zero. Since this has the same instruction overhead as
our implemented workaround, gives trouble with register
reservation (section 3.3.4), and requires very different code
sequences for different integer sizes and thus a significant en-
gineering rearchitecting of the codebase, we do not provide
the full fix in our source release.

3.2 Branch-Transformation Inaccuracy
This section describes the problems that arise from the de-
scription of the nZDC transformation for conditional branches.
Since there is no implementation in the first place, we sim-
ply describe our effort to work around this problem in the
absence of this implementation to obtain workable binaries.
The nZDC transformation for conditional branches (de-

scribed in the paper [6] but not implemented in the open-
source version [19]5) assumes that conditional branches use
cmp instructions to set up the condition flags. cmp is an alias
of subs (subtraction that also sets the conditon flag) with
XZR as the destination register. And since XZR is always 0,
this essentially means that the flags are set but the result of
the subtraction is discarded. This is why replacing the desti-
nation register with a reserved register for error checking
as described in the paper is feasible: the discarded result is
being re-used as part of error checking. However, having
XZR as the destination register is just a special case of the
subs instructions (albeit a very common case): flags for con-
ditional branches can be set with subs or other flag-setting
instructions where the result is not discarded but recorded
in a general purpose destination register as well; we saw this
in all but two of the tested SPEC and PARSEC benchmarks.
Simply replacing the destination register in these cases leads
to errors since the original destination never gets the result.
As shown in figure 6 where the destination register is X1
and not XZR, substituting the destination with CDR without
copying the value back to X1 results in X1 value error. A
more general transformation would need to copy the result
from the reserved register to the original destination regis-
ter before any instruction that modifies its value, to ensure
correctness (and same for the shadow of the destination and
the duplicate instruction using it). Here we give an example

(section 3.3.4): we expect that combinations of full branch checking (re-
quiring two registers, CCR and CDR, that are never clobbered by saving and
restore) and load checking (requiring reserving one further safe register)
will be infeasible without changing the calling convention or at the very
least resolving issues with spurious saving of registers in the LLVM backend
(section 3.4.3).
5A somewhat similar conditional-branch mechanism is, however, imple-
mented in another of the original authors’ repositories [18]. The control-
flow error-detection scheme implemented there is NEMESIS [8], which is
different from nZDC and is implemented on the OR1K target. However,
NEMESIS does insert duplicate branches that uses the shadow registers and
and branches of opposite conditions, which may provide some insight on
how to implement nZDC’s branch control flow.

… // Some code
subs CDR  X1 – X2

if(eq) b .BB3
If(eq) b .error

subs CCR  X1* – X2*

… // Some code
subs X1  X1, X2
if(eq) b .BB3

X1 modified by 
flag setting 
instruction

Need to add 
mov X1 CDR

Original nZDC

Inserted to check for flag/branch direction and branch target 
error using CDR register

Duplicate compare with shadow register, result in CCR (sets 
flags used by subsequent conditional instructions)

Substitute compare with original register + result in CDR (sets 
flags used by subsequent conditional instructions)

Original instructions

Inserted to branch to error handling code on error detection

… 

… 

Result in CDR, 
X1 not modified

Need to add 
mov X1*CCR

Figure 6. nZDC’s conditional-branch check fails when the
CDR/CCR registers are not substituting XZR.

and show how we work around this problem in the absence
of the transformation for conditional-branch checking being
implemented.
Cause nZDC duplicates arithmetic instructions with the
redundant registers to check for errors. However, some
arithmetic instructions that also set flags are not dupli-
cated, resulting in a value difference between the original
and the redundant registers (this is related to the imple-
mentation of the transformation to protect conditional
branches).

Example From bzip2, in the generated assembly file:

// w0 modified but no duplication
subs w0, w3, #1

Error Manifests as a false-positive error detected during
execution. The specific error depends on the content of
the error recovery block (e.g. segfault if the error-recovery
block accesses an invalid memory address).

Workaround Workaround through adding duplication of a
non-flag setting version of the same arithmetic instruction
in assembly.

Residual False Negative Branches remain unchecked due
to a lack of implementation on control-flow checking
in the original repository. Also, flags in general are not
checked for correctness.

Lesson Very common special cases should not be considered
the general case, as even edge cases will be common in
large workloads.

3.3 Library and Calling-Convention Compatibility
Issues

This section describes problems that arise from the design
of nZDC and we can see a clear solution or are concerns
that we have about applying nZDC more generally to other
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store X1  [X2]
… // Some code

Library code 
without nZDC

Code 
with nZDC

load X1  [X12]
cmp X1, X11
if(!eq) b .error

Inserted checking-load 
Inserted compare to check for stored value
Inserted to branch to error handling code on error detection

Assume X11 
shadows X1 
and should 
be the same 
unless error

Assume X12 
shadows X2

Original instructions

add X11  X1 + 1
call code_with_nZDC

X1 != X11

Since X1 != X11, 
error reported even 
with error-free store

Figure 7. nZDC checks report false positives when called
from library code compiled without nZDC transformation.

ISAs while AArch64 may not specifically have a problem.
We again describe our effort to work around or solve these
problems to obtain workable binaries.
These are typically due to linking with precompiled li-

braries. In theory, nZDC could be redesigned to only work
if all code is precompiled with nZDC, including linked code.
This would give more freedom in the use of shadow reg-
isters, avoiding several issues described below, as well as
giving higher code coverage by actually covering all code.
However, we believe that compatibility with linked code is
important, and the original authors agreed [6]: all of their
experiments evaluated with precompiled libraries not cov-
ered by nZDC, and the authors claimed such a setup should
not break program behaviour. Forcing the recompilation of
libraries makes the use of this tool much more complex, not
matching typical compilation workflows.

3.3.1 Library Code Destroys Shadows. Reserving regis-
ters for shadowing requires compile-time transformations,
which means that any linked library code that was not com-
piled with the transformation does not have the same agree-
ment on which registers are shadows. In addition to the lack
of error detection coverage for such library code, the dis-
agreement on what each register is used for leads to broken
code (this is similar to a calling convention). As shown in
figure 7 for example, when code without the transformation
calls user code with the transformation, the shadow registers
are not set up to have the same value as the corresponding
original register, which leads to differences in comparison
and results in false positives in error checking.
Cause The linked library code did not go through the nZDC

transformation, hence what are considered shadow regis-
ters in nZDC do not hold a copy of the value of those in
the original registers.

Example From blackscholes’s C++ source, the bs_thread
function pointer is passed to the pthread_create func-
tion. When compiling, bs_thread goes through nZDC

transformation from the custom compiler, pthread_cre-
ate is linked in from an existing library that was not
compiled with nZDC transformation.
In the generated assembly file (assume bs_thread called
from pthread_create, x21 shadow sp, x12 shadow x19):

// start of bs_thread
bs_thread:

...
// Original store
stp x20, x19, [sp, #-32]!
// Inserted load
ldp x20, x19, [x21, #-32]!
// Check for store success, but pthread_create
// did not keep the values of x19 and x12 the
// same
sub x25, x19, x12
// False positive
cbnz x25, .LBB2_6

Error Manifests as a false-positive error detected during ex-
ecution when library code calls nZDC instrumented user
code because redundant registers hold values different
from the original registers.

Workaround Workaround by either removing the nZDC
insertion in code called by library code (for anything used
before main), or re-copying the values from original regis-
ters to redundant registers at the beginning of the function
(for anything only used after main) in LLVM6.

Residual False Negative Code in an nZDC compilation unit
that is called from outside the unit is not covered by
nZDC—though given nZDC does not cover library code
anyway, this is not relatively speaking a huge difference
in coverage.

Proper Fix A proper fix would require re-compiling all li-
brary code with the nZDC transformation as well, unlike
in the method used by the original paper [6].

Lesson Properties that must be preserved across function
calls need to be respected by both the caller and the callee.
And library code can be the caller as well, not only the
callee. Techniques may allow library code to be unpro-
tected, but care must be taken so that it does not break
the error detection in the protected user code.

3.3.2 LibraryCalling-ConventionViolation. The choice
of which registers to use as shadows, or reserved for branch
or load checks, may also break the calling convention. In
AArch64, some of nZDC’s reserved registers are inevitably
callee-saved registers, since there are too few remaining
registers to form a full shadow otherwise. This means that
changing their values directly without saving and restoring
6This is implemented by altering the nZDC pass to look for known-bad
function names from SPEC and PARSEC. For new workloads, similar lists
would need to be created by profiling when false positives occur.
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breaks the calling convention (e.g. in nZDC, as shown in
figure 8). While there is no problem with code that follows
the agreement that these registers are always used as shad-
ows, this becomes a problem when working with library
code that does not follow this agreement: when a library
code without the transformation calls the user code with the
transformation, it expects the callee-saved registers to retain
their values, but the callee would have changed their values
for shadowing, assuming they are reserved and never used
for other purposes, resulting in errors in the program7.
Cause Linked-library code did not go through the nZDC
transformation and assumes that callee-saved registers
keep their values as per the calling convention, but nZDC
uses those registers as shadows and modifies their values
without saving and restoring.

Example Fromh264ref, in the C++ code, the function pointer
of compare_pic_by_pic_num_desc is passed to the qsort
function. When the former function goes through the
nZDC transformation from the custom compiler, qsort is
linked in from an existing library that was not compiled
with the nZDC transformation.
In the generated assembly file (assume x23 shadows x0,
x24 shadows x1):

// start of compare_pic_by_pic_num_desc
compare_pic_by_pic_num_desc:
...
// Inserted duplicate load, modifying callee-saved
// register x23 used by library function upon
// return
ldr x23, [x24]
// Original load
ldr x0, [x1]
...

Error Manifests as a segmentation fault during execution of
library code after nZDC instrumented user code returns
because callee-saved registers hold values different from
what is expected.

Workaround Workaround by removing the nZDC insertion
in code called by library code in LLVM.

Residual False Negative As above, directly limits coverage
by not covering some functions.

Proper Fix A proper fix would require re-compiling all li-
brary code with the nZDC transformation as well.

Lesson Similar to section 3.3.1, unprotected library codemay
be the caller, and special consideration should be taken so

7We observed this in omnetpp (which unfortunately still does not work
due to exception handling) and h264ref benchmarks. For omnetpp, this
happened with many functions that are called before the start of main. For
h264ref benchmark, this happened with a function called after main. In both
cases, while the problem from section 3.3.1 also exists, the workaround to
prevent linked libraries destroying shadows is not enough, unlike many
other cases where only section 3.3.1 was a problem.

that the error detection does not break the execution of
the library code.

3.3.3 Exception Handling Breaks Redundant Regis-
ters. Shadow registers get their values copied from the orig-
inal registers at the beginning of main and after function
calls (after a function returns). However, execution jumps
over this setup after a function call in the case of exceptions.

Cause nZDC inserts instructions to copy values from orig-
inal to redundant registers after call instructions so that
the checking code works on the caller even if the callee
does not have nZDC instrumentation. However, this does
not work for exception handling since the execution does
not resume from the function return.

Example From omnetpp, in the C++ source code:

try {
// Some work
...
// Function that throws an exception
checkTimeLimits();
// Some other work
...

// Execution skips other work after exception
}
// Handles exception
catch (...) {

Error Manifests as a false-positive error detected during ex-
ecution when checking for error after the point of excep-
tion return (and going through library code for exception
handling).

Workaround None, not fixed (hence omnetpp segfault).
Proper Fix A proper fix would require inserting register-

copy instructions at the point of exception return or adding
nZDC instrumentation to exception-handling library code.

Lesson In addition to function calls, exceptions can also
take execution into unprotected library code, and do not
come back to user code through function returns. Special
consideration should be given to exception handling on
top of function calls.

3.3.4 Other Calling-Convention Issues. In general ISAs,
there may not be enough general-purpose registers to re-
serve for shadowing without breaking the calling convention.
For example, there are barely enough registers in AArch64
for nZDC to work. Among the 31 general purpose registers
in AArch64, 14 are defined to have special uses such as pa-
rameter and result passing, frame pointer, and link register,
and cannot be reserved for shadowing without breaking the
calling convention. This means that 14 other registers have
to be reserved to shadow these registers to protect them.
Adding in the two extra registers for conditional branches,
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load X10  [X2]
… // Some code

Library code 
without nZDC

Code 
with nZDC

load X20  [X12]
… // Other code
ret

Inserted duplicate load 
Other original and nZDC inserted checking code, no restore

X20 not saved 
since not used 
in original code

Original instructions

add X20  X2 + 4
call code_with_nZDC

Expects unmodified
X20 (callee save and 
restore), error due to 
wrong X20 value

load X1  [X20]

Assume X12 
shadows X2 and 
X20 shadows X10, 
X20 modified

Figure 8. nZDC checking code induces errors by modifying
callee-saved register values when called from library code
compiled without nZDC transformation.

one for our store-check fix (section 3.1), there are 14 orig-
inal registers and, 17 reserved registers. While this is just
enough in theory, practical issues (section 3.4.3) mean that
2 registers get saved and restored by LLVM currently even
when reserved, breaking shadows and reservations, limiting
us to just 15 safely reserved registers that are never inadver-
tently clobbered, which is not enough to implement branch
checking with a full set of shadows, though branch checking
is currently missing anyway (section 3.2).

3.4 Implementation Oversights
This section describes details and lessons arising from var-
ious oversights that arise from the implementation, rather
than the fundamental design of nZDC.

One general issue is mishandling of edge cases or instruc-
tions: the solution given typically works for the common
cases seen in Mibench [12], but some less common but not
rare cases need to be handled differently, and occur fre-
quently in large workloads such as SPEC [14].

Another problem considers interaction with other LLVM
passes. The additions from the nZDC transformation can
benefit from some passes/optimizations and be broken by
others. The original paper [6] justifies performing the trans-
formation at a late stage in order to still take advantage
of optimizations such as dead code elimination and com-
mon sub-expression elimination without them eliminating
the inserted error checking code. It also must be done post-
register-allocation, in order to maintain duplicate shadow
registers with a mapping from each architectural register
to its own shadow. However, some passes could have been
beneficial to run after nZDC, and some optimizations still
come after and should have been taken into consideration.

3.4.1 Missing Labels for Inserted ErrorRecoveryBlock.
Cause With LLVM 3.7.1, the label of the error-handling ba-

sic blocks inserted at the end of a function is optimised out
if the last instruction prior to insertion was not ret. This
may be due to the late insertion of conditional branches

in the backend that fails to split the basic block, and/or
missing out on control flow-analysis such as if-conversion.
The label is optimised out when the block with inserted
conditional branches has the error-handling block as its
only successor, and is itself the only predecessor of the
error handling block at the same time.

Example From bzip2, in the generated assembly file:

// Function originally has only 1 block that ends
// with bl exit
configError:

// Some work
...
// Inserted conditional branch, block not split
cbnz x25, .LBB6_1
bl exit
// Inserted copy after call
...
sub x23, x0, xzr

// Commented label (.LBB6_1, optimised out)
// BB#1:

// Body of error recovery block
...

Error Compilation error during object-file generation such
as undefined reference to ‘.LBB6_1’.

Fix Fixed through re-adding the correct label in assembly.
Lesson Insertion of conditional branches changes the con-
trol flow of the block they are inserted in. Subsequent
optimizations should be made aware of this change.

3.4.2 Duplicate Destinations for Load-Pair Insts.

Cause When checking for store pair instructions, the stored
values are re-loaded into the same registers. However,
while the store pair can store the value from the same reg-
ister twice to two memory locations, the load pair cannot
load to the same register.

Example From xalancbmk, in the generated assembly file
(assumes x24 shadows x1):

// Original store pair, w2 → [x1+56] and w2 →
// [x1+60]
stp w2, w2, [x1, #56]
// Inserted checking-load
ldp w2, w2, [x24, #56]

Error Manifests as a compilation error such asWarning: un-
predictable load of register pair – ‘ldp w2,w2,[x24,#56]’

Workaround Workaround by replacing the load pair in-
struction with a simple load from only the first memory
location in assembly.

Residual False Negative Second store of a pair unchecked.
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Proper Fix A proper fix would need to add a second load to
the same register from the second memory location after
the loaded value from the first memory location has been
checked.

Lesson Loads are not perfect symmetries of stores, so take
extra care wherever loads are intuitively treated as such.

3.4.3 Breaking the Calling Convention.
Cause The original implementation of nZDC reserves reg-
isters to be used as shadows even for those with special
uses according to the calling convention.

Example In the generated assembly file (constructed exam-
ple from sjeng and perlbench to show multiple cases at
once, assumes x21 shadows sp, x27 shadows x17, x8 shad-
ows x16). The caller sets up x8 to hold the address of the
space allocated for the return value that is of compound
type before calling, and this conflicts with using x8 as
shadow register which should hold the same value as x16.

// Original store callee-saved registers
stp x27, x28, [sp, #-48]!
...
// Duplicate add, no substitute to shadow
add x8, x21, #8
// Original add setting up x8 with address for return
// of compound type
add x8, sp, #8
// Checks before call
...
// x16 different from x8 without add
sub x25, x16, x8
// Error detected
cbnz x25, .LBB23_7
...
// Call function which uses x8 for return value
bl think
...
// Setting up x27 to shadow x17 after return
sub x27, x17, xzr
...
// Duplicate sub
sub x27, x27, x1
// Original sub
sub x17, x17, x1
// Duplicate restore, no substitute to shadow
ldp x27, x28, [x21], #48
// Original restore
ldp x27, x28, [sp], #48
// Check before call, restored x27 differ from x17
sub x25, x17, x27
// False positive
cbnz x25, .LBB955_26
b some_other_func

Error Manifests as execution failure/output error or as false-
positive error detected during execution.

Workaround Workaround by changing which registers are
reserved in LLVM. However, this does not completely fix
the problem because some registers marked as reserved
(for being shadows) that are also callee-saved registers get
saved and restored despite the fact they should not have
been used for anything other than checking. And restoring
a redundant register’s value after the original register’s
value already changed results in discrepancies between
the value in the redundant and the original registers. We
could also work around redundant register’s store/restore
problem by removing registers from the list of callee-saved
registers, but this breaks the calling convention.

Proper Fix We are not sure why reserved registers are still
saved/restored. But making sure reserved registers for
shadowing non-callee-saved registers are not restored
should solve the problem.

Lesson The calling convention should be taken into consid-
eration when selecting registers to be reserved and used
for other purposes.

3.4.4 Conditional BrancheswithTargetOut-of-Range.

Cause nZDC inserts a large number of instructions, which
sometimes pushes the branch targets beyond the range of
the conditional branch instructions.

Example From gcc, in the generated assembly file:

// Original conditional branch to 14573 lines later,
// out of the +/-32KB range
tbnz w8, #5, .LBB1358_421

Error Manifests as a compilation error during object file
generation such as Error: conditional branch out
of rangewith gcc or fatal error: error in backend:
fixup value out of range with clang.

Workaround Workaround bymoving the nZDCpass before
the branch relaxation pass in LLVM. Branch relaxation
pass replaces out-of-range conditional branches with a
direct branch instruction to original taken target with an
inserted conditional branch before it that jumps to the
original not-taken target with inverted condition. But this
does not completely fix the problem because some con-
ditional branches still have targets out-of-range despite
putting the nZDC pass before the branch relaxation pass.

Proper Fix We are not sure why some conditional branches
with a target out-of-range are not fixed by the branch
relaxation pass. But applying the same logic to transform
these conditional branches to direct branches should solve
the problem. Note that this is in the absence of control-flow
checking, which if implemented (section 3.2) would be
affected by the branch-relaxation pass due to the changes
in conditional branches.
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Lesson Late transformation does not affect previous opti-
mizations, but may still need some of those optimizations
to work.

3.5 Other Implementation Oversights
We faced several other barriers to successful execution, where
the fixes were simpler or with less profound insights, which
we summarise briefly here.

Duplicate label inserted, symbol defined twice. The
instruction-duplication pass failed to filter out some labels,
duplicating them along with other instructions. We added a
manual fix to detect duplicated labels and remove the copies,
leaving only the duplicated label-free instruction behind.

Incorrect register substitution in some inserted loads.
nZDC checks for errors in stores by inserting matching loads,
and substitutes the original register holding the memory-
access address by the matching redundant register. However,
register substitution is incorrect/missing for some inserted
load instructions, particularly when used in pre/post-indexed
loads (which modify the value in the register used for base
address). This results in false positives. We fixed this through
correcting the operand indexing on register substitution for
pre/post-indexed loads in LLVM.

Incomplete duplication of store instructions. Similar
issues appear on pre/post-indexed stores, where the checking
load to verify the store is missed out. In addition to false
positives, this results in false negatives, as while there is still
a check of the shadow, the original’s value comes from the
previous computation rather checking the value in memory
is correct. We added a workaround to reinsert this checking
load for pre/post-indexed stores to avoid false positives8.

Missing register-value copying on floating-point/vector
registers. Floating-point(FP)/vector registers also have reg-
isters reserved as redundant registers and their values can be
used to calculate integer register values. However, the nZDC
implementation is missing the register-value copy to set up
these registers, presumably because these cases did not ap-
pear in Mibench. These manifest as false positives, because
the shadows do not match. We fixed with a register-value
copy from original to shadow floating-point/vector registers.

3.6 Miscellaneous Problems
This section describes problems not related to nZDC scheme
but exists in the repository [19].
8Some other store instructions are still missing the following load insertion,
resulting in incomplete checking, so false negatives. To do this properly, all
the different types of store instructions in the machine instruction represen-
tation should have a case in covertSTtopcodeToLoadwith a corresponding
load instruction identified. This requires coverage of an exhaustive list of
cases, because stores of different sizes, source operands types, extensions
etc. are each a different machine instruction. To get the substitution done
properly, for each of those instructions, one would also need to verify what
is the index of the source operand with the base memory address.

Cannot return unique_ptr as bool with gcc-12. When
trying to compile the repository LLVM [19] with gcc-12, we
encountered a type error where a unique_ptr type variable
is being returned as a bool type. This is due to an update in
gcc which made this illegal, and the vanilla LLVM 3.7.1 also
has the same problem (any old code may).

This is fixed by adding a static cast of the return variable
MDMap to bool before returning it in function hasMD from
file llvm/include/llvm/IR/ValueMap.h.

Segmentation fault during compilation of assembly.
We initially encountered a segmentation fault when compil-
ing with the repository LLVM [19] even without enabling
the nZDC options. The LLVM stack dump showed Running
pass ‘Machine Instruction Scheduler’ on function
‘XXX’ with XXX being the first function in the file.

After comparing against the vanilla LLVM 3.7.1 code, we
found that this is due to the modified compiler [19] moving
member NumOperands of class MachineInstr to before an-
other member MCID, which then somehow resulted in MCID
becoming null. We fixed this by reverting the position of
NumOperands to after member Operands (which is also after
MCID), and changing the instance of direct access to Num-
Operands in function checkStoresnZDC to using the getter
method getNumOperands.

4 Working Status on Benchmarks
After fixing or working around the problems found in the
implementation [19] for ARMv8 AArch64 ISA, we applied
nZDC to more complex and widely used SPEC2006 and PAR-
SEC benchmarks. Table 1 shows the working status of each
tested benchmarks, benchmarks not listed are not tested.
We have tested all 12 SPEC2006 integer benchmarks using
ref input (only the first where multiple exist) and 6 PAR-
SEC benchmarks using simmedium input. We execute on an
80-core AArch64 Neoverse-N1 server with 512GB RAM.

The linked standard libraries used do not have the nZDC
transformation applied, only benchmark code compiled from
source has nZDC applied. This follows the methodology of
the original paper [6], which also did not apply protection to
libraries, despite us finding several compatibility challenges
needing workarounds (section 3.3). Most tested benchmarks
can run to completion with the correct output. Benchmarks
gcc and xalancbmk show a compilation error related to con-
ditional branches having out-of-range targets (see our dis-
cussion on this problem and our solution attempts in sec-
tion 3.4.4). Benchmark gobmk runs to completion but has an
error in the generated output, due to the transformation in-
correctly altering program behaviour. Benchmark omnetpp
runs into a segmentation fault due to exception handling
taking execution to linked-library code and back without
going through the code immediately after function return
(see our discussion on this problem in section 3.3.3).
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Table 1. Working status of tested benchmarks.

SPEC2006 integer PARSEC
Benchmark Status Benchmark Status
perlbench Works blackscholes Works
bzip2 Works dedup Works
gcc Compilation error fluidanimate Works
mcf Works freqmine Works

gobmk Output error streamcluster Works
hmmer Works swaptions Works
sjeng Works

libquantum Works
h264ref Works
omnetpp Segmentation fault
astar Works

xalancbmk Compilation error

Figure 9 shows the slowdown of nZDC on the working
benchmarks compared to the execution of a binary without
nZDC. The baseline binary without nZDC is compiled with
vanilla LLVMversion 3.7.1, which is the version of LLVM that
the nZDC implementation [19] is based on9. The overheads
of SPEC CPU2006, at just over 2× geomean, are comparable
to the original paper’s [6] Mibench average of 2.1×. PARSEC
sees slightly lower overheads, perhaps due to an increased
proportion of floating-point instructions10

5 Related Work
Software error detection techniques have used redundancy
at different levels. nZDC [6] is a software error detection
techniques using instruction-level duplication. One of the
first works in this area was EDDI [24] where all instructions
including stores are duplicated, which resulted in not only
high performance overhead but also doubled the memory
footprint. SWIFT [26] improved upon EDDI by assuming
that the memory subsystem is protected with ECC and does
not duplicate stores, removing the memory overhead. nZDC
improves on the vulnerabilities of SWIFT, and follow up
works [7, 9] improve on the limitations of nZDC. To avoid
9The compiler pass as stands would require non-trivial porting effort to the
latest LLVM. However, users of our extensions can also use version 3.7.1 to
do reruns of nZDC as we have. We also believe that the insights here will
be just as valuable to anyone porting this codebase to future versions; none
of the issues we uncover are particularly related to assumptions in LLVM
3.7 (as they are ISA- or ABI-related, not compiler-related).
10The overheads here are intended as a lower bound; true overheads may
be slightly higher due to coverage checks not completely fixed, since our
goal was to get the technique up and running. 1) As in the original work [6],
standard libraries linked to our nZDC binaries do not have nZDC instru-
mentation, and while SPEC spends negligible time in libraries, PARSEC is
in libraries for around 10% of baseline execution. 2) Conditional-branch
checking is missing (section 3.2), and 3) the checking load insertion may
still be missing on some stores (as explained in section 3.5, we have only
ensured that the pre/post-indexed ones have the checking load).
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Figure 9. Slowdown of benchmarks with nZDC applied
compared to a baseline without nZDC.

the high performance overhead and still keep high (but not
complete) coverage, some works [11, 22] leverage the flex-
ibility of instruction-level duplication to perform selective
instruction duplication where only some critical instructions
that are likely to generate errors are duplicated.

Other techniques use thread/process-level duplication [17,
20, 23, 25, 27, 30–32], where the duplicate execution hap-
pens on a different thread/process instead of being duplicate
instructions inserted sequentially. The redundant threads
typically run in parallel to the original execution, showing
lower performance overhead compared to instruction-level
duplication and have their own set of architectural registers.
However, the check is also at a more coarse granularity with-
out the flexibility of instruction-level duplication and with
longer detection delay.

6 Conclusion
This paper has analysed the challenges that the only current
open-source software error detection system, nZDC, faces
when applied at the scale of major benchmarks. We hope that
it serves to inspire new research in this field that is rapidly
taking on increased relevance due to widespread reports of
real-world faults [4, 10, 15]. To be clear, the fixes we generate
are not a complete solution, nor do we intend to produce
one in future: our goal here was initially to use this tech-
nique as a comparator technique for a rival mechanism in a
very different part of the design space. However, we thought
the things we found out in doing so were too interesting to
not give proper analytical treatment. Our modified nZDC is
sufficient for performance analysis, e.g. to use as a target to
benchmark against, for new researchers in both hardware
and software-based fault tolerance to compare against and
improve. We indicate in many places where false negatives
and false positives are not entirely fixed, and hope these
and our hints at solutions provide ample ideas for future
compiler researchers and engineers to provide more compre-
hensive solutions, as well as valuable insights into pitfalls
when working in fault tolerance more generally.
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