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Abstract

This paper presents a novel compiler directed technique
to reduce the register pressure and power of the register file
by releasing registers early. The compiler identifies regis-
ters that will only be read once and renames them to differ-
ent logical registers. Upon issuing an instruction with one
of these logical registers as a source, the processor knows
that there will be no more uses of it and can release the reg-
ister through checkpointing. This reduces the occupancy of
our banked register file, allowing banks to be turned off for
power savings.

Our scheme is faster, simpler and requires less hard-
ware than recently proposed techniques. It also maintains
precise interrupts and exceptions where many other tech-
niques do not. We reduce register occupancy by 28% in a
large register file and gain in performance too; this trans-
lates into dynamic and static power saving of 18%. When
compared to state-of-the-art approaches for varying regis-
ter file sizes, our scheme is always faster (higher IPC) and
always achieves a greater reduction in register file occu-
pancy.

1. Introduction

The register file in a modern superscalar processor fa-
cilitates out-of-order execution by eliminating false (WAR
and WAW) dependencies between instructions. However,
it is one of the most energy-consuming structures within
the processor [1, 2] with a high latency and is a hotspot
whose cooling system in future processors will increase
non-linearly in cost compared to the amount of heat re-
moved [3].

Previous research has noted that registers are idle for
many cycles after their last use, before being placed on the
free-list to be assigned to a new instruction [4]. This is be-
cause a register cannot be released until the instruction re-
defining its logical register commits, in order to maintain a
precise processor state in the event of an exception, inter-
rupt or branch mis-prediction occurring.

To remove this register idle time, early register releasing
has been proposed [4, 5] which puts a register back on the
free-list before the commit of its redefining instruction. Al-
though the main focus of previous work has been to increase
performance, releasing registers early can also save power.
This can be achieved either through the use of a smaller,
more power-efficient register file, or by using a banked reg-
ister file where banks can be turned off for power savings.

However, hardware techniques for early register release
all suffer from the fact that, without speculative releases,
they must wait for the redefining instruction to enter the re-
order buffer so that they can be certain that no more instruc-
tions will need to read the value.

This paper proposes compiler directed early register re-
lease. Its advantage is that frequently the compiler knows
exactly when the last use of a register is and can guaran-
tee that it will not be used again, allowing registers to be
released much earlier. Our scheme employs data-flow anal-
ysis on pre-linked assembler code to determine the registers
that are only read once and renames them to different log-
ical registers. We focus on single-use registers as they oc-
cur frequently and their early release can be easily imple-
mented in hardware. The processor, upon dispatching an in-
struction with one of these logical registers as its source,
knows that this will be the last, indeed the only, use of the
register and can release it early.

Our early releasing technique also has the advantage that
we can release registers after the issue of the last user,



rather than needing to wait for it to commit. This means
that the registers released early experience far fewer cycles
of idle time after their final read, allowing more efficient
use of the available resources in the register file. This leads
to increased IPC and much reduced register pressure and
static/dynamic power. Furthermore, our technique recovers
the precise processor state in the event of an interrupt or ex-
ception, a feature lacking in many hardware approaches.

The rest of this paper is structured as follows. Section
2 discusses previously proposed techniques to optimise the
register file and other early releasing schemes. Section 3
shows an example of our proposal, then section 4 presents
our compiler analysis. Section 5 describes our microarchi-
tecture and the checkpointed register file whilst section 6
describes our early releasing algorithm. Section 7 compares
our results with the state-of-the-art and finally section 8 con-
cludes this work.

2. Related Work

The centralised register file [6] has been the target of
many previous approaches whose aims have been to reduce
its power consumption, delay, or simply make more effi-
cient use of it. Many schemes take advantage of short-lived
values to reduce each register’s idle time.

Ergin et al. introduced the checkpointed register file to
implement early register releasing with the ability to re-
lease before the redefining instruction was known to be non-
speculative [5]. This is done by copying its value into the
shadow bitcells of the register where it can be accessed eas-
ily if a branch mis-prediction should occur. This register
file is the one we use and it is described in further detail
in section 5.1. Ergin et al. then present two schemes to re-
lease short-lived registers early, either at the commit of the
defining instruction or the dispatch of the redefiner provided
that all consumers have started execution. The main prob-
lem with these schemes (as we show in section 7) is that
they cannot release registers until the redefining instruction
has dispatched, and therefore been renamed. This may be
many cycles after the issue of the last consuming instruc-
tion, cycles where potential benefits are lost.

Another two techniques to release registers early come
from Monreal et al. [4]. The first scheme waits for a re-
defining instruction to become non-speculative before re-
leasing the previous version of its logical register. The sec-
ond adds a new queue with multiple levels corresponding to
the unconfirmed branches in the reorder buffer (ROB). Reg-
isters are released when the redefining instruction becomes
non-speculative and the last instruction using the physical
register has committed. On a branch mis-prediction the rel-
evant levels in the release queue are squashed. The down-
side of these techniques is that no recovery mechanism is in
place to retain values released early. In the event of an ex-
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ception or interrupt it would be impossible to reconstruct the
precise processor state. They also need to add many large
structures to the processor so that the status of redefining
and last-use instructions can be maintained, increasing the
complexity of the pipeline.

There have been attempts at using the compiler to help
with early register releasing by indicating the last use of
a register. Lo et al. present five schemes for SMT proces-
sors that use a mixture of OS and compiler support to re-
lieve register pressure [7]. Unfortunately, these schemes do
not allow for precise exceptions or interrupts at all either.

Dead value information (DVI) is introduced my Martin
et al. [8] which is calculated by the compiler and passed
to the processor to help with early register releasing. DVI
can be passed via new explicit DVI (E-DVI) instructions
which contain a bit-mask indicating the registers released,
or implicitly on certain instructions. Procedure calls and re-
turns use implicit DVI (I-DVI) such that when a dynamic
call or return is committed the caller-saved registers are re-
leased early because the calling conventions implicitly state
that they will not be live. The scheme we present in this pa-
per also releases caller-saved registers at procedure bound-
aries using I-DVI. Once again, with this scheme by Martin
et al. precise exceptions and interrupts are not maintained.

González et al. try to reduce the register idle time that oc-
curs whilst defining instructions are waiting to execute by
proposing virtual-physical registers [9]. They allocate a vir-
tual tag to an instruction as its destination at rename and de-
lay the allocation of a physical register until writeback.

Hu and Martonosi propose the Value Ageing Buffer to
take advantage of short-lived values [10] whilst Savransky
et al. consider lazy retirement from the reorder buffer [11].
Other proposals have tried to reduce the number of ports for
power reduction [12, 13, 14] or have banked the register file
[15, 16].

Other works have used hardware or software techniques
to reduce the number of instructions entering the issue
queue, indirectly saving power in the register file [17].
There have also been attempts to exploit narrow-width
operands [18, 19] or to bank the register file [20, 15] to
make better use of resources. The Cherry scheme [21] at-
tempts to recycle all instruction resources early, rather than
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Figure 2. Passage of three instructions through pipeline and the state of the register file. Normally
p3 is not released until c commits. We do this much earlier when b issues as this is the last use of
p3. Other techniques must wait for c to dispatch because this redefines r1.

just the registers used.
However, these techniques often add extra hardware

which adds complexity to the processor, whilst not tack-
ling the root cause of register pressure - registers being idle
for long periods of time.

3. Motivation

We wish to use early register releasing to reduce the
number of physical registers occupied at any one time i.e.
register pressure. This allows unused physical registers to be
turned off, saving power. This technique can also be used to
design processors with smaller register files without affect-
ing performance.

To illustrate how our approach works, consider the ex-
ample in figure 1 where, to aid readability, we have shown
reads and writes to registers using pseudo-code. This exam-
ple shows a simple assembly code fragment (figure 1(b))
where the value 6 is written into register r1 in instruction
a, read in instruction b and then a new value 7 is assigned
to register r1 in instruction c some time later. In the normal
baseline scheme (figure 1(a)) the assembly program register
is allocated by the processor at runtime to a hardware phys-
ical register, say p3, and the value 6 written to it by instruc-
tion a and read in instruction b as before. When r1 is writ-

ten to again, the baseline assigns a new unoccupied or un-
allocated physical register to r1, say p4, so as to eliminate
the anti-dependence from b to c and the output-dependence
from a to c, the intention being to prevent false storage
based dependences slowing the program down. So, if in-
struction b were delayed for any reason, (e.g. waiting for
another operand or functional unit contention), the out-of-
order superscalar hardware could continue to execute c and
later dependent instructions, without stalling.

However, if at runtime the read of r1 occurs before the
write in instruction c, then there is no need to allocate a new
physical register and the same physical register p3 could be
reused, as is the case in our scheme (figure 1(c)) . The reg-
ister r1 is marked as being single-use so as soon as it has
been read, the physical register it occupies is available for
reuse, reducing the number of registers needed and poten-
tially saving power. We apply compiler analysis to the pre-
linked assembly code to determine which registers are used
only once before redefinition. We then rename all registers
such that single-use registers have names which the proces-
sor knows are reserved for single-use and the physical regis-
ter associated with it can be immediately released after be-
ing used. We focus on single-uses as they frequently occur
and their early release is easy to support in hardware.

As we examine an out-of-order pipelined processor, we



consider what happens to the state of the registers as instruc-
tions pass through the pipeline as shown in figure 2.

Baseline Case The diagram in figure 2(a) shows the pas-
sage of the instructions through the pipeline whilst 2(b)
shows the state of the baseline physical register file where
we show a five stage pipeline to aid presentation. Physi-
cal registers are allocated when a defining instruction dis-
patches at the beginning of the pipeline and are released at
the time of the redefining instruction’s commit. So, at point
1, p3 is allocated to logical register r11. At point 2 the
value (6) produced by a is written into the physical regis-
ter p3. At point 3 it is read for the last time (denoted by
the shaded box) as b issues. At point 4, possibly much later,
c dispatches and so register p4 is allocated. The value (7)
generated by c is written into the physical register p4 at
point 5. Finally, at point 6, in the baseline case the register
holding the previous version of r1, (p3) is released. The
physical register p3 needlessly retains the value of r1 from
point 3 to 6 in the baseline case.

Our Scheme In our approach (figure 2(c)) the same events
happen at points 1 and 2, i.e. register p3 is allocated to r1
and then the value (6) is written in at the writeback stage.
However, at point 3, once instruction b has read p3, it is
immediately released allowing it to be reused later as it is
known that there are no other consumers of this value.

Although, the value will no longer normally be used,
rather than discarding it, it is copied into a cheap backup
storage using the checkpointed register file described in [5].
So, if there were an exception or mis-speculation between
instruction b and c the value of register r1 could retrieved
from the slow checkpointed store. The cost of recovering
from speculation by flushing the pipeline or by handling an
exception completely amortises any cost due to recovering
the old value of r1

Continuing with our example, at point 4, the register is
allocated to the now free physical register p3 which is writ-
ten to at point 5 with the value 7. At point 6 the old value
of r1 will never be needed as its new value has commit-
ted so the checkpoint just needs to be cleared. In reality this
does not involve anything more complicated than marking
the checkpoint invalid.

Thus we are able to release registers early and guarantee
correct behaviour in the case of mis-speculation or excep-
tion handling with the support of a small amount of check-
pointing. If p3 and p4 were in different register banks, p4
could be gated off for the entire instruction sequence sav-
ing static and dynamic power.

Other Schemes Other early releasing schemes would re-
lease p3 later than we propose. Ergin et al. [5] release when

1 The logical register that each physical register corresponds to is not
actually kept in the register file itself, but as a pointer in the reorder
buffer - it is merely shown for clarity.

the redefining instruction (c in this example) has entered
the pipeline, the original defining instruction has commit-
ted and all consumers have read the value. This is at point 4
in our diagram. Monreal et al. [4] release when the redefin-
ing instruction becomes non-speculative and all consumers
have read the value. This would occur somewhere between
points 4 and 6 in our diagram.

4. Compiler Analysis

This section describes the analysis to identify and re-
name registers single-use registers that can be released
early. Our analysis is based on simple data-flow and live-
ness analysis with graph colouring. The first stage analyses
the assembly program a procedure at a time to determine
single-use registers. The next stage determines the number
of registers that can be safely used as early release regis-
ters throughout the lifetime of the program. This informa-
tion is passed to the hardware via a single special NOOP at
the beginning of the program. Single-use registers are then
renamed to use the early release registers wherever possi-
ble.

4.1. Single-use Identification

First of all, we construct the control flow and data de-
pendency graphs then rename all registers to virtual regis-
ters to distinguish between multiple definitions and uses of
the same hard register.

Using the control flow and data dependency graphs and
liveness information, it is a simple task to recognise the reg-
isters used once, the single-use registers.

To determine whether a register is single-use we con-
sider all its uses in the data dependency graph, their suc-
cessor nodes in the control flow graph and the registers live
into them. Each node in the control flow graph is an instruc-
tion. If the register we are considering is live into any suc-
cessor of one of its uses then it cannot be a single-use regis-
ter. This is because it will be used again after that use along
some control path and hence is used more than once. If none
of the successor nodes of its uses have the register in their
live-in set then it is only used once.

If we define uses[R] as the set of uses of register R in
the data dependency graph and liveIn[N ] as the set of vari-
ables live immediately before a node N , then R is single-
use if the following condition holds:

∀U ∈ uses[R], ∀S ∈ succs[U ] : R /∈ liveIn[S]

4.2. Register Allocation

The first task of our register allocator is to recreate the
interference graph which is then coloured with registers to
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get our final code. This graph colouring can never introduce
spill code because we have the same number of hard regis-
ters to allocate to as we did before we renamed them to vir-
tual registers.

We use the standard graph colouring technique described
by Appel [22] which creates a set of pairs of nodes (vir-
tual registers) that share an edge in the interference graph.
It also records the number of edges each node has, its de-
gree.

The next stage is to determine the order in which nodes
will be coloured: nodes with high degrees are first. We use
a greedy algorithm to select the node with the highest de-
gree and colouring proceeds from a fixed order of registers.
Single-use registers are allocated from one end of the or-
dering, multi-use from the other. Registers close to the end
of the ordering are preferred so as to keep the total num-
ber used to a minimum.

These two ordering allocations can, of course, meet and
overlap. In this case the register is considered a multi-use
register to guarantee correctness. We record the maximum
number of multi-use registers ever needed across the entire
program. From this, we can safely determine the number of
early-release registers. Our experiments show that the entire
ordering is never needed for multiple-use values and that

there is always room for at least 5 single-use early-release
registers for the Spec2000 integer benchmarks and Alpha
ISA.

4.3. Example

Figure 3 shows an example of the whole process of
single-use register identification and register allocation. The
original instructions are shown in figure 3(a) and again af-
ter the registers have been renamed to virtual registers in
figure 3(b).

After single-use registers have been identified, the regis-
ter interference graph is constructed as shown in figure 3(d)
where the virtual registers are annotated with an S if they
are single-use or M otherwise (i.e. they are multi-use). For
example v1 is a multi-use register as it is used in instruc-
tion b and cwhile v4 is only used in instruction e. As can
be seen, register v2 interferes with all registers so has de-
gree 3. There is no other interference so the others have de-
gree 1. Figure 3(e) shows the ordering that is used to al-
locate registers. Single-use registers are allocated from the
right, whereas multi-use registers are allocated from the left.

Colouring proceeds with the highest degree first, so v2 is
allocated a hard register from the multi-use end. It becomes
r1. All other nodes have degree 1 so we allocate in lexical
order. Virtual register v1 is multi-use and cannot be r1 be-
cause of the interference with v2, so it becomes r2. Virtual
register v3 is single-use so gets a hard register from the op-
posite end of the ordering, r23. Likewise, v4 is single-use
and so is also allocated from this end. In this case there is no
interference with v3 so it can also be allocated to r23. The
final code after allocation of all four registers can be seen in
figure 3(c). Only 1 single-use register is needed here (r23)
and the special inserted NOOP containing the value 1, in-
forms the hardware of this.

4.4. Library Procedures and Register Control

As we do not compile any of the library procedures, all
early releasing is stopped on entry to a library routine. This
is achieved by inserting the special NOOP instruction with
the value 0 turning all single-use registers into multi-use
registers.

5. Microarchitecture

Our processor is an out-of-order superscalar with a cen-
tralised architectural register file. Decisions on early releas-
ing are taken by the processor depending on the destination
logical register number and the state of the register file when
the last user issues. This section describes the changes made
to each structure within the processor to allow early releas-
ing to proceed correctly.
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5.1. Register File

To allow early register releasing and still keep a con-
sistent state in case of exceptions and interrupts, a check-
pointed register file [5] is used. Here, a pair of cross-coupled
inverters are added to every bitcell which are connected to
the main bitcell using pass transistors. Two extra wires are
needed to signal a store from the main cell’s value into the
shadow bits (a Checkpoint line) or to copy from the shadow
cell into the main (Recover). An overview of the whole bit-
cell can be seen in figure 4 with arrows showing data trans-
fer on a checkpoint and recovery.

The area overhead of the shadow bits is independent of
the number of ports. For our register file with 16 read and
8 write ports, the area overhead is 19.4%. The delay over-
head is less than 0.5% since no extra gate capacitance is
added to the lines [5]. The extra width and height of the
checkpointed bitcell increases the wordline and bitline en-
ergy consumption, but this affects the energy dissipated in a
read or write by only a very small amount. This has been ac-
counted for in our experiments.

In order to keep the additional static power dissipation
to a minimum we have employed a super-drowsy circuit for
the shadow bitcells [23]. When turned on, the supply volt-
age arrives through a wide-channel transistor, but when off,
a long-channel transistor supplies a much lower supply volt-
age to preserve the state of the bitcell. With a drowsy volt-
age of 250mV the leakage energy of the circuit can be re-
duced by 98%. We apply this technique only to the check-
pointed bits where a fast access time is not needed.

Each register needs to keep track of whether there is a
valid value held in its shadow bits. We simply add a sin-
gle bit to each register called the checkpointed bit which in-
dicates that the value checkpointed is needed.

A further optimisation we make is to bank the register
file using eight registers per bank. When a bank holds no

valid data, even in checkpoints, it can be turned off for dy-
namic and static power savings.

5.2. Reorder Buffer

The reorder buffer keeps track of the instructions be-
tween dispatch and commit and so keeps information about
the instructions’ source registers and their early release
status. To allow our technique to work the reorder buffer
must store two extra bits per source register. The first is an
early release bit which is checked when the instruction is-
sues to determine whether to release early or not. The sec-
ond is a did early release bit which indicates whether the
source register was released early or not.

5.3. Map Tables

Both the register dispatch map table and the register re-
tirement map table need to keep track the status of the early
releasing. The dispatch map table needs to record whether a
logical register is allowed to be released early whereas the
retirement map table, updated at commit, needs to remem-
ber whether the correct value for a logical register is held in
the main physical register pointed to, or its shadow cells.

We augment the register dispatch map table with a bit
for every entry, called the early release bit, which indicates
whether the logical register is allowed to be released early.
These can be set through the use of the special NOOP if the
number of one-use registers should change, as is the case
for foreign code (see section 4.4).

For the register retirement map table we add a check-
pointed bit to each entry which is used in the event of an
interrupt or exception, as explained in section 6.2.

6. Early Releasing

This section describes how early releasing works within
the processor using the additions to each structure described
in section 5. The main algorithm is presented first, then the
way in which branch mis-speculations, interrupts and ex-
ceptions are handled. A summary is given in figure 5.

6.1. Normal Execution

When an instruction is dispatched to the issue queue,
register renaming takes place as usual. For each source
operand, the early release bit is copied from the dis-
patch map table to the new ROB entry. If the instruc-
tion’s source registers are the same logical register,
only one early release bit should be set in the ROB en-
try to avoid early releasing twice later on.

After a defining instruction has finished execution its de-
pendents can issue. This involves them reading their source



registers as usual (or obtaining the data through the bypass
network). However, if the early release bit of a source reg-
ister is set in the ROB then the register can be released early.

A register’s checkpointed bit can be read in parallel to
reading the data held in the main part of the register. If this
is unset then the register can be checkpointed in the follow-
ing cycle by copying the value it contains into the shadow
bits, putting the register identifier onto the free-list to be
used again and setting the checkpointed bit. In this case, the
did early release bit in the consumer instruction’s ROB en-
try is set to indicate a successful early release.

When an instruction commits, the previous version of its
logical destination register is released. If the checkpointed
bit in the register retirement map table is set then only the
register’s checkpointed bit needs to be cleared because the
register was released early. If unset then the register should
be released in the normal way.

An instruction’s source registers are also consid-
ered when it commits. The did early release bits in the
instruction’s ROB entry are copied to the relevant check-
pointed bit in the register retirement map table to indi-
cate whether the register’s value can be found in the main
or shadow bits of the physical register.

6.2. Mis-predictions, Interrupts and Exceptions

On a branch mis-prediction some instructions that re-
leased registers early may be squashed. By consulting the
did early release bits of instructions being squashed, reg-
isters that were released early and checkpointed can be re-
stored so that the correct user can read the right data.

When an interrupt or exception occurs the pipeline is
emptied. Before the interrupt or exception handler can be
invoked, all logical registers must be represented as non-
checkpointed, physical registers in order to maintain a pre-
cise processor state. At this time there may be some reg-
isters that are checkpointed and of these, some may have
other valid values in the main register bits. These need mov-
ing so that the checkpointed values can be safely restored.

To deal with this, the processor consults the retirement
map table to determine registers that are in the main bitcells
blocking checkpointed values. It then issues a MOV instruc-
tion for each one to place them in different physical regis-
ters. The checkpointed values can then be safely restored
before executing the interrupt or exception handler. This
ensures no registers are checkpointed when control passes
over. Although this may take several cycles longer than in
the baseline case, the infrequent nature of interrupts and ex-
ceptions compared to the savings gained from our technique
make this worthwhile.

Dispatch

• Copy the early release bit from the map table to the
ROB entry for each source logical register

Issue

• Read the checkpointed bit of each source physical reg-
ister in parallel with reading the data

• If this checkpointed bit is unset and the early release
bit is set in the ROB entry, the following cycle the regis-
ter can be checkpointed

• If checkpointing occurs, set the register’s checkpointed
bit and the ROB’s did early release bit

Commit

• Release the previous version of the destination regis-
ter or remove the checkpoint, depending on the check-
pointed bit in the retirement map table

• Copy the did early release bit of each source to the re-
tirement map table’s checkpointed bit

Figure 5. Main early releasing events

6.3. Impact on ISA

Our technique has no impact on the ISA. The number of
early release registers can be fixed on a per-program basis
through the use of a special NOOP instruction (which sets
the checkpointed bits in the dispatch map table) and need
not be changed after that, except for calls to foreign code.

7. Results

This section describes the results of our early register re-
leasing scheme in terms of performance, power and register
file occupancy. We evaluate how our early releasing scheme
affects the performance (in terms of IPC) and power of the
register file. We have also implemented two hardware tech-
niques, those of Monreal et al. [4] and Ergin et al. [5], and
the software technique by Martin et al. [8]

For the scheme by Monreal et al. we chose their extended
scheme and called this Monreal. Their paper is described in
section 2 but, to summarise, this technique releases registers
when the redefining instruction becomes non-speculative
and the last user commits, whichever is the latter.

From the paper by Ergin et al. we chose their combined
scheme and called this Ergin. This is taken from the paper
that proposed the checkpointed register file. The technique
works by releasing a register at commit of the original defin-
ing instruction or the dispatch of a redefiner, whichever is
the latter, providing all consumers have started execution.

Finally, from the paper by Martin et al. we chose their
scheme which inserts E-DVI instructions before procedure
calls to release registers and also releases caller-saved reg-
isters upon the commit of each call and return.

We do not have precise details for the power consumed
by the three comparison techniques, especially Monreal be-
cause this introduces a number of large additional struc-



Table 1. Processor configuration

Parameter Configuration

Fetch, decode and 8 instructions
commit width
Branch predictor Hybrid 2K gshare, 2K bimodal

1K selector
BTB 2048 entries, 4-way
L1 Icache 64KB, 2-way, 32B line, 1 cycle hit
L1 Dcache 64KB, 4-way, 32B line, 2 cycles hit
Unified L2 cache 512KB, 8-way, 64B line,

10 cycles hit, 50 cycles miss
ROB size 128 entries
Issue queue 80 entries
Int register file 112 entries (14 banks of 8)
FP register file 112 entries (14 banks of 8)
Int FUs 6 ALU (1 cycle), 3 Mul (3 cycles)
FP FUs 4 ALU (2 cycles), 2 MultDiv

(4 cycles mult, 12 cycles div)

tures into the processor. Therefore we compare the register
file occupancy of our technique, Monreal, Ergin and Mar-
tin, because the lower the occupancy, the more banks can be
turned off meaning less power is consumed.

7.1. Compiler, Simulator and Benchmarks

Our compiler analysis was written as a pass in Machi-
neSUIF [24] from Harvard. We used Wattch [25], based on
SimpleScalar [26], to implement our processor whose con-
figuration is shown in table 1.

We chose to run the Spec2000 integer benchmark suite,
except for eon because it is written in C++ which SUIF can-
not directly compile. We did not use any of the floating point
benchmarks as SUIF cannot compile programs written in
Fortran 90 or those with language extensions.

We ran the benchmarks with ref inputs for 100 million
instructions, skipping the initialisation part and warming the
caches and branch predictor for 100 million instructions.

7.2. Evaluation

Figure 6 shows the normalised IPC for each benchmark.
On average (denoted by the bar labelled Compiler), there
is a small increase in performance of about 0.3%. Some
benchmarks experience a very small drop in performance
which is due to changes in the branch predictor. Our tech-
nique dispatches a slightly greater number of instructions
than the baseline (about 0.2%), all of which are along mis-
speculated branches. Our branch predictor is updated dur-
ing the writeback stage so it gets slightly polluted by the
updates from these extra mis-speculated instructions. How-
ever, for most benchmarks there is a very small increase in
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Figure 7. Normalised register file occupancy

performance due to lower register pressure. For compari-
son, the IPC of Ergin, Monreal and Martin is shown too.

The register file occupancy of our technique is shown in
figure 7. There is an average reduction of 28% across all
the benchmarks, with almost all achieving a 25% reduction.
Again, in this figure we show the register file occupancies
for Ergin, Monreal and Martin. The average occupancy re-
duction for Ergin is 8%, for Monreal is 4% and for Martin is
11% showing our technique performs much better. Through
the implementation of a hardware oracle that releases reg-
isters immediately after their last use, we find that our tech-
nique achieves 80% of the available reduction.

The normalised dynamic and static power of our tech-
nique is shown in figures 8(a) and 8(b) respectively. The
average dynamic power saving is 18%, although gcc and
perlbmk achieve a 24% saving. There is a similar reduction
in the static power of the register file too. Again, the aver-
age is an 18% saving with almost all benchmarks achieving
a 15% reduction.
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Figure 8. Normalised dynamic and static register file power for our compiler technique

7.3. Register File Size Sensitivity

Although our technique gives a slight gain in perfor-
mance, it is really the power savings that it can achieve
which make it useful when the register file is large. These
savings come about because our technique reduces the av-
erage number of registers needed by each program. Put an-
other way, using a smaller register file and our technique we
could run each benchmark without losing performance but
getting the power savings and decreased access times that
come from a smaller register file.

We ran our benchmarks with register files decreasing in
size from 112 (as in our original configuration) to 40. In the
last configuration, for the baseline, only 8 registers can be
used at any time because the others are storing the commit-
ted values of the 32 architectural registers. As a compari-
son, we also simulated early releasing techniques proposed
by Monreal et al. [4] and Ergin et al. [5].

Figure 9(a) shows the IPC for the baseline (called Base-
line), the technique by Monreal et al. (Monreal), the tech-
nique by Ergin et al. (Ergin) and our own compiler directed
scheme (Compiler). As the register file size decreases, so
does the IPC, although our scheme is always better than the
others. In fact, with a register file size of only 88 entries the
IPC of our technique is still better than the baseline with 112
entries. The Monreal and Ergin schemes do manage to in-
crease the IPC of the baseline, especially for small register
file sizes, but our technique is consistently better. For exam-
ple, when there are only 40 registers available then we in-
crease the IPC from 1.1 to 1.7, an increase of 56%, whereas
Ergin manages an increase of 20% and Monreal only 11%.
When there are 64 registers, we increase by 14% (from 1.9
to 2.1), Ergin increases by 7% and Monreal by 3%.

We could not get any power results for the Monreal tech-
nique so instead decided to look at the average register file

occupancy. This directly affects the amount of static and
dynamic power dissipated and is thus a good indicator of
how much power would be saved. The average occupancy
of each technique for each register file size is shown in fig-
ure 9(b). Our technique is able to reduce register pressure,
maintain higher IPC and allow greater power savings across
all configurations.

8. Conclusions

We have presented a novel scheme to dynamically re-
lease registers early using the compiler for support. Allow-
ing registers to release early decreases the occupancy of the
register file and increases performance. In fact, our scheme
with 88 registers is still faster than the baseline with 112.

We bank our registers and turn off a bank when there are
no valid registers or checkpointed values held in it, giving
both static and dynamic power savings. Results from our ex-
periments show average power savings of 18% with a very
slight performance increase.

We have compared our technique to two recently pro-
posed hardware approaches and found that our scheme
shows a larger increase in performance and larger decrease
in register file occupancy than either of them. In summary,
our technique is faster, saves more power and requires a
much lower number of registers than state-of-the-art ap-
proaches, and relies on less complex hardware. Future work
will examine early-release of multi-use registers.

Acknowledgements

This work has been partially supported by The Span-
ish Ministry of Education and Science under grants
TIC2001-0995-C02-01, TIN2004-03072, FEDER funds
and Intel Corporation.



 0

 0.5

 1

 1.5

 2

 2.5

 3

4048566472808896104112

IP
C

Register File Size

Baseline
Monreal

Ergin
Martin

Compiler

(a) IPC

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

4048566472808896104112

A
ve

ra
ge

 O
cc

up
an

cy

Register File Size

Baseline
Monreal

Ergin
Martin

Compiler

(b) Register file occupancy

Figure 9. Decreasing the register file size

References

[1] J. Emer. Ev8: The post-ultimate alpha. In Keynote at PACT,
2001.

[2] T. C. I. Center. http://bwrc.eecs.berkeley.edu/cic/.
[3] S. H. Gunther, F. Binns, D. M. Carmean, and Jonathan C.

Hall. Managing the impact of increasing microprocessor
power consumption. Intel Technology Journal, Q1, 2001.

[4] Teresa Monreal, Vı́ctor Viñals, Antonio González, and Ma-
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