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Abstract
Memory latency is the bottleneck for many modern workloads. One
popular solution from literature to handle this is helper threading,
a technique that issues light-weight prefetching helper thread(s)
extracted from the original application to bring data into the cache
before the main thread uses it, hiding the long memory latency.
Although prior work has reported promising results, many schemes
are not available on real systems as they require hardware support
for satisfying performance improvements.

To address this, we present Ghost Threading, a software-only
helper-thread prefetching solution, which issues helper threads on
idle Simultaneous Multithreading (SMT) contexts. The key chal-
lenge of prefetching is timeliness: data should not arrive too early
or too late. Unlike prior work relying on proposed extra hardware
synchronization or expensive OS synchronization, we develop a
novel inter-thread synchronization approach based on an instruc-
tion supported by commercial processors, which enables cheap
throttling of the helper thread. This ensures that it gets far enough
ahead of the main thread, but not too far, for it to perform timely
prefetching of data.

We evaluate Ghost Threading against state-of-the-art techniques
on a modern Intel processor with memory-intensive workloads se-
lected from graph analysis, database, and HPC domains. On an idle
server, Ghost Threading achieves 1.33× geometric mean speedup
over the baseline, 1.25× and 1.11× over state-of-the-art software
prefetching and parallelization techniques, respectively. We also
show that Ghost Threading maintains these benefits on a busy
server where the memory bandwidth pressure is higher.
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1 Introduction
Memory latency heavily limits the performance of many modern
workloads [3, 21, 34]. One tempting approach to solve this challenge
is the helper threading technique [8, 19, 20, 23–25, 29, 41, 42, 49].
The key idea of helper threading is to execute a light-weight helper
thread ahead of the main application thread, triggering data fetches
in advance. These threads are extracted from the original appli-
cation by either the programmer, the compiler, or the hardware.
Compared to conventional prefetching techniques [2, 3, 6, 9, 17,
18, 28, 31, 37, 40, 47, 48], helper threading enjoys high prefetching
accuracy by generating prefetches via similar instructions to those
that the program will execute in the near future.

Timeliness is crucial for all prefetching [8, 19, 20, 23]; data
fetched too early may be evicted from the cache before being
used, and data fetched too late will not improve performance. To
ensure timeliness in helper threading, schemes use inter-thread
synchronization to throttle or accelerate the helper thread. Con-
ventional software inter-thread synchronization mechanisms are
prohibitively expensive (e.g. it may take up to 30K cycles to sus-
pend a thread through the operating system (OS) [23]), and so
existing helper threading techniques usually apply hardware modi-
fication [8, 23, 25, 41, 42], ISA extension [19], or both [29] to control
the synchronization of the main thread and helper thread. These
schemes control the distance between the main thread and the
helper thread by (1) skipping some work in the helper thread when
it is too close to (or behind) the main thread, and stopping/suspend-
ing the helper thread when it runs too far ahead of the main thread,
or (2) launching short-lived helper threads with careful timing.

Although enjoying promising performance improvements, the
hardware support for many helper-threading schemes has not seen
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commercial deployment on real systems. Meanwhile, the few ap-
proaches that are available on real systems either fail to fully exploit
the potential of helper threading due to inefficient synchronization
mechanisms [23] or require excessive hardware resources (up to
four processor cores) to achieve a satisfactory performance improve-
ment [20]. Existing real-world thread-management mechanisms
are simply not optimized to execute light-weight helper threads for
prefetching purposes.

We propose Ghost Threading, a software-only prefetching tech-
nique that runs on a core with Simultaneous Multithreading (SMT)
support, executing each helper thread in another SMT context on
the same core as its correspondingmain thread. The key idea behind
Ghost Threading is a novel inter-thread synchronization mecha-
nism that controls the speed of the helper thread in a timely and
efficient manner. We observe that the real challenge in controlling
the speed of the helper thread is to prevent it from running too far
ahead, as our experimental results suggest that the helper threads
typically tend to run excessively far into the future. Regardless, it is
already straightforward and cheap to accelerate the helper thread if
it is too slow by skipping instructions (e.g. several loop iterations).

Unlike prior work applying a pause-restart scheme [8, 19, 23], we
utilize the serialize instruction supported by Intel processors [15]
to slow down the helper thread when it runs too far ahead of the
main thread, removing any need for an expensive system call or
hardware modification. Although the serialize instruction may
not be designed for inter-thread synchronization, it represents an
almost ideal solution for our use case: it stops the pipeline from
fetching and executing the next instruction in the thread until all
modifications to flags, registers, and memory by instructions before
the serialize finish [15]. This means that the helper thread only
consumes modest backend resources when being decelerated by
the serialize instructions, thus making all remaining hardware
resources available to the main thread.

To construct the helper thread, we first select the target loads
through profiling and then manually extract the instructions they
depend on. The helper thread executes fewer instructions than the
main one and naturally runs ahead, bringing the data into the L1
cache before the main thread needs them. When it detects that it
is running too far ahead and risks making prefetches too early, it
executes serialize instructions to slow itself down. In the following
text, we call the helper thread extracted for Ghost Threading and
synchronized by the serialize instructions the ghost thread.

In addition to an efficient inter-thread synchronization mecha-
nism, selecting the correct target loads for prefetching is crucial for
performance improvement. Since the ghost threads run in SMT con-
texts and compete with the main threads for hardware resources,
there is a risk of performance degradation if the benefits of prefetch-
ing do not outweigh the negative impact of hardware-resource com-
petition. Therefore, we propose a heuristic to select target loads by
predicting if they will be profitable from Ghost Threading based
on profiling results. If a target load selected by our heuristic is
included in a parallelizable loop, we use our ghost thread to replace
the thread for parallelization; otherwise, we use the existing parallel
version of the loop.

We compare Ghost Threading with state-of-the-art techniques (a
conventional software prefetching technique [3] and parallelization
through SMT) by evaluating 11 benchmarks selected from graph

analysis, database, and HPC domains on a modern Intel proces-
sor. On an idle server, Ghost Threading achieves 1.25× and 1.11×
geometric mean speedup, and 11% and 5% geometric mean pack-
age energy saving over state-of-the-art software prefetching and
parallelization techniques, respectively. We also show that Ghost
Threading maintains these benefits on a busy server where the
memory bandwidth pressure is higher: it provides 1.31× and 1.13×
geometric mean speedup over state-of-the-art software prefetch-
ing and parallelization techniques, respectively. Ghost Threading
requires significantly less implementation effort than conventional
parallelization, thus compounding the benefit when considering
existing sequential code bases.

We make the following key contributions:
• We present Ghost Threading, a software prefetching tech-
nique that utilizes SMT helper threading and is available on
real systems.

• We develop a novel inter-thread synchronization mechanism
to provide efficient and timely control of the speed of the
helper thread.

• We propose a heuristic, which is summarized from our ex-
perimental results, to select target loads of Ghost Threading
based on profiling information.

• We develop a prototype compiler pass that automatically
extracts ghost threads based on user annotations.

• We have open-sourced our Ghost Threading implementation.

2 Background
2.1 Simultaneous Multithreading
Simultaneous Multithreading (SMT) [45, 46] is a technique that
allows multiple independent threads to issue instructions to the
functional units of a CPU core in a single cycle, increasing the core
utilization when a thread stalls (e.g. due to a long-latency memory
accesses). Compared with conventional multithreading techniques,
SMT removes the requirement of a context switch, enabling multi-
ple threads to execute in parallel in one core. Although originally
designed for executing multiple independent threads, SMT can also
be used to improve single-thread performance by helper threading.

SMT has been implemented by vendors such as Intel, AMD, and
IBM. In this work, we utilize Hyper-Threading [30], the SMT imple-
mentation from Intel, to execute our ghost threads for prefetching.
The Hyper-Threading technique enables two SMT threads per core,
regarding one physical core as two independent logical cores. Com-
pared with the original SMT technique, which shares almost all
hardware resources between SMT threads, Intel Hyper-Threading
evenly partitions several key buffers, such as the reorder buffer
(ROB) and the load/store buffer, in out-of-order cores to enforce
fairness and prevent deadlocks [15, 23, 30].

2.2 Memory-Level Parallelism
Unlike instruction-, thread-, and data-level parallelism, which ul-
timately describe the concurrent or parallel execution of multiple
instructions, memory-level parallelism (MLP) improves the perfor-
mance of modern processors by overlapping the latency of multiple
memory-access operations. The foundation of MLP is that mod-
ern caches and memory chips support concurrent data access by
techniques like memory banking. Meanwhile, modern processors
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are equipped with structures, such as a load/store unit (LSU), used
to manage in-flight memory operations. By executing multiple
memory-access operations simultaneously, a processor hides the
latency of memory accesses by overlapping them and hence re-
duces the possibilities of a full-window stall. MLP is becoming an
increasingly important solution to the memory wall faced by mod-
ern computing systems, as memory latency is hard to reduce and
may even increase to obtain other benefits [10].

2.3 Prefetching
Prefetching is a technique for extracting MLP by bringing data or
instructions closer to the core before they are needed. Conventional
hardware prefetching techniques generally rely on adding hardware
components around caches to generate speculative memory ac-
cesses based on the history of cache misses [2, 6, 9, 18, 28, 37, 40, 47,
48]. Alternatively, software prefetching techniques utilize prefetch-
ing instructions inserted by programmers or compilers to prefetch
data [1, 3, 17, 31]. Another distinct approach is execution-based
prefetching, such as helper threading [8, 19, 20, 23–25, 29, 41, 42, 49]
and runahead execution [7, 12, 13, 32–36, 38, 39]. These execution-
based approaches trigger concurrent cache misses by speculatively
executing instructions that are either likely or guaranteed to be
executed later when the CPU pipeline is at risk of stalling.

2.4 Helper Threading
Helper threading [8, 19, 20, 23–25, 29, 41, 42, 49] is a powerful
approach to improve MLP and performance. The basic mechanism
of helper threading is to execute a subset of the original program
ahead of the main application thread. The extracted subset (called
p-slices by prior work [7, 8, 20]) only contains a few delinquent
loads with high cache-missing ratios and the instructions that these
loads depend upon, and thus usually executes fewer instructions
than the main thread. Therefore, it naturally runs ahead of the main
one, triggering cache misses through loads that the main thread
will execute in the future and generating prefetch effects. The p-
slices are executed as the helper thread either by an idle thread
context of the same CPU (i.e. SMT context) [8, 23, 25], or another
idle core [19, 20, 41, 42].

To identify the loads to be prefetched, existing techniques [8, 19,
20, 23, 24] usually rely on profiling to select the loads that have a
high cache-miss ratio and coverage time. The helper thread can be
extracted by either the programmer [20, 29, 49], compiler [23, 24],
or hardware [25, 41, 42]. To control the speed of the helper thread,
an inter-thread synchronization mechanism (either hardware or
software) is required. Without hardware support, existing software
synchronization techniques do not have access to the detailed state
of the processor to properly determine the behavior of the helper
threads at run time, requiring careful manual adjustment of hyper-
parameters (e.g. synchronization period and the runahead distance
of the helper thread) to obtain speedup [19, 20, 23].

The overhead of the hardware support required by helper thread-
ing techniques is not trivial. For example, two state-of-the-art
techniques—Bootstrapping [25], which uses SMT to execute a look-
ahead thread, and the Slipstream Processor [41], which uses an
additional core to run an ‘advanced stream’—both require new
hardware components and changes in the design of the cache, ROB,

0 for (int i = 0; i < NUM_OF_ITER; i++){
1 sum += hash(hash(array[index[i]]));
2 }

(a) Original Camel benchmark.

0   for (int i = 0; i < LARGER_NUM_OF_ITER/128; i++){
1 // may not be a constant iteration count
2 for (int j = 0; j < 128; j++){ 
3 sum += simple_hash(array[i][index[j]]);
4     }
5   }

(b) Camel suitable for parallelization.

0   for (int i = 0; i < NUM_OF_ITER/128; i++){
1 // may not be a constant iteration count
2 for (int j = 0; j < 128; j++){
3 sum += hash(hash(array[i][index[j]]));
4     }
5   }

(c) Camel suitable for Ghost Threading.

Figure 1: Pseudo code of the Camel benchmark [3]. The target
load for prefetching is at line 1 (figure 1(a)) or line 3 (fig-
ures 1(b) and 1(c)). Software prefetching works well on the
original, parallelization works well when the target load’s
CPI is not too high and there is little computation performed
with the loaded value, and Ghost Threading works well when
the target load’s CPI is high and there is more computation
performed with the loaded value.

and the fetch stage of the pipeline. In addition, Bootstrapping mod-
ifies the processor renaming stage, while the Slipstream Processor
needs an inter-core communication buffer and modifications to the
execution and commit stages.

3 Motivation
Ainsworth and Jones explored a space of loops for their software
prefetching technique using two synthetic workloads [3]. We reuse
their Camel benchmark to demonstrate loop characteristics that are
favorable to different approaches, with code shown in figure 1.

Camel demonstrates a situation where a loop contains a load with
a very high last-level cache (LLC) miss ratio, but where this load
does not depend upon any results from prior iterations. When this
load causes a long-latency main-memory access, modern out-of-
order processors continuously fetch future instructions into the
ROB and execute the instructions whose inputs are available. To
maintain the sequential semantics of the original code, instructions
in the ROB are committed in program order. When younger instruc-
tions complete their execution, they can not be removed from the
ROB if there are any unfinished older ones (e.g. the load missing in
the LLC). When the ROB is filled by instructions, the pipeline stalls
as no more instructions can be fetched until space is freed in the
ROB. This state is known as a full-window stall. Figure 2 illustrates
how existing techniques and Ghost Threading boost single-core
performance by increasing MLP when a full-window stall occurs.
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(a) ROB (b) ROB with 
Software Prefetching

Main thread
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Ghost thread
(in flight)

Ghost thread 
loop iteration

(c) ROB with SMT 
parallelization

(d) ROB with 
Ghost Threading

Main thread 0
(stalled) 

Main thread 1
(in flight)

Main thread 
loop iteration

Main thread
(stalled) 

Main thread
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Main thread 
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instructions

Cache-missing 
load instruction Other instructions

Prefetch address 
generating 
instructions

Prefetch 
instruction

Synchronization 
instructions

The oldest 
instruction 

in ROB

The youngest 
instruction in 

ROB

The youngest 
instruction in 
ROB of main 

thread 0

The oldest 
instruction in 
ROB of main 

thread 1

Figure 2: ROB status of the single-threaded baseline, software prefetching technique, parallelization, and Ghost Threading
(from left to right) when a full-window stall occurs. The upper portion of the ROB is occupied by older instructions, while the
lower portion holds younger instructions. We assume the hardware resources are equally partitioned between the threads on
the same physical core when SMT is applied.

For simplicity, we assume that the SMT equally partitions hardware
resources, like the ROB, for the threads issued.

Out-of-Order Execution. Figure 2(a) shows the state of a modern
out-of-order processor when suffering from a full-window stall.
When the ROB is blocked by the first cache-missing load, in this
example three more loop iterations fit into the ROB and are fetched.
As the cache-missing load is not self-dependent, the copies of the
load in later iterations will be executed as soon as their inputs are
ready. Here, two more loads are executed simultaneously with the
first one and their latencies are overlapped to increase MLP.

Software Prefetching. Conventional software prefetching techniques
improve MLP by inserting prefetch instructions in each loop itera-
tion, increasing the size of the original loop to provide additional
in-flight memory accesses within the ROB (figure 2(b)). This works
well in the original Camel code, figure 1(a), because the number of
instructions used to generate the address of the long-latency load is
small compared to the number of instructions used for computation
with the value loaded. Figure 3 shows that Ainsworth and Jones’
software prefetching technique can obtain a significant speedup on
this loop.

Parallel execution via SMT. If the loop is parallelizable, it obtains two
benefits from SMT (illustrated by figure 2(c)). First, the alignment
of instructions may mean that more loads are fetched into the
ROB. Second, parallelization via SMT reduces the possibility of
the whole pipeline stalling since threads are independent of each
other. Altering the Camel loop to be favorable to SMT (figure 1(b))
shows that this works well when there is very little computation
performed with the value loaded, meaning that a larger fraction of
the loop body is used to calculate the address of the cache-missing
load. An OpenMP-parallelized loop obtains modest performance
improvements when the load sometimes hits and sometimes misses
the cache (figure 3).

Ghost Threading. A more aggressive approach than the other tech-
niques is Ghost Threading, which uses idle SMT contexts to execute
ghost threads that include prefetching and inter-thread synchro-
nization instructions. Unlike conventional software prefetching
techniques, Ghost Threading decouples the prefetching instruc-
tions from the main thread and has the potential to improve the
number of in-flight memory access operations in the ROB by a
larger amount. As illustrated by figure 2(d), the number of in-flight
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Figure 3: Speedup of a state-of-the-art software prefetching
technique [3], parallelization via SMT, and Ghost Threading
over the baseline out-of-order core for the forms of Camel

shown in figure 1. Section 5 discusses our experimental setup.

loads is raised from three to eight. Additionally, the ghost thread
replaces the blocking loads in the main thread with non-blocking
prefetch instructions, enabling the instructions of the ghost thread
to keep flowing in the ROB. In this case, the MLP exploited by Ghost
Threading is limited by the load/store unit or miss status handling
registers (MSHRs) instead of ROB size.

Ghost Threading works best when the cache-missing load has a
high CPI and there is more computation performed with the value
loaded than is profitable for SMT parallelization. Figure 1(c) shows
the modified Camel code that demonstrates this, leading to substan-
tial speedups again in figure 3. Ghost Threading is profitable as long
as (1) the target load has a high CPI, (2) the innermost loop including
this load has a larger dynamic size (i.e. instructions per iteration)
than the extracted loop in the ghost thread, and (3) the ghost thread
runs ahead at a suitable distance from the main thread. Otherwise,
issuing the ghost thread could result in a slowdown, as the shared
hardware resources are not profitably used for prefetching.

Ghost Threading is a more general-purpose technique for exploit-
ing MLP than software prefetching or parallelization. Ainsworth
and Jones’ technique targets indirect loads and requires a flat loop
structure to maximize benefits. For example, it cannot prefetch far
enough ahead in figures 1(b) and 1(c) due to use of a nested loop
with a low number of iterations. Parallelization may require sig-
nificant rewriting of single-threaded applications and has limited
benefits when code has cross-iteration dependences. In contrast,
Ghost Threading does not require the whole loop to be parallel and
can handle complex loop structures.

4 Ghost Threading
Ghost Threading is a software prefetching technique based on
helper threading. For this work, we implement ghost threads by
hand. In our experience, implementing Ghost Threading on an
existing realistic code base requires significantly less effort than
manual parallelization because the ghost threads do not modify any
application state. To implement them, we identify target loads to be
prefetched by profiling, then manually extract the p-slices for these
loads. The ghost threads are activated at a time that minimizes
the activation frequency and maximizes their life time. To ensure
the timeliness of prefetches, the ghost threads run ahead of their
main threads at a suitable distance, which is achieved by our novel

inter-thread synchronization mechanism. We discuss how these
are implemented in the following sections based on an example
target loop from bfs in GAP [4] shown in figure 4.

4.1 Identifying the Target Load
To make Ghost Threading profitable, the target loads should meet
the following three conditions. First, they should have high enough
CPI values to make it worth overlapping their latency with other
loads through prefetching. Second, they should be executed in
loops with large dynamic sizes (instructions executed per iteration),
which allows the ghost threads to increase MLP so it is higher than
the original code. If the ghost thread does not have fewer instruc-
tions per iteration than the original loop, it may cause a slowdown
due to the cost of thread management and synchronization. Last but
not least, the target loads need to exist in a loop structure enabling
a ghost thread with a long enough execution time to be extracted
(section 4.2.2 gives an example). A long-running ghost thread amor-
tizes the cost of activating the thread, and provides the space to run
ahead of the main thread.

Like prior software prefetching work [8, 19, 20, 23, 31], we use
profiling to obtain the information needed to identify the target
loads for prefetching. In this work, we use OptiWISE [11], a profiling
tool that generates instruction-level CPI values and loop metrics,
to gather the required information.

Based on our experimental results, our heuristic for selecting
target loads for prefetching is: (1) the load has a CPI higher than 21;
(2) the size of the innermost loop that contains this load is larger
than 10 instructions per iteration; (3) the load covers more than 15%
of the whole-task execution time, or 80% of its function execution
time. If there are multiple loads with CPI higher than 21 in a single
loop, the aggregated coverage time should be considered instead.

If a target is identified by the heuristic in a parallelizable loop,
we replace the thread for parallelization by our ghost thread. If
there are no target loads found in a loop that can be parallelized,
we keep the parallel version of the loop.

After profiling bfs with OptiWISE, we find the load on line 5 in
figure 4(a) matches all three conditions above and is identified as
the target load to be prefetched by Ghost Threading.

4.2 Constructing the Ghost Thread
A ghost thread comprises two parts: the p-slice and a synchroniza-
tion segment. A p-slice contains one or more target loads to be
prefetched and all the instructions that the target loads depend on
(i.e. instructions used to generate the addresses of the loads). The
synchronization segment is used to control the speed of the ghost
thread by synchronizing it with the main thread, keeping it running
at a suitable distance from the main thread. Section 4.3 describes
the details of the synchronization mechanism.

4.2.1 Extracting the P-slice. The first step in constructing a ghost
thread is to generate the p-slice for the corresponding target load(s).
We build the p-slice manually by following the guidelines from prior
helper-thread approaches [8, 20, 29, 49]. Compiler techniques [19,
23, 24] that automatically extract p-slices are available as well, and
could be used in an automated deployment of Ghost Threading.
Section 4.4 discusses details of our prototype compiler pass used to
automatically extract ghost threads. To extract the p-slice we work
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0   int TDStep(){
1 int count = 0;
2     for (int* iter = queue.begin(); iter < queue.end(); iter++){
3 int u = *iter; 
4 for (int v : graph.out_neigh(u)){
5 int curr_val = parent[v];
6 if (curr_val < 0){
7 if (compare_and_swap(parent[v], curr_val, u))
8 count += -curr_val; 
9 } 
10 }
11 }
12 return count; 
13 }

P-slice

Target load   

(a) The target load and its p-slice from TDStep.

0 atomic_int atomic_counter = 0;
1 int TDStep(){
2 int count = 0;
3 int tid = ActivateSmtThread(&Prefetch);
4 for (int* iter = queue.begin(); iter < queue.end(); iter++){
5 int u = *iter; 
6 for (int v : graph.out_neigh(u)){
7 /* computations depend on parent[v] */
8 atomic_counter.add(1); // update the counter
9 }
10 }
11 DeactivateSmtThread(tid);
12 return count; 
13 }

(c) TDStep when Ghost Threading is implemented.

0   void Prefetch(){
1     for (int* iter = queue.begin(); iter < queue.end(); iter++){
2 int u = *iter; 
3 for (int v : graph.out_neigh(u))
4 __builtin_prefetch(&parent[v]);
5 }
6 }

(b) The p-slice from TDStep extracted into a ghost thread.

0 void Prefetch(){
1 int local_counter = 0; bool serialize_flag = false;
2     for (int* iter = queue.begin(); iter < queue.end(); iter++){
3 int u = *iter; 
4 for (int v : graph.out_neigh(u)){
5 __builtin_prefetch(&parent[v]); 
6 local_counter++;
7 if (serialize_flag) do_serialize(); 
8 if (local_counter % SYNC_FREQ == 0){
9 int main_counter = atomic_counter.read();
10 if (local_counter <= main_counter){
11 serialize_flag = false;
12 SKIP_ITERATIONS(SKIP_STEP);
13 } else if (local_counter >= main_counter + TOO_FAR){
14 serialize_flag = true;
15 } else if (local_counter <= main_counter + CLOSE){
16 serialize_flag = false;
17 }
18 } 
19 }
20 }
21  }

Synchronization segment   

(d) The full ghost thread for TDStep with synchronization.

Figure 4: Steps taken to extract a ghost thread from function TDStep in bfs. In (a), profiling shows that the load on line 5 has a
high enough CPI and is in a loop (at line 2) with sufficient iterations to be amenable to Ghost Threading. The p-slice is also
shown. In (b), the p-slice is extracted and placed in a new function for the ghost thread to execute. In (c), the original loop
is updated to activate the ghost thread and track the iteration count to enable synchronization. In (d), the full ghost thread
containing all synchronization code.

backwards through the CFG from the target load, following the
data-dependence chain until we reach an instruction that depends
on itself (or an instruction we have already selected). If we haven’t
already, we also select instructions necessary to control the loop.
Figure 4(a) shows an example taken from bfs. This is placed into a
new function for the ghost thread to execute (figure 4(b)).

4.2.2 Activating the Ghost Thread. The generated p-slice will be
issued as a ghost thread for prefetching when the target loop starts.
As a software-only technique, Ghost Threading activates the ghost
thread (e.g. spawns or wakes up a thread) by using a system call,
which may take thousands of cycles. To amortize this cost, we
activate the ghost thread at a time that maximizes its lifetime and
minimizes its activation frequency. In our example, figure 4(c), the
ghost thread is activated on line 3 just before the loop starts, then
deactivated after the loop on line 11.

4.2.3 Adding the Synchronization Segment. In order to prefetch
data that are useful to the main thread, the ghost thread should
run ahead at a suitable distance from the main thread. To ensure
the two threads do not get too far apart (or too close together), a
counter records the main thread’s iteration number, which is read
in the ghost thread’s synchronization segment. This is shown in
figure 4(d). More details of how this synchronization mechanism is
implemented are discussed in section 4.3.

4.3 Inter-thread Synchronization
A key novelty in Ghost Threading is the ability to timely and effi-
ciently synchronize a ghost thread with its main thread so that it
runs at a suitable distance ahead. Without this, prefetching may fail
to yield speedups over the single-threaded implementation, or even
cause a slowdown, due to running too far into the future, prefetch-
ing untimely data into the cache and wasting shared hardware
resources.

A ghost thread executes a distilled version of a loop, containing
only the instructions that the target loads depend on, which makes
the ghost thread naturally run faster than the main thread and
enjoy more MLP (illustrated by figure 2). But if the ghost thread
keeps running ahead without limitation, the data it brings into the
L1 cache are highly likely to be evicted before being accessed by
the main thread, which means that all hardware resources, such
as functional units, assigned to the ghost thread are wasted. Since
we issue the ghost thread to the SMT context of the same core,
all hardware resources wasted by unnecessary prefetching could
otherwise have been utilized by the main thread. Additionally, data
prefetched too early causes cache pollution, further harming the
performance of the main thread. As a result, controlling the speed
of prefetching is key to Ghost Threading to avoid this wastage.

Another less common scenario is when a ghost thread runs too
slowly or even lags behind themain thread, resulting in unprofitable
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prefetches. We observe two common situations where this occurs.
First, since the main thread benefits from prefetches performed by
the ghost thread, it executes much more efficiently overall. In this
case, the main thread may catch up with the ghost thread whilst the
latter is waiting for long-latency memory accesses. Second, the cost
of spawning a thread causes an initial gap between the main and
ghost thread. When the ghost thread is created, the main thread
may have already processedmany loop iterations.We experimented
with skipping iterations when the ghost thread is spawned, but we
found in practice that this does not make a significant difference to
overall performance.

To summarize, in order to make it worth stealing hardware re-
sources from the main thread of an application to execute the ghost
thread, we need an inter-thread synchronization mechanism to con-
trol the speed of the ghost thread, preventing it from running too
far ahead, too close, or even behind the main thread. It is straight-
forward to accelerate the ghost thread when it is behind the main
thread by simply skipping some loop iterations. The challenge is
therefore instead to prevent the ghost thread from running too far
ahead without incurring vast overheads.

4.3.1 Decelerating the Ghost Thread. Prior work utilizing SMT con-
texts to issue helper threads [8, 19, 23] has applied a pause-restart
scheme to synchronize the two threads: the helper thread is paused/-
suspended when it goes too far ahead and restarted when the main
thread catches up. Although this pause-restart mechanism is an
ideal solution to synchronize the speed of the two threads, because
it allows the main thread to utilize all spare hardware resources,
unfortunately it is hard to develop a cheap thread-pausing mech-
anism in real systems. Kim et al. [23] proposed an experimental
hardware synchronization mechanism, available on real Intel pro-
cessors, which allows one thread to suspend or wake up another by
executing a single instruction. However, this still takes around 1,500
cycles to suspend a thread, which is too long to achieve efficient
inter-thread synchronization.

Therefore, instead of pausing the helper thread when it is too
fast, we slow it down. The challenge of this approach is to slow
the helper thread down without consuming too many hardware re-
sources. To handle this, we use the serialize instruction provided
by recent Intel processors, which prevents the CPU from fetching
and executing any further instructions until all modifications to
flags, registers, and memory by instructions before the serialize

instruction are complete [15]. Unlike a typical memory fence that
only stops executing instructions after the fence, the serialize

instruction also stops fetching further instructions, saving frontend
pipeline resources. Due to this feature, this instruction is almost an
ideal approach to drop the speed of the helper thread, though it may
not be designed for this purpose. With the serialize instructions
inserted, the number of instructions from our ghost thread that can
exist simultaneously in the ROB is equal to the number of instruc-
tions between two inserted serialize instructions in theory. By
controlling the number of instructions between two serialize in-
structions, we indirectly control the amount of hardware resources
assigned to the ghost thread.

Figures 4(c) and 4(d) show how we utilize the serialize instruc-
tion to control the speed of the ghost thread. The key idea is to
periodically update a counter in the main thread to record the loop

0   #pragma ghost_threading sync_frequency(14) skip_iter(10) 
serial_max_threshold(65) serial_min_threshold(63) sync_level(2)  

1   for (int i = 0; i < NUM_OF_ITER/128; i++){
2 // may not be a constant iteration count
3 for (int j = 0; j < 128; j++){
4       __builtin_prefetch(&array[i][index[j]]); 
5 sum += hash(hash(array[i][index[j]]));
6     }
7   }

Figure 5: Camel loop nest from Figure 1(c), with the compiler
directive for Ghost Threading (line 0) and annotated target
load (line 4).

iteration number and let the ghost thread read it. By comparing the
loop iteration numbers of the main and ghost threads, the mecha-
nism determines whether to (1) execute a serialize instruction, or
(2) skip some iterations in the ghost thread to speed it up. In this
example, only the instructions from a single loop iteration of the
ghost thread can exist in the ROB at the same time when serialize

instructions are executed, which minimizes resource contention
from the ghost thread on the main thread.

Compared with prior pause-restart schemes that may take thou-
sands of cycles to suspend/wake the helper thread, our novel inter-
thread synchronization approach based on the serialize instruc-
tion enables a timely deceleration of the ghost thread after detecting
it executing too far ahead. For Ghost Threading, the delay between
recognizing that the ghost thread is running too far ahead and
actually slowing it down is a handful of cycles. Similarly, resuming
full-speed execution is trivial.

4.3.2 Determining the Inter-Thread Distance. The distance between
the main thread and ghost thread is controlled by hyper-parameters
for the synchronization, such as the synchronization frequency,
how many iterations to skip if the ghost thread is behind the main
thread, and when to execute serialize instructions. In order to
ensure prefetching timeliness, the inter-thread distance should be
neither too small nor too large.

The value of a suitable distance strongly depends on dynamic
program characteristics and processor states, including (but not
limited to) the number of instructions in the current loop iteration,
the cache miss ratio of the target load, the number of entries in
the ROB and load/store units, and the current cache occupancy.
We believe that predicting such a suitable inter-thread distance
accurately would require a model of the processor pipeline and
cache hierarchy. This would likely require a large amount of reverse
engineering and is beyond the scope of this work. Therefore, in this
work we manually tune the hyper-parameters for synchronization
by profiling, just like in prior work [19, 20, 23].

4.4 Automatic Ghost Thread Extraction
While we have extracted all ghost threads manually, automatic ex-
traction provides an easier route to adoption, so we have developed
a prototype pass within LLVM [26] to achieve this 1. The work flow
proceeds in a similar manner as described in this section. Target
loads are identified as previously described via profiling (section 4.1).
The programmer then annotates the target loads (via intrinsics)

1https://github.com/CompArchCam/GhostThreadingCompiler.git
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and the loop that prefetching should be applied to via #pragma di-
rectives. The pragma is appended with clauses that specify the
hyper-parameters for the compiler. An example of such a #pragma

is shown in Figure 5, which illustrates the automatic ghost thread
extraction of the loop nest in Figure 1(c). During compilation, a
middle-end pass uses these directives as a starting point to identify
the p-slice of IR instructions and extract them (section 4.2.1). The
loop’s control-flow structure is duplicated into a new function, the
p-slice added, and then synchronization code inserted (section 4.3).
Finally, the main loop’s IR is altered to include a shared counter of
the iteration number and activation of the ghost thread beforehand
(section 4.2.2).

5 Methodology
We evaluate Ghost Threading on an Intel Core i7-12700 proces-
sor [14] (Ubuntu 24.04, performance-core base frequency 2.10GHz,
efficient-core base frequency 1.60GHz, 94GB memory, 1/12/25 MiB
L1/L2/L3 cache), which is composed of eight performance cores
and four efficiency cores. We use the performance cores, which
support Hyper-Threading, for our evaluation.

We evaluate 11 benchmarks from the domains of graph anal-
ysis, databases, and HPC, which are used by prior prefetching
techniques [3, 31, 34, 36]. Six of them are from the GAP bench-
mark suite (GAP) [4]: Betweenness Centrality (bc), Breadth-First
Search (bfs), Connected Components (cc), PageRank (pr), Single-
Source Shortest Path (sssp), and Triangle Counting (tc). GAP has
five built-in graphs available for each kernel: two synthetic graphs
(urand and kron) and three real-world graphs (twitter, road, and
web). Another five benchmarks are selected from HPC and database
domains: camel, kangaroo, hashjoin with two and eight hashes (hj2
and hj8), and NAS-IS. These benchmarks are compiled by either
gcc/g++ or clang, depending on their default build scripts, with
-O3 optimization enabled for all techniques to be evaluated. When
automatically extracting ghost threads, the benchmarks are com-
piled using clang/LLVM with our implemented pass (part of the -O3

pipeline). We run all benchmarks to completion and record the
execution time of all functions except the ones for input generation
and initialization. All experiments are repeated three times.

In order to select the target load to be prefetched, we profile
the benchmarks using OptiWISE [11] with a reduced input dataset
compared with evaluation. The cost mainly comes from two exe-
cutions (one for sampling and another for instrumentation) of the
application and was 3.6× geometric mean slowdown over the base
run with the profiling input dataset. Table 1 summarizes the data
inputs used for profiling and evaluation.

6 Evaluation
We evaluate the following four techniques in this work:

• Baseline: If not otherwise mentioned, the baseline is the
single-threaded version of the original application.

• Software Prefetching (SWPF) [3]: The state-of-the-art soft-
ware prefetching technique, which inserts prefetching in-
structions for the target indirect loads. We use the manually
optimized version of SWPF in our evaluation.

• SMT Parallelization via OpenMP (SMT OpenMP): If not oth-
erwise mentioned, SMTOpenMP is the OpenMP-parallelized

Workload Input for Evaluation Input for Profiling

GAP

kron -g27 -k16 kron -g26 -k15

twitter
kron -g26 -k24 (similar
number of nodes and edges)

urand -u27 -k16 urand -u26 -k15
road: all roads in the USA All roads in the central USA
web: web-crawl of the .sk
domain Web-crawl of the .it domain

camel 128MB synthetic input 32MB synthetic input
kangaroo 128MB synthetic input 32MB synthetic input
NAS-IS Input class ’B’ Input class ’W’
hj2 R=S=96MB R=S=24MB
hj8 R=S=96MB R=S=24MB

Table 1: Input datasets for profiling and evaluation.

version of the original application running on an SMT core.
Two parallel threads are issued to the same physical core
through SMT. To make a fair comparison with Ghost Thread-
ing, which does not require the code to be parallelizable, this
option is ignored for workloads that require code rewrit-
ing for parallelization. NAS-IS and kangaroo cannot be paral-
lelized without rewriting the code and are therefore excluded.
The hash join workloads (hj2 and hj8) have partially par-
allelized versions that do not require code rewriting and a
fully parallelized version that does. We include the former
in our results.

• Ghost Threading: The technique presented in this work. We
profile the evaluated benchmarks as discussed in section 5,
and extract the ghost thread by hand as discussed in section 4.
The ghost thread is issued together with the main applica-
tion thread on the same physical SMT core. If a loop can be
parallelized and contains target loads selected by our heuris-
tic, we replace the OpenMP thread with our ghost thread.
If a loop does not contain target loads for Ghost Threading,
we keep issuing its OpenMP thread (if applicable).

• Compiler Extracted Ghost Threads: The compiler driven, au-
tomated version of Ghost Threading. The compiler extracts
ghost threads from #pragma annotated loops comprising tar-
get loads as discussed in section 4.4. Extracted ghost threads
are issued using the same methodology as in the manual
technique. Similar to Ghost Threading, we use our heuristic
to decide if a loop will be annotated or not. If a paralleliz-
able loop does not include target loads, we keep the default
OpenMP pragmas (if applicable).

6.1 Single-core Performance
Figure 6 shows the speedup of SWPF, SMT OpenMP, Ghost Thread-
ing, and Compiler Extracted Ghost Threads over the baseline on an
idle server across all 34 evaluated workloads. Here, we consider the
same kernel from GAPwith different graphs as individual workloads
due to their varying behaviors. We make four key observations.

First, Ghost Threading provides 1.33× geometric mean speedup
over the baseline, considerably out-performing the state-of-the-art
conventional software prefetching technique (SWPF, 1.06×) and
parallelization (SMT OpenMP, 1.22×). In workloads such as camel,
kangaroo and NAS-IS, SWPF outperforms Ghost Threading (2.44×
vs 2.32× for camel, 1.86× vs 1.50× for kangaroo, and 1.23× vs 1.00×
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Figure 6: Speedup of SWPF, SMT OpenMP, Ghost Threading, and Compiler Extracted Ghost Threads over the baseline on
single physical core on an idle server. The bold x-label means that the corresponding workload uses ghost thread(s) to replace
the OpenMP thread(s) for Ghost Threading as our heuristic predicts the former is profitable. The ‘x’ tick means that the
corresponding number is unavailable.

for NAS-IS)2. Whereas, negligible speedup (or even slowdown) is
observed for workloads from GAP, including the ones known to be
memory intensive. SMT OpenMP gives good overall performance
boosts but may not be the optimal solution to utilize SMT when
the workloads are memory-intensive. The 1.22× geometric mean
speedup provided by SMT OpenMP is raised to 1.33× by replacing
the OpenMP threads with ghost threads when the latter is predicted
to be profitable.

Second, our heuristicmakes a good selection between theOpenMP
threads (if applicable) and our ghost threads. Our heuristic identi-
fies 19 out of 34 workloads to be suitable for Ghost Threading, and
16 of them obtain more (or equal) speedup from our ghost threads
compared with SMT OpenMP ones. Although three workloads ben-
efit less from Ghost Threading than SMT OpenMP, the speedup
from Ghost Threading is still comparable to SMT OpenMP (1.14×
vs 1.19× for sssp.kron, 1.16× vs 1.24× for sssp.twitter, 1.49× vs
1.58× for sssp.web).

Third, three workloads have no speedup or even slowdown
when applying Ghost Threading: pr.kron, pr.urand, and NAS-IS.
Our heuristic does not identify target loads from these workloads,
so Ghost Threading on them is equivalent to SMT OpenMP, which
causes slowdown on the pr workloads and is unavailable for NAS-IS
without code rewriting. Therefore, pr.kron and pr.urand are slowed
down by Ghost Threading, while NAS-IS obtains no benefit at all.

Finally, Compiler Extracted Ghost Threads achieve a 1.11× geo-
metric speedup over the baseline, although being 22% slower than
Ghost Threading. For several workloads, Compiler Extracted Ghost
Threads follows the same performance trends as Manual Ghost
Threading. However, significant slowdown is observed when us-
ing compiler ghost threads in the following workloads: bc.kron,
bc.twitter, bc.urand, bfs.kron, bfs.twitter, bfs.urand, cc.urand,
tc.urand, camel, hj2 and kangaroo. This discrepancy stems from

2camel and kangaroo are synthetic workloads created by Ainsworth and Jones [3] to
evaluate their technique.

difficult-to-remove, unnecessary control flow in the extracted ghost-
threading loop, resulting in the inclusion of several irrelevant in-
structions, adding to the execution time of the workloads. Such
instructions (arising from the use of C++ STL constructs) lead to run-
time memory issues in sssp, including segmentation faults. In three
workloads—cc.kron, cc.twitter and cc.web—Compiler Extracted
Ghost Threads achieves an average performance improvement of
4% over manual Ghost Threading.

Based on the above observations, it can be seen that Ghost
Threading, when manually applied in particular, is a competitive
replacement for parallelization when using SMT, since extracting a
ghost thread from a loop requires much less effort than creating a
parallel version of it.

6.2 Energy Consumption
To estimate the energy consumption of the evaluated techniques,
we use Intel RAPL [22] with perf [27] as the interface. The server
used for our evaluation does not support themeasurement of DRAM
energy consumption with RAPL, so we only measure the package-
level energy consumption.

Figure 7 shows the measurement of package energy savings on
the idle server. The geometric mean package energy savings of
SWPF, SMT OpenMP, Ghost Threading, and Compiler Extracted
Ghost Threads over the baseline are 6%, 12%, 16%, and 4% respec-
tively. A strong correlation between the execution time and energy
consumption can be observed: themore speedup aworkload obtains
from SWPF/SMTOpenMP/Ghost Threading, the less energy it tends
to consume. Although these techniques tend to increase power
consumption by executing additional prefetching instructions or
spawning extra threads, the energy saved through performance
improvements still outweighs the higher power usage.
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Figure 7: Energy saving of SWPF, SMT OpenMP, Ghost Threading, and Compiler Extracted Ghost Threads over the baseline on
the idle server. The bold x-label means that the corresponding workload uses ghost thread(s) to replace the OpenMP thread(s) for
Ghost Threading based on our heuristic and profiling results. The ‘x’ tick means that the corresponding number is unavailable.
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Figure 8: Speedup of SWPF, SMT OpenMP, Ghost Threading, and Compiler Extracted Ghost Threads over the baseline on a busy
server, where 21GB/s memory bandwidth pressure is added. The bold x-label means that the corresponding workload uses
ghost thread(s) to replace the OpenMP thread(s) for Ghost Threading based on our heuristic and profiling results. The ‘x’ tick
means that the corresponding number is unavailable.

6.3 Single-core Performance in the Busy Server
Besides an idle server, we also evaluate the performance of Ghost
Threading on a busy server. We use the Intel RDT Software Pack-
age [16] to generate synthetic memory bandwidth pressure on
the server during our experiments. To simulate a busy state, we
use seven performance cores on the server to generate memory
bandwidth pressure, each with 3GB/s (totaling 21GB/s), and the
remaining one performance core to run the evaluated benchmarks.

Figure 8 reports the performance of SWPF, SMT OpenMP, Ghost
Threading, and Compiler Extracted Ghost Threads over the baseline
on the busy server. The geometric mean speedups are 1.07×, 1.26×,
1.40×, and 1.06× respectively. The three observations we made
from the results on the idle server also apply to the busy server, but

there are two differences. First, Ghost Threading generates higher
speedup in the busy server. On the one hand, 19 workloads enjoy
higher performance improvements from Ghost Threading than
SMT OpenMP (three more than the idle server). On the other hand,
camel and kangaroo, which benefit less from Ghost Threading than
SWPF, obtain higher speedup from Ghost Threading than SWPF
on the busy server. Second, more workloads are selected by the
heuristic to issue ghost threads in the busy server. Out of all 34
workloads, 25 workloads spawn ghost threads to replace OpenMP
threads (six more than the idle server).

Compared with the idle server, the busy server provides less
available cache space and memory bandwidth for a single pro-
cessor core, increasing the CPI and coverage time of loads in the
benchmarks to be evaluated. As a result, Ghost Threading becomes
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suitable for more workloads and generates higher performance
boosts on a busy server.

Compiler Extracted Ghost Threads do not follow the same per-
formance trends as Ghost Threading on the busy server. Several
workloads that benefit from Ghost Threading show significant slow-
down. The reason for this discrepancy is as outlined in section 6.1.
Improvements addressing the limitations and shortcomings of Com-
piler Extracted Ghost Threads are left for future work.

6.4 Multi-core Performance
From the discussion so far, it can be inferred that Ghost Threading
is a viable alternative to parallelization when using SMT to boost
the performance on a single core. In multi-core scenarios, Ghost
Threading can be used together with parallelization. To illustrate
the scalability of Ghost Threading when multiple cores are used,
we evaluate GAP [4] with the parallelized versions of baseline, SWPF,
SMT OpenMP, and Ghost Threading. In this case, these techniques
are redefined as follows:

• Baseline: The OpenMP-parallelized version of the original
application. The number of threads used for parallelization
matches the number of physical cores so that each core
executes a single thread (i.e. no SMT).

• SWPF: The OpenMP-parallelized version of the original
SWPF. The number of threads used equals the number of
physical cores (i.e. no SMT).

• SMT OpenMP: The OpenMP-parallelized version of the orig-
inal application. SMT is enabled in this case with each phys-
ical core executing two threads.

• Ghost Threading: The OpenMP-parallelized version of the
original implementation (ghost threads are extracted manu-
ally). Each main application thread is executed with a ghost
thread on the same physical core via SMT. The number of
main/ghost threads is equal to the number of physical cores
used. The method used to determine if a ghost thread will
replace an OpenMP thread is discussed below.

When Ghost Threading is deployed with multiple cores, the
heuristic proposed in section 4.1 fails to make good decisions on
selecting target loads, as it does not consider the shorter length
of loops in the ghost threads. As discussed in section 4.1, a short-
running ghost thread badly amortizes the thread spawning cost
and has little space to run ahead of the main thread. As a result, the
heuristic selects workloads that fail to provide performance boosts
from Ghost Threading when they are parallelized. To avoid this, the
decision to use Ghost Threading in multi-core scenarios is based
on the profiling results of the workloads on training inputs. We run
SMT OpenMP and Ghost Threading with the training input graphs
described in table 1 and compare their execution time. If Ghost
Threading is faster than SMT OpenMP when a specific number of
cores are used, we use ghost threads instead of OpenMP threads in
SMT contexts.

Figure 9 shows the performance scaling results for SMT OpenMP
and Ghost Threading with increasing core count. We make three ob-
servations. First, Ghost Threading out-performs SMT OpenMP but
needs a more careful selection of targets. Second, the performance
improvements generated by SMT OpenMP and Ghost Threading
drop when more than one core is used. This is due to the increased
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Figure 9: Number of cores (and threads) used for baselines
verses the geometric mean speedup of SWPF, SMT OpenMP,
and Ghost Threading over multi-threading baselines. Both
the ‘no omp’ and ‘1’ columns in this figure use a single-
threaded baseline and Ghost Threading, but they are not
exactly the same: ‘no omp’ indicates that no OpenMP prag-
mas are inserted for either the baseline or Ghost Threading,
whereas ‘1’ signifies that OpenMP pragmas are enabled for
them, with only one OpenMP thread used.

competition between cores when accessing shared resources on
the server, resources such as memory bandwidth and shared cache.
Third, the initialization cost of OpenMP adds to the execution time
of both the baseline and Ghost Threading (when ghost threads are
spawned) but does not affect SMT OpenMP, wherein OpenMP is
always enabled to issue SMT thread(s). This added cost limits the
speedup obtained when using GhostThreading to 1.35× (from ‘no
omp’ to ‘1’ in figure 9). Whereas, for SMT OpenMP, we observe a
performance uplift of 9% from 1.23× to 1.32×.

6.5 Effectiveness of Inter-thread
Synchronization

One key contribution of this work is the novel inter-thread syn-
chronization mechanism. To illustrate the importance of synchro-
nization to Ghost Threading, we use cc (with urand as the input)
from GAP as a case study by sampling the distance between the main
thread and ghost thread when Ghost Threading is applied with and
without the synchronization mechanism.

The key loop comprising target loads in this case appears in
the function Afforest. Figure 10(a) shows the distance between
the two threads with and without synchronization applied dur-
ing a representative period (two million iterations) in this loop.
Without synchronization, the inter-thread distance continually in-
creases over time, failing to generate useful prefetches. But when
synchronization is applied to control the speed of the ghost thread,
inter-thread distance fluctuates within a specific range controlled
by the synchronization hyper-parameters: when the ghost thread
goes too far ahead of the main thread, it is slowed down by the
serialize instruction; when the ghost thread is too close to (or even
behind) the main thread, several loop iterations will be skipped to
accelerate it. To illustrate this behavior clearly, figure 10(b) shows
a shorter period (1000 iterations) of the target loop.
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(b) The inter-thread distancewhen the synchronization is applied
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Figure 10: Distance between the ghost thread and the main
one of cc.urand. The inter-thread distance is measured by
subtracting the main thread loop iteration number from that
of the Ghost Threading (i.e. a positive distance means that
the ghost thread is faster than the main thread).

7 Related Work
7.1 Helper Threading
Speculative Precomputation [8] issues a prefetching thread on idle
thread contexts of SMT CPUs and develops hardware structures
used to prevent the helper threads from running too far ahead of
the main thread. Jung et al. [19] present a helper threading scheme
designed for loosely-coupled processors like CMP and a compiler
algorithm that automatically extracts helper threads.

The Slipstream processor [41, 42] dynamically creates the helper
thread, which is executed on another core to boost the main thread
speed. The helper thread accelerates the main one by both branch
prediction and prefetching. Although achieving promising speedup
by issuing the helper thread, these approaches are all based on
simulation and are unavailable on real systems. In contrast, Ghost
Threading has shown promising results on real machines.

To evaluate the potential of helper threading on real machines,
Kim et al. [23] also proposed a helper threading technique via Intel

Hyper-Threading. To control of the speed of helper threads, they
developed a hardware synchronization mechanism tested on real
silicon, which takes around 1,500 cycles to suspend a thread via a
single instruction. Although achieving a one-order-of-magnitude
reduction compared to OS approaches, this hardware synchroniza-
tion mechanism is unavailable on commercialized chips and still
not fast enough to give timely control of the helper threads’ speed,
failing to generate significant performance improvements.

Kamruzzaman et al. [20] develop an inter-core prefetching ap-
proach that runs themain thread and prefetching thread on different
cores of real-world multicore processors. The demand for explicit
inter-thread synchronization is removed by switching the core used
to execute the main and prefetching threads at a fixed period deter-
mined by the programmer. Every time the main thread migrates to
a new core, the data it will use are ready in private caches due to
the prefetching thread executed on this core before. Unlike Ghost
Threading that targets improvements to single-core performance,
the inter-core approach utilizes a multi-core system (up to four
cores are needed for maximum performance).

7.2 Runahead and Other Precomputation
Techniques

Runahead [7, 12, 13, 32–36, 38, 39] is an execution-based prefetching
technique that generates concurrent cache misses by speculatively
continuing executionwhen encountering a full-window stall caused
by cache misses. The key idea is to enter a runahead mode, where
the processor checkpoints the original architectural state and spec-
ulatively fetches and executes future instructions when the pipeline
stalls. During runahead mode, no executed instructions update the
architectural state but exist solely for prefetching in case of cache
misses. The key difference between helper threading and runahead
is that runahead executes the instructions for prefetching in a spec-
ulative execution mode instead of an idle thread context, enjoying
more flexibility of starting/ending prefetching based on the dy-
namic program behavior. As a trade-off, the pipeline requires new
hardware structures, and existing structures need to be modified.

Mutlu et al. [33] define several rules to determine the timing for
entering and exiting runahead mode. Hashemi et al. [13] dynami-
cally identify address generation chains for loads and only execute
these chains in runahead mode, generating more concurrent cache
misses in the same time interval. Continuous Runahead [12] applies
an additional execution engine in the memory controller to exe-
cute the load chains identified dynamically. Precise Runahead [35]
avoids the demand for pipeline state checkpoint/restore when en-
tering/exiting runahead mode by utilizing the empty issue queues
and registers when there is a full-window stall.

Decoupled Vector Runahead (DVR) [36] takes an approach more
similar to helper threading: it offloads the runahead execution to
a subthread created when indirect memory access patterns are
detected. Compared to Ghost Threading, DVR requires hardware
support for large vectors and additional logic to execute a runahead
thread continuously.

Load Slice Core [5] extends the in-order, stall-on-use core with a
second in-order pipeline, which executes memory accesses and ad-
dress generation instructions in advance to increase MLP, boosting
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performance and energy efficiency. SWOOP [44] develops a com-
piler and architecture co-design that transforms the body of critical
loops into memory-bound access phases and compute-bound ex-
ecute phases. SWOOP dynamically jumps to access phases in the
future to bypass the stalling execute phase, hiding long latencies
of memory accesses. Both schemes require changes to the underly-
ing hardware, whereas Ghost Threading works on today’s systems
without hardware changes.

Decoupled access-execute schemes, like Clairvoyance [43], hoist
loads to the beginning of a loop (the access phase), leaving the
remaining computation towards the end (the execute phase). While
this helps resolve loads early, these approaches are limited by reg-
ister pressure or a lack of enough independent computation in the
execute phase to hide the latency of the cache misses that occur
in the access phase. In comparison, Ghost Threading decouples
the prefetching code from the original code by executing them in
different (and independent) threads, allowing the ghost threads to
prefetch deeper into the future.

SPE [31] is an execution-based prefetching technique targeting
real-world HBM systems. It extracts prefetching code in a similar
way to Ghost Threading, but executes extracted prefetching code
just before the loop containing the target load in the same thread.
By strip-mining the main loop and creating the prefetching loop
from the sub-loop, SPE avoids prefetching data from the far future
and achieves an automatic tight-lock synchronization.

8 Discussion: Limitations of Software-only
Techniques

As a software-only helper threading technique, Ghost Threading
has achieved significant improvements in performance and energy
efficiency. However, a key limitation of Ghost Threading (and other
software-only techniques) is the restricted access to low-level pro-
cessor states at run time (e.g. measuring the waiting time of a load
and detecting an LLC miss or a full-window stall) without hardware
support. Therefore, software approaches like Ghost Threading re-
quire manual tuning of inter-thread synchronization parameters
and are unable to dynamically start or terminate helper threads
when it is beneficial. Without the ability to start or terminate helper
threads flexibly, software-only techniques rely on profiling to judi-
ciously select targets for prefetching and fail to respond to dynamic
program behaviors. On the one hand, they miss prefetching op-
portunities on loads that have low average cache-miss ratios but
may still cause full-window stalls. On the other hand, they waste
hardware resources on loads that have high average cache-miss
ratios but may consistently hit the L1 cache in specific time peri-
ods. However, with a novel synchronization mechanism, like that
developed for Ghost Threading, their main benefit is that they can
be deployed immediately in real systems and provide significant
speedups over parallelization alone.

9 Conclusion
We propose Ghost Threading, a software-only helper threading
technique that issues helper threads for prefetching on idle SMT
contexts. To guarantee the timeliness of prefetching, we develop
a novel inter-thread synchronization scheme, which slows down
the helper thread with modest hardware resource consumption.

By exploiting higher MLP than conventional software prefetching
and parallelization techniques, Ghost Threading provides promis-
ing improvements over these techniques. On an idle server, Ghost
Threading reports 1.25× and 1.11× geometric mean speedup; and
11% and 5% geometric mean package energy saving over state-of-
the-art software prefetching and parallelization techniques, respec-
tively. On a busy server, it provides 1.31× and 1.13× geometric mean
speedup over state-of-the-art software prefetching and paralleliza-
tion techniques, respectively.
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A Artifact Appendix
A.1 Abstract
Our artifact provides the Ghost Threading source code and scripts
necessary to reproduce the key results presented in the paper, in-
cluding the single-core performance and energy efficiency of the
baseline, a state-of-the-art software prefetching technique, a par-
allelization technique, and Ghost Threading (figure 3 and the first
three bars of figures 6 to 8).

Our code targets x86-64 Intel machines that support Hyper
Threading [30] and the serialize instruction [15]. The serialize

instruction is available on 12th-generation (and newer) Intel Core
processors and 4th-generation (and newer) Intel Xeon Scalable Pro-
cessor families. We use an Intel Core i7-12700 processor [14] for our
evaluation and strongly recommend Intel Core processor families
to reproduce similar results.

The artifact is designed for Linux systems (we use Ubuntu 24.04).
Reproducing the experiments in figures 7 and 8 requires perf [27]
and Intel RDT Software Package [16], respectively. Compiling the
source code requires GCC/G++ and CLANG. Python3 and gnuplot
are used to analyze and plot the results.

A.2 Artifact Check-list (Meta-information)
• Algorithm: Prefetching based on helper threading.
• Program: Source code of the baseline, software prefetching version,
OpenMP parallelized version, and Ghost Threading version are
provided for all benchmarks evaluated (GAP [4] and HPC workloads
used by prior works [3, 31, 34, 36]).

• Compilation: GCC/G++ 13.0 or above and CLANG 17.0 or above.
At least 94GB of memory is needed to build the input graphs of the
benchmarks.

• Binary: Binaries are not included but can be compiled by our scripts.
• Run-time environment: Our code is for Linux (we use Ubuntu

24.04). Software dependencies include perf (whose version is related
to the Linux kernel), Intel RDT Software Package, Python3, and
gnuplot. Root access is not mandatory but highly recommended.

• Hardware: Our code only supports x86-64 Intel machines that
support Hyper Threading [30] and the serialize instruction [15].
This needs 12th-generation (and newer) Intel Core processors or
4th-generation (and newer) Intel Xeon Scalable Processor families.
At least 94GB of memory is needed to build the input graphs of the
benchmarks. We strongly recommend Intel Core processor families.
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• Run-time state: Ghost Threading is a helper threading technique
available on real systems, so its performance is highly sensitive
to the run-time system state. We strongly recommend minimizing
background activity and avoiding other processes when reproducing
our results.

• Execution: We strongly recommend minimizing background activ-
ity and avoiding other processes when reproducing our results.

• Metrics: The performance (measured by execution time) and energy
efficiency of Ghost Threading.

• Output: The artifact aims to reproduce the result of figure 3 and
the first three bars in figures 6 to 8. The CSV and PDF files will be
generated for the corresponding figures.

• Experiments: Scripts are provided to run experiments.
• How much disk space required (approximately)?: 290GB is
required after compiling our code (284GB for graphs of GAP).

• How much time is needed to prepare workflow (approxi-
mately)?: Less than 10 minutes to download dependent software
and compile the source code. Around one hour to download and
generate the graphs needed by GAP (this depends on the network
state as well).

• How much time is needed to complete experiments (approxi-
mately)?: It takes around 85 hours on our system.

• Publicly available?: Yes.
• Code licenses (if publicly available)?:MIT license.
• Archived (provideDOI)?: https://doi.org/10.5281/zenodo.16732636

A.3 Description
A.3.1 How to access. The artifact DOI points to a zipped archive
containing scripts for running experiments and source code of our
tool. We also link the GitHub page of our artifact: https://github.
com/CompArchCam/ghost-threading-eval-micro2025.git.

A.3.2 Hardware dependencies. Ghost Threading targets on x86-
64 Intel machines that support Hyper Threading [30] and the
serialize instruction [15]. This needs 12th-generation (and newer)
Intel Core processors or 4th-generation (and newer) Intel Xeon
Scalable Processor families. At least 94GB of memory is needed to
build the input graphs of the benchmarks. We use an Intel Core
i7-12700 processor [14] with 94GB memory for our evaluation and
strongly recommend Intel Core processor families.

A.3.3 Software dependencies. Our code is for Linux systems (we
recommend Ubuntu 22.04 or 24.04). GCC/G++ 13.0 or above and
CLANG 17.0 or above are required for compilation. Software depen-
dencies include perf (whose version is related to the Linux kernel),
Intel RDT Software Package, Python3, and gnuplot. Root access is
not mandatory but highly recommended.

A.3.4 Data sets. Several graphs, which are generated by our scripts,
are needed to evaluate the GAP benchmark [4].

A.3.5 Models. No specific models are required.

A.4 Installation
Install the software dependencies of the artifact on Ubuntu:

$ sudo apt install gcc g++ clang python3 gnuplot

We use perf to measure the energy consumption of our ap-
proaches for figure 7. It is a part of the Linux kernel and generally
does not need installation. If perf does not exist on the system, it
should be available in the linux-tools-generic package on Ubuntu:

$ sudo apt install linux-tools-generic

We use Intel RDT Software Package to generate memory band-
width pressure to simulate a busy server for figure 8. To install:

$ git clone

https://github.com/intel/intel-cmt-cat.git↩→

$ cd intel-cmt-cat
# installation instructions from INSTALL file
$ make
$ sudo make install
# test installation
$ membw # this shows the usage instructions

All binaries required to reproduce our results will be compiled
by the scripts provided once the software dependencies have been
installed. Download and extract the artifact or clone the GitHub
repository, then from within the directory of the artifact run:

$ ./build.sh

A.5 Experiment Workflow
Our experiments are performed by running the binaries of the
baseline, state-of-the-art software prefetching and parallelization
technique, and Ghost Threading of various benchmarks and com-
paring their performance and energy efficiency. We provide scripts
to reproduce our experimental results automatically, but the exper-
iments can also be performed manually by running binaries with
specific arguments.

A.6 Evaluation and Expected Results
Our artifact aims to reproduce four key experiments: motivational
comparison of techniques evaluated in this work (figure 3), single-
core performance of Ghost Threading on an idle server (the first
three bars of figure 6), single-core energy efficiency of Ghost Thread-
ing on an idle server (the first three bars of figure 7), and single-core
performance of Ghost Threading on a busy server (the first three
bars of figure 8).

There are three sub-folders for each experiment in our artifact:
./figure3, ./figure6, ./figure7, and ./figure8. Each folder
includes a README.md file that describes how to run the experiments
in detail.

We assume that the artifact evaluation will be conducted on sys-
tems similar to ours, so that the same (at least similar) workloads
will be selected by our heuristic as the target of Ghost Threading.
Therefore, our source code scripts use the same target loads and
workloads selected in our system to generate results by default. If
necessary, the users could manually select target loads and work-
loads themselves by profiling with the scripts in ./profile folder.

The inter-thread synchronization hyper-parameters also vary
with different system configurations. Again, our artifact uses the
parameters tuned on our system by default. If needed, the users
could tune the parameters based on their system via our scripts or
source code.

As discussed above, our experiment configurations depend on
system configurations: the target loads and target workloads of
prefetching, and synchronization hyper-parameters could change.
But our default source code and scripts should provide similar
results as long as the system does not change significantly.
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Since the behavior of the same binary could be quite different
among different systems, it is hard for us to give an exact number
of variations in the result. Meanwhile, workloads selected by our
heuristic 4.1 could be different as well. But on similar systems,
similar trends and geomean values should be observed.

A.7 Experiment Customization
The README.md files in sub-folders describe how to customize the
experiments by modifying the scripts. Meanwhile, the users can
also modify our source code to make any changes they expect.

A.8 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-and-
badging-current

• https://cTuning.org/ae
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