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Abstract

To scale ILP, designers build deeper and wider out-of-order su-
perscalar CPUs. However, this approach incurs quadratic scaling
complexity, area, and energy costs with each generation. While
small loops may benefit from increased instruction-window sizes
and large loops may see speedups via thread-level parallelism across
cores, there remains unexploited medium-granularity parallelism.

We propose LoopFrog to tap into this potential by bringing
thread-level speculation schemes into the modern era. LoopFrog
runs multiple loop iterations from a single thread in parallel within
the microarchitecture. The core can spawn future loop iterations as
new microarchitectural threadlets based on compiler-inserted hints,
which can leapfrog execution beyond the parent thread’s instruction
window, exposing a new, medium-grained parallelism, orthogonal
to traditional ILP and TLP. LoopFrog monitors data dependencies
between executing threadlets, forwards data for true dependencies
and squashes speculative threadlets on ordering violations.

Using an LLVM-based compiler to insert hints, we achieve a
geometric mean loop speedup of 43%, translating to whole-program
speedups of 9.2% on SPEC CPU 2006 and 9.5% on SPEC CPU 2017
benchmarks, with only modest area and power overheads.

CCS Concepts

« Computing methodologies — Parallel computing method-
ologies; « Software and its engineering — Compilers.
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1 Introduction

To extract ever larger amounts of ILP, modern CPUs are built
with increasingly wide microarchitectures and deep out-of-order
instruction windows, incurring significant area and power over-
heads, as well as growing design complexity. However, single-
thread performance scaling exhibits diminishing returns, as com-
plexity/area/power scaling is quadratic with sequential perfor-
mance [3], further complicating processor design trade-offs in the
post-Dennard era [6].

Thread-level speculation (TLS) [27] is a technique originally
proposed three decades ago as a means of boosting IPC. A program
would be divided into a series of tasks that are logically ordered,
but may execute speculatively in parallel. In the event that no data
dependencies exist dynamically between tasks, this speculative
parallelization would enable a processor to execute programs faster.
While this demonstrated promising speedups, fine-grained TLS did
not see commercial deployment, with vendors instead preferring
wider and deeper cores with more aggressive speculation through
long out-of-order windows as a means of boosting ILP. At this point,
the proposed benefit of fine-grained TLS has been subsumed in
general microarchitectural ILP advancements.

In this paper we revisit TLS in the modern era, using it to expose
untapped ILP at medium granularity [34], beyond the capabilities of
modern out-of-order cores. This different granularity and the highly
improved baseline microarchitecture both present new challenges,
but also opportunities.

Our approach, LoopFrog, is an in-core microarchitectural loop
parallelization scheme, relying on architectural hint instructions.
These hints do not change the semantics of sequential execution,
but serve to indicate detach and reattach points for light-weight
OS-transparent threads, called threadlets, which can speculatively
execute work in parallel, thus increasing pipeline utilization. On
reaching a detach point, the microarchitecture may choose to copy
the current register state to a new threadlet and start its execution
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Figure 1: Geomean instructions per cycle (IPC) and commit
utilization of SPEC CPU 2017 intrate C/C++ benchmarks mea-
sured on four different commercial Intel microarchitectures.

at the reattach point, in parallel with the main execution, using the
spare back-end resources of the core. If there are no memory or
register conflicts between the threadlet and the main thread, this
speculative work can eventually be committed.

Through-memory inter-threadlet data dependencies are handled
by a new speculative state buffer (SSB), which sits between the
store buffer and the L1 data cache. The SSB forwards memory data
from older to younger threadlets and identifies true data depen-
dency violations, which require squashing the younger threadlet
and restarting it. Ultimately, threadlets are only retired if no con-
flicts occur, ensuring LoopFrog preserves the exact same semantics
as sequential execution. LoopFrog carefully preserves the architec-
tural memory ordering model, a key requirement for compatibility
with modern multicore systems.

We evaluate LoopFrog using the SPEC CPU 2006 and CPU 2017
benchmark suites, showing geometric mean whole-program speed-
ups of 9.2% and 9.5% respectively. Our main contributions are:

o A lightweight ISA extension and execution model, which
allow the compiler to expose ordered, speculative task paral-
lelism to the microarchitecture using hint instructions.

o Extensions to a general-purpose CPU microarchitecture to
exploit this speculative parallelism at low overhead.

o A detailed characterization of speedups and their causes.

2 Background and Motivation

High-performance microprocessors exploit instruction-level paral-
lelism (ILP) to quickly execute programs. State-of-the-art processors
may execute as many as ten instructions per cycle (IPC) on a single
thread, and there is a trend towards increasing widths across the
industry. Figure 1 shows the geometric mean IPC of the SPEC CPU
2017 intrate C/C++ benchmarks measured on four different Intel
microarchitectures. Notably, we see a strong linear relationship
between the microarchitecture’s designed front-end width and the
measured geometric mean IPC. In other words, recent wider mi-
croarchitectures are better able to extract ILP from these workloads,
increasing instruction throughput.

However, if we consider the percentage of instruction commit
bandwidth used for these same processors, we see the opposite
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trend — the wider architectures have a lower fraction of commit
utilization. Given that these wider microarchitectures have more
back-end resources, this trend suggests there is an ever increasing
amount of unused resources that do not contribute to IPC (most of
the time) in newer, wider processors. This presents an opportunity
for optimization that we explore in this work: a scheme to use these
back-end resources to further boost IPC. If microarchitectures do
indeed continue to scale to be even wider in the future, we consider
it likely that there will be an increasing amount of under-utilization
of back-end resources, so any scheme that can beneficially use these
resources will become even more effective.

We build on the idea of thread-level speculation (TLS or SpMT).
Originally introduced by the Multiscalar project [27], TLS partitions
the program into tasks that are speculatively parallelized. If conflicts
arise, tasks are squashed and subsequently re-executed. We discuss
the flavors of TLS in section 7.

3 LoopFrog Architecture

LoopFrog is an in-core TLS scheme designed to make use of idle
back-end resources in wide high-performance microprocessors.
LoopFrog does not target the additional parallelism available in a
multicore system (across-core parallelization), but instead focuses
on maximizing resource utilization within a single core (in-core
parallelization). The trend towards wider and deeper microarchi-
tectures to support high ILP peaks provides a performance scaling
opportunity for LoopFrog, which can improve core utilization in
non-ILP-dominated phases by supplementing them with additional
instruction-level parallelism from parallel regions.

We have a strong focus on carefully reducing the barriers to entry
for successful deployment. To that end, we keep our approach in-
core and hint-based, thus minimizing the impact on the system and
retaining already-exploited parallelism. Overall, the programmer-
visible semantics of the program are designed to be identical in the
case that the LoopFrog hint instructions are treated as nops, allowing
architectural backwards compatibility to existing processors.

LoopFrog introduces three hint instructions (detatch, reattach
and sync) that are placed in loops. Each iteration of a loop can
be seen as a sequence of header, body and continuation sections,
the boundaries of which (along with loop exits) are marked with
hints, as shown in figure 2(a). The hints do not change the sequen-
tial semantics of the program, which must be preserved by the
microarchitecture, but instead serve as guidance to enable addi-
tional speculation. Sequential execution progresses as shown in
figure 2(b), with the out-of-order instruction window (shown as
‘000 window’) moving downwards in program order.

The header and continuation contain all register loop-carried
dependencies (LCDs), such as induction-variable updates or linked-
list traversals. Currently, only loops with relatively simple register
LCDs are suitable for parallelization with LoopFrog: no register
dataflow is permitted between the body and the continuation, so
they both can only consume input register values from their iter-
ation’s header. Thus, after executing the header for an iteration,
it becomes possible to start executing the body and continuation
in parallel, as shown in figure 2(c). This allows the core to exe-
cute instructions from a window that is split across multiple quasi-
independent regions, increasing the available ILP.
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Figure 2: Static and dynamic view of loops. LoopFrog enables the processor to extract ILP from multiple quasi-independent

regions.

The core uses threadlets to execute the continuation and sub-
sequent iteration(s) in parallel with the current iteration’s body.
These are lightweight execution contexts internal to the core, com-
pletely transparent to the operating system and the programmer. The
set of instructions executed by a threadlet is called an epoch (one
continuation-header-body triple here). Epochs are strictly ordered
based on original program order.

Breaking the current iteration’s continuation into a separate
epoch allows the core to update the simple register LCD values for
the next iteration and start executing its header and body in a new
threadlet, in parallel with the current iteration’s body. The second
iteration can then initiate parallel execution of a third epoch to run
its continuation in a new threadlet, and so on, until all threadlets
in the microarchitecture are utilized.

It is worth noting that the header, body and continuation often do
not line up with programming-language or compiler concepts, and
instead refer to the sections separated by the detach and reattach
hints. Equivalently, the body is the section that is free from any
register LCD updates, and can thus be easily parallelized with future
sections. Therefore, theoretically the LoopFrog compiler can insert
these hints into every loop, although the size of the resulting body
may be small for loops with complex chains of through-register
LCDs. An overly small body results in insufficient parallelization
and poor performance.

3.1 Parallelization Hint Instructions

For loops that are candidates for parallel execution, the header—body
and body—continuation boundaries, as well as loop exits, are

annotated using new branch-like hints, called detach, reattach

and sync (respectively), as shown in figure 2(a). Such hints en-

able the microarchitecture to identify the boundaries of paral-

lel epochs: an epoch starts at header—continuation and ends at

body—continuation.

The proposed hint instructions are inspired from Tapir [23],
which embeds asymmetric parallelization directives into LLVM to
support explicit (i.e. user-specified — Cilk or OpenMP) parallelism in
the compiler, without breaking SSA form and most compiler analy-
ses that rely on it (unlike symmetric fork-join directives). However,

instead of focusing on explicit parallelism, we utilize similar direc-
tives as hints for implicit (i.e. speculative) parallelism instead. The
machine instructions each carry the continuation block’s address,
which serves as a unique region ID for each annotated loop.

A detach marks a potential fork point: execution can proceed
in parallel from here (if the microarchitecture supports it). The cur-
rent epoch will continue executing from the next instruction, and
the successor epoch can be launched in a new threadlet, from the
continuation address C, executing speculative work. The successor
epoch inherits the register state of its predecessor upon detach.
At this point, the current epoch has ‘detached on region C’, and it
will ignore all hints except reattach Cand sync C.If it encoun-
ters reattach C, then it has caught up to the successor’s starting
point, and halts. If/once its state has been committed (merged) to
architectural state, the successor’s state can be committed. Once
the current epoch commit succeeds the threadlet can be recycled,
making the successor the oldest, non-speculative threadlet. If, on
the other hand, sync C is encountered instead, then the current
threadlet exits the speculative region, which means that the succes-
sor threadlet spawning was due to a misspeculation. In this case,
the successor is squashed (along with any chained successors), and
the current threadlet, once it becomes non-speculative, continues
sequential execution of the code after the sync C. Thus, the sync
annotation, on each exit edge, enables early exits from the body by
canceling all successors if a given epoch exits the loop. Note that
the body is always a contiguous slice of the dynamic instruction
stream (even if it is not laid out contiguously in the static binary).

3.2 Preserving Sequential Semantics

Because LoopFrog is an implicit parallelization scheme, the sequen-
tial observable semantics of the original serial program must be
strictly preserved. The microarchitecture is responsible for main-
taining the illusion of sequential execution. Since our epochs are
strictly ordered, there is a well-defined total order in which mem-
ory operations and side-effects should appear to happen logically.
Thus, all threadlets must execute speculatively, other than the one
executing the oldest epoch, which is executing architecturally. For
speculative threadlets, the microarchitecture must transparently
buffer all memory writes (and pause execution before side-effecting
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operations like exceptions, barriers or IO) until the threadlet can
become architectural, in the correct sequential program order. For
speculative threadlets that become architectural, their buffered up-
dates are merged with the global architectural state and are visible
to the system in the correct sequential program order. This in-order
commit requirement for threadlets eliminates WAW hazards. We
implement multi-versioned copy-on-write into speculative buffers
for threadlets to eliminate WAR hazards as well. Our proposed
scheme is also capable of handling other corner cases of the target
architecture memory model, for example, for Arm, RAR hazards to
the same memory location.

3.3 Nested Regions

Our architecture permits nested parallel regions (e.g. an inner loop
inside the parallel body). Handling such nesting is up to the micro-
architecture. Our experiments currently only parallelize one region
at a time, using the continuation address as a region ID to identify
and ignore hints belonging to inner regions if an outer region is
already being executed in parallel. A different implementation may
dynamically choose the best nesting level to speculate on, or keep
track of profitable/unprofitable region IDs.

Nested parallelization at run time is architecturally permitted
with the existing hints. So long as all nested regions have distinct
IDs, the microarchitecture can parallelize epochs fractally [29],
while maintaining total ordering across all epochs. However, given
the small number of threadlets in our conventional CPU target,
implementing this was not a priority.

4 LoopFrog Microarchitecture

The microarchitecture for executing LoopFrog regions features a
high-performance SMT-like pipeline, supporting multiple threadlet
contexts (executing parallel epochs). Each threadlet has its own
program counter, architectural registers, and logical slice of the
ROB, and instructions are tagged with a threadlet ID in the pipeline.
Therefore, microarchitectural events such as branch predictions
affect instructions only within the same threadlet, and the progress
of different threadlets is decoupled at each stage of the pipeline.

As each threadlet executes a different program epoch, and epochs
are strictly ordered, a total program order is maintained among all
instructions and can be established using the epoch number and the
instruction sequence number. The oldest threadlet is architectural,
representing the state of the program, while all other threadlets
are speculative, and the microarchitecture can freely drop (squash)
them at any point if it decides to do so (for example, due to a
microarchitectural buffer overflow or a dependency conflict).

In order to preserve the sequential semantics of the program,
speculative threadlets are applied (committed) in program order.
Furthermore, threadlets must be squashed if they conflict with a
past epoch (that is, if an unhandled dependence violation occurs). In
effect, our scheme has two levels of commit. First, instructions com-
mit to their threadlet, and second, speculative threadlets commit to
the architectural state of the program once all older threadlets have
finished and they are verified to be non-conflicting. Note that each
threadlet commits when it becomes the oldest and conflict-checked,
and thus it may still have instructions left to execute or commit.
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Future instructions committed to this architectural threadlet com-
mit directly to the architectural state, as the threadlet cannot be
squashed anymore.

In a multicore system, the architecture’s memory model imposes
restrictions on programmer-observable memory orderings across
cores, which LoopFrog explicitly preserves. This requires that spec-
ulative threadlets’ memory updates must be hidden from other
cores until they become architectural. Additionally, threadlets must
be squashed if they can no longer be cleanly committed. For exam-
ple, if another core modifies or observes shared memory in a way
that cannot be reconciled with the accesses of the threadlet due to
the architecture’s memory model.

To track dependency violations between threadlets in a core, all
memory accesses update the conflict detector, which finds conflicts
by tracking the read and write sets of each threadlet. This informa-
tion is updated in parallel with the access. Memory accesses from
the architectural threadlet are dispatched directly to the L1 data
cache (L1D) and are externally observable, but they still update the
conflict detector (as a speculative threadlet can conflict with them).

Memory accesses from the speculative threadlets are intercepted
by the Speculative State Buffer (SSB), which sits between the L1D and
the memory pipe. The SSB has three main functions. First, it buffers
speculatively written data, hiding it from the memory system (and
external observers), as well as accesses from older threadlets. Sec-
ond, it serves up-to-date data to speculative threadlets, acting as
a multi-versioned cache. Third, it enables commit and writeback
of buffered data without violating memory-ordering constraints.
Specifically, the SSB participates in the coherence protocol to facili-
tate ordered or atomic commit of threadlets, even in the presence
of memory traffic from other cores.

Figure 3 shows an overview of the CPU pipeline with resources
the threadlets partition, duplicate, or share. Sharing stages is a
well-known technique, widely used in simultaneous multithread-
ing processors, thus is not discussed here. Dynamic partitioning
can be achieved using linked-list structures [8], as implemented
by IBM POWERS5 [25] and POWERS [26]. Older threadlets have
priority when making allocations. We add an SSB (see section 4.1),
conflict detector (section 4.2), and a checkpoint store to the core. A
checkpoint is a snapshot of register state, created when a threadlet
starts executing a new epoch. If the threadlet is squashed, we load
the checkpoint back in and restart it (if multiple threadlets are
squashed, only the oldest one is restarted). Checkpoints can be
taken by copying the register rename map and preventing physical
registers from being recycled. This can be performed lazily in the
background; thus it need not result in a delay.

4.1 Speculative State Buffer

Logically, the SSB holds the values in memory written by each
threadlet, addressed by memory address and threadlet ID. Incom-
ing (speculative) memory accesses are tagged with the ID of the
threadlet that issued them. Speculative writes store values to the
SSB, while speculative reads look up the SSB in parallel with the L1
data cache. The logic in the SSB constructs the most up-to-date data
for that threadlet using the result of the SSB and L1D lookup. This
multi-versioning logic eliminates output (write-after-write) and
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threadlets, except as indicated. Instructions are tagged with a threadlet ID, and can dynamically co-exist in most structures.
The ROB and LSQ are dynamically partitioned into private slices (without expanding them). The fetch queue and rename maps
are duplicated to store threadlet-specific information, and three new structures are added for storing speculative data and

checking speculation.

false (write-after-read) dependencies, and also eliminates true read-
after-write hazards when the read is (correctly) performed after the
write, as described in section 4.1.3. Order violations within each
threadlet are handled by the load-store unit in the pipeline as usual,
true read-after-write violations between threadlets are detected by
the conflict detector (see section 4.2), and conflicts between cores
are handled by the SSB’s coherence logic (section 4.1.4).

The rest of this section discusses the organization of data into
granules and cache lines (section 4.1.1), the structure of the SSB
(section 4.1.2), the versioning logic (section 4.1.3), and the coherence
aspects, including threadlet commit (section 4.1.4).

4.1.1  Granules and Cache Lines. Data in the SSB is organized into
cache lines composed of small granules. This structure helps to
manage metadata, and simplify the conflict checking and access
logic.

A granule is the smallest unit of data tracked for conflict checking
in the SSB. This could be as little as a byte, a word, or up to as
much as a full cache line, as defined by the implementation. The
cache line size should be a multiple of the granule size. Reads and
writes operating on any part of the same granule are considered
as overlapping and thus conflicting by the conflict detector. If, for
example, the granule size is a word and a store updates a byte
in that word, then the SSB executes a read of the whole granule
followed by a write with the modification present. The read fills in
the unwritten portion with up-to-date data from prior threadlets
or main memory. This additional (false) read may lead to a read-
after-write conflict, due to false sharing. The larger the granules,
the more additional false sharing conflicts will likely occur, but the
smaller the conflict checking storage overhead.

A cache line is the unit of allocation and storage within the SSB.
Metadata, including address and threadlet ID, is stored per cache
line. Each cache line may consist of multiple granules. We store
a bitmask per cache line to identify valid granules (i.e., granules
that the SSB contains) within the line. The SSB only reports a hit if
the valid bit is high for a granule targeted by an operation. Upon a
speculative store, additional granules may be written to the cache

line, and the corresponding valid bits are set. During cache write-
back when a threadlet commits, the SSB uses byte-masked writes
(or multiple writes if not supported) in case only some granules are
valid within the current line.

4.1.2  Structure of the SSB. Figure 4 shows an example of the high-
level structure for an SSB supporting 4 threadlet contexts. The SSB
features a separate slice for each threadlet, storing values created by
that threadlet. For three of the contexts, these values are speculative,
and for the fourth one - identified by the S, counter — they are
architecturally visible, thus they respond to coherence requests
from the memory system, as described in section 4.1.4.

Squashing is implemented by bulk-invalidating all entries in the
affected slices. Speculative writes insert or update entries in the
slice corresponding to their threadlet. Speculative reads trigger a
parallel lookup for the load address in all SSB slices as well as the
first-level data cache (L1D). Together with the S, counter and
the threadlet ID of the load, the results are all fed into the logic
described in section 4.1.3 to derive the final, most up-to-date value.
Snooped coherence requests trigger a lookup in the architectural
slice, and any requested values are flushed to the memory system.

The structure of each slice is also shown in figure 4. The slice is
very similar to a standard associative cache. Additionally, each line
has a bitmask V identifying valid granules in it, and a hit is only
reported if the requested granule’s line is present and the valid bit
for the granule is set. This means the cache can also yield a partial
hit. A counter is added to track the number of lines present. Once
the slice becomes architectural, its data is gradually flushed to the
memory system using unused bandwidth. With each flushed line,
the counter is decreased. Thus, the slice is fully flushed and the
slice can be recycled once the counter hits zero.

A small, fully associative victim cache may be added to each
slice to increase effective associativity. Note that speculative writes
cannot be discarded or evicted without causing the threadlet to fail.
Therefore, the threadlet needs to be stalled or squashed in case the
SSB slice is full, or if it cannot take a write due to low associativity.
The victim cache reduces the occurrence of the latter case.
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Figure 5: Example lookup of speculative values. The load
from threadlet 1 (T'1) observes the most recent value for each
granule, ignoring younger threadlets.

4.1.3  Versioning Logic and Value Forwarding. It is possible to have
SSB slices work completely independently, with each operation
only performing a lookup in the corresponding slice. However, in
this case, we suffer a memory conflict whenever the write set of one
threadlet overlaps with the read set of a concurrent threadlet, even if
the accesses occur in the correct order. Although these are true read-
after-write conflicts, we can eliminate them by performing lookups
in all slices, and combining the results carefully. Figure 5 shows the
result of this logic. The newest value across the memory system
and all older threadlets is returned for each granule, while values
from younger threadlets are ignored. This forwarding also ensures
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that a re-execution of a conflicting read will correctly observe the
prior write and thus avoid triggering the same conflict again.

For a speculative load, we can use the threadlet number T of the
lookup, and the number of the architectural slice S, to work out
the ordering of threadlets, and thus the values to take. Main mem-
ory contains the oldest values, followed by the slice S, which
corresponds to the architectural threadlet. Then, incrementing the
threadlet number (modulo the total number of threadlets) one-by-
one yields newer and newer threadlets. Threadlets younger than
T are younger than the load instruction. Thus, they contain val-
ues created later in program order, and we ignore them during the
lookup. This method can be implemented as a simple combinational
logic circuit.

4.1.4  Coherence and Commit. By performing speculation, LoopFrog
reorders memory operations. Through a combination of multi-
versioning, value forwarding, and squashing, we have ensured that
the single-threaded semantics of the program are never changed.
However, modern architectures also place limits on the reordering
of memory operations from the point of view of an external ob-
server. Specifically, LoopFrog must adhere to the memory model,
and only reorder memory operations if this is allowed.

To achieve this, LoopFrog never changes the order in which
operations are exposed. As the precise ordering between operations
from the same speculative threadlet is lost, these are all exposed
atomically, at the same time, at threadlet commit. Architectural
accesses are exposed immediately, just as during single-threaded
execution.

Atomic commit is implemented similarly to hardware transac-
tional memory [11, 13], although deadlocks and livelocks cannot
occur in our case (since we only attempt to commit each threadlet
once, and continue in architectural mode upon a failure). To facili-
tate atomic commit, the SSB sends coherence messages during the
lifetime of the threadlet to obtain affected cache lines. Lines in the
read set are obtained in readable (e.g. Shared) state, and lines in the
write set in a writable (e.g. Modified) state. If another cache later
requests a line in an incompatible state, then the line is given up
and the threadlet is squashed. To do this, the SSB snoops coherence
traffic, and checks requests against the read and write sets of the
conflict detector (see section 4.2). Once all lines are obtained and
the threadlet becomes the oldest, atomic commit can occur. The
Saren counter is incremented in a single cycle, making all lines in the
the corresponding SSB slice part of the coherent memory system at
once. The SSB slice continues to snoop coherence requests for lines
it has (i.e. the part of the write set not yet flushed), and it responds
by flushing data immediately so that the requester gets the updated
version.

We consider the ability of the SSB to respect the memory model
and hide speculation from the memory system crucial for deploya-
bility, since doing so maintains the correctness of multi-threaded
programs, shared memory mappings and memory-mapped files
and devices. Even on relaxed memory architectures (such as Arm
or RISC-V), this is necessary, as some limits are still in place on
reordering (e.g. between address or data-dependent instructions, or
for special memory). Without this commit mechanism, the memory
system and architecture would need to be redesigned.
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Algorithm 1 Conflict detection logic.
Require: Read and write sets Rn(T), Wr(T) for each threadlet T

1: function SPECULATIVEREAD(Granules G, Threadlet T)
2: Fwd < G\ WR(T) // Derive forwarded set.
3: RD(T) — RD(T) U Fwd  // Granule read by threadlet iff forwarded.

4: function WrITE(Granules G, Threadlet T)
5: WR(T) «— WR(T) UG //Add to write set.
6:
7: // Check for conflicts
8 Fwd « G
9 for all ¢ from Successor(T) to YOUNGESTTHREADLET()
10: if Fwd N RD(t) # 0 //t observed stale value!
11: SQUASH(t)  //Squash and restart t, recyclet + 1, +2, ...
12: break
13: Fwd < Fwd\ WR(t) //Allg € Wr(t) forwarded from t, not T.

4.1.5 Implementation Choices. Note that while we treat the SSB in
the preceding discussion and our experimental setup as a distinct
microarchitectural component, the functionality it provides could
in fact be subsumed by either the store/merge buffers in the core,
or by a multi-versioned L1D, if the relative structure sizes allow.

4.2 Conflict Detection

The conflict detector checks the speculation for correctness, and
initiates corrective action in the form of squashing threadlets if any
speculative reads obtained stale data due to incorrect reordering
with prior writes. The conflict detector checks for true read-after-
write dependencies between threadlets in the same core, where the
read is from a later threadlet but it was serviced before the write in
the SSB. Note that all other types of conflict are handled without
squashing, as described in section 4.1.

To find violations, the conflict detector maintains the read and
write sets (RD(T), Wr(T)) for each threadlet T, and performs checks
on speculative reads and all writes, as shown in algorithm 1.

Upon a speculative read, no conflict can be discovered (as the
read is the latest operation seen), so we simply update the read
set of the threadlet. Granules already in the write set have been
produced by prior writes in the same threadlet and not writes in
prior threadlets. Thus, we exclude these from the threadlet’s read
set. This is safe, as the values read are always up to date due to
ordering within each threadlet.

Upon a write, we add the written granules to the write set for
later, and iterate over all younger speculative threadlets ¢ to check
for conflicts between the current write W and reads R from future
threadlets that were executed before W. The Fwd set contains the
granules created by W that the read R from threadlet t should
observe. Before incrementing ¢, we exclude granules in the write set
of t from Fwd. To understand why, consider a sequence of accesses
to the same location in the program: writes Wy, ..., Wy, followed by
aread R. Clearly, R should (only) observe W,,, as Wy, overwrites the
values produced by prior writes Wy, ..., W,_1. If R reads this value,
then there is no conflict, otherwise there is a conflict between R and
W, In the algorithm, consider W = W;. For any granule g, having
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g € WR(t) means there is an intervening W, between W and all
reads R from threadlets ¢’ younger than t, for granule g. R may or
may not conflict with W;,, depending on the timings of accesses,
so we do not squash during the current conflict check (from W).
Instead, the conflict check initiated by W}, is guaranteed to pick up
the conflict if it occurred. If we do identify a conflict, there may still
be intervening writes in program order (which have not happened
yet), but a conflict is inevitable, and so we squash immediately.

During the lifetime of a threadlet, conflict checking can safely
run in the background, without impeding accesses; thus its latency
is not critical. However, before the threadlet commits, all checks
targeting its reads need to finish. We add a small delay to account for
in-progress conflict checks to finish before the threadlet commits.

The read and write sets of threadlets may be implemented in
hardware using Bloom filters, similarly to prior work [12]. Doing so
leads to a low false-positive rate, but guarantees no false negatives,
making the approach safe and efficient.

4.3 TIteration Packing

A number of loops with largely independent iterations are small,
containing only tens of instructions on average (sometimes with
high variability). If iterations are too small, naive parallelization
will result in a slowdown. For LoopFrog to expose additional paral-
lelism, speculative threadlets need to jump ahead of the baseline
CPU’s out-of-order window, or at least past some hard-to-predict
branches. Furthermore, even LoopFrog’s thread spawning over-
heads (e.g. frontend pipeline latency) become significant on such
an ultra-low scale.

Thus, to increase the size of each epoch, the microarchitecture
can choose to jump further ahead on detach and pack N loop
iterations into each epoch. When detaching from iteration I, the
microarchitecture predicts the register starting state of iteration
I+ N. The successor is assigned to execute from I + N onwards, and
the current threadlet will execute the iterations until that point.

We use the first few iterations of each loop to train three predic-
tors, which work together to control iteration packing. The first
estimates the size of each epoch to derive a reasonable packing
factor, targeting a specific epoch size. The second predictor predicts
the set of induction variables (IV) (or other loop-carried depen-
dencies) based on cumulative read and write sets across iterations.
We treat a register as an induction variable if it is both in the read
and write sets (that is, it changes) and the new value is consumed
in a later iteration. The third predictor performs value prediction
on the suspected induction-variable registers. Iteration packing is
only performed if the value predictor can confidently predict all
IV registers. The microarchitecture compares predictions to final
values, and it safely updates mispredicted registers, or squashes the
successor if the stale value has already been consumed.

The general technique of iteration packing can be applied with
arbitrarily complex predictors. In particular, we could use any value
predictor to handle complicated loop-carried dependencies and
find the optimal packing factor. For example, the microarchitecture
could execute N copies of the continuation and header (which
essentially form the precomputation slice [16]) before entering the
body. Note that the microarchitecture still needs to verify either



MICRO 2025, October 18-22, 2025, Seoul, Korea

the final values computed by the p-slice, or its execution, as the p-
slice could conflict with the body. We found that even rudimentary
predictors suffice to make a difference and tackle the common case.

To set the packing factor, we calculate an exponential moving
average (EMA) of past iteration sizes to estimate the likely iteration
size S. This can be updated using simple logic S « aS + (1 — )],
where I is the size of the new iteration, and 0 < « < 1 is a constant,
yet it characterizes common patterns (e.g. constant, phase-based,
or noisy sizes) well. We then choose the smallest packing factor P
such that P X S is greater than the ROB size.

To handle the common case of linear iteration, we use a simple
strided predictor to predict the value of induction variables. That
is, the next value is always predicted as the current value plus a
fixed offset. A saturating confidence counter is used to check pre-
dictions (with small positive update on success and large penalty
on failure). Both the starting value and offset are reset if confidence
hits zero. This predictor is simple, quick to train, and covers strided
induction variables with occasional conditional updates. We found
mispredictions to be rare whenever confidence was high enough for
packing to occur. These cases were caught by comparing and veri-
fying register start states. Note that memory conflict detection and
disambiguation are also still performed as described in sections 4.1
and 4.2.

5 Compilation and Loop Selection

Although a LoopFrog compiler is not the main focus of this pa-
per, the relatively simple code-generation requirements are a key
strength of the technique, especially compared to schemes based
on tasks [27, 33], pipelining [19] or auto-parallelization [5, 31].

Code generation for LoopFrog has three main components: loop
selection, hint insertion, and transformations to increase parallelism.
Our prototype requires manual loop selection using #pragma an-
notations, but performs hint insertion automatically. Optimizing
transformations (beyond standard -03 passes) are left to future
work.

5.1 Loop Selection

In our prototype, we use profiling information to annotate the most
profitable loops in the source code, thus simulating perfect static
loop selection. The best loops are picked, but the microarchitecture
parallelizes all occurrences of them (except those nested in another
parallel loop), even if some are unprofitable.

Automatic loop selection is an interesting problem that should be
considered both statically and dynamically. Static selection should
exclude loops very unlikely to be profitable, while dynamic selection
avoids unprofitable parallelization by ignoring hints and treating
them as a NOPs. Thus, the overhead of a dynamically de-selected
loop is two NOPs per iteration (plus one at the loop exit). This
adds costs in very tight inner loops (which should thus be statically
deselected), but has negligible impact in larger loops on a wide out-
of-order superscalar core. Additionally, unprofitable loops must
be excluded by either static or dynamic deselection, as they may
lead to slowdown (up to 10% in our tests). Typically, these loops
either have very frequent conflicts, overflow the SSB, have low
iteration counts, or they already achieve near-maximal performance
in the baseline core due to out-of-order execution. A good solution
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to loop selection will likely use a combination of compiler static
analysis, binary profiling techniques, and run-time performance
monitoring. The latter may be based on performance counters,
or trying both sequential and parallel versions. The boundaries
between these components, interfaces for encoding information
and possible heuristics present a rich field for future research.

5.2 Optimization

We execute our compiler pass after running all standard compiler
optimization passes (-03), including vectorization. In addition to
this, we do not perform any LoopFrog-specific optimizations. Such
optimizations could increase the size of the parallel body by elimi-
nating or moving loop-carried dependencies. Compiler unrolling
could also be used together with code motion to increase the size
of iterations and each parallel body.

5.3 Hint Insertion

The compiler pass inserts hints automatically into each selected
loop. To do this, it annotates every loop exit edge with a sync,
and considers possible placements of detach and reattach. The
placement of these hints determines the boundaries of the three
loop sections, the header, body and continuation. The header is the
region above the detach, the body sits between the two hints, and
the continuation is the region below the reattach. Since the body
contains the parallel code, we try to maximize its size. However, the
compiler must ensure that no true register loop-carried dependence
exists between the body and future sections. This excludes some
detach-reattach pairs. The current prototype does not consider
through-memory LCDs (except those lowered due to register pres-
sure in the backend) and just blindly maximizes the body size based
on profiling information.

6 Evaluation

In this section we show that our implementation is able to take
advantage of parallelism exposed by the compiler hints. We demon-
strate that this can translate to meaningful whole-program speedups,
even for historically hard-to-parallelize general-purpose workloads.

6.1 Setup

We evaluate our proposal for a 4-threadlet configuration using an
extended gem5 [2] CPU model, based on an 8-wide OoO microarchi-
tecture described in table 1. All resources are dynamically shared
between the threadlets', thus our speedups come from better uti-
lization of existing resources. We duplicated the fetch queues per
threadlet to better simulate a modern, decoupled front-end. Shar-
ing branch predictor tables appears to work relatively well due to
TAGE’s ability to learn noisy patterns, although a LoopFrog-aware
branch predictor may be beneficial. We do not model the Bloom
filters (but account generously for the checking latency), as we be-
lieve false aliasing is a second-order effect (due to our fine-grained
granules). With a naive design, this could lead to 2% of epochs fail-
ing, but improvements — such as more detailed secondary checks —
are possible.

!Partitioning statically into 4 threadlets inside each parallel loop (even if only
fewer threadlets are alive) produced similar speedups as long as the whole ROB could
be used outside of parallel loops.
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Core
Pipeline 4 GHz, 8-wide, dynamically shared by 4 threadlet contexts
Fetch 4 fetch buffe_rs (Partitioged 1X4/2x2/4x1), max 4 insts
per buffer, picking < 8 insts/cycle/threadlet
Structures Dynamically shared: 1.024-entry ROB, 384-entry 1Q, 256-
entry LQ and SQ, Duplicated: 32-entry Fetch Queue
Register File 1024 int & 768 fp physical registers
FUs/pipes 7 ALUfBranch, 2 ALU+Mu1+Div, 4 SIMD+FP (2 Di-
v/Sqrt/SimdMul + 2 SimdShift/Cvt), 4 Load, 2 Store pipes
256 Kbits LTAGE [24] (13-component TAGE + 256-entry
Branch Pred Loop), 4096-entry BTB, 48-entry RAS. Tables shared and
updated by all contexts. (Global) history per threadlet.
SSB
Work Queue 72-entry (incl. architectural and reattach ops)

Granules & lines 4B granules, 32 B cache lines

Granule Cache 4 slices, 8 KiB in total, associativity not modelled
Access Latency 1-cycle writes, 3-cycle reads (incl. L1D lookup)

4-cycle checking latency. No false positives modeled (ideal-

Conflict checking ized Bloom filter)
Memory System
L1l 64 KiB 4-way, 1-cycle hit, 16 MSHRs (X8 targets)
L1D 64 KiB 4-way, 2-cycle hit, 10 MSHRs (X 16), 12 write buffers,
stride (degree: 2) prefetcher
L2 4 MiB 8-way, 11-cycle hit, 32 MSHRs (X 16), 32 write buffers,

tagged, stride (degree: 8) and neighbor prefetchers
DRAM 32 GiB DDR3-1600 RAM (~ 60 ns access latency, 100 GiB/s)

Table 1: Simulation parameters for an aggressive 8-wide core.

The binaries were obtained using the LLVM [14] compiler en-
abling all -03 optimizations, including vectorization, as described
in section 5.

We select up to 15 SimPoints [10] per workload, each SimPoint
containing 250 million instructions with a warmup period of 50
million instructions to evaluate speedups on full runs of these
benchmarks. Clustering yields 8-13 SimPoints for most workloads.
We run the gem5 simulation twice per SimPoint. In the baseline
run, hints are ignored (no speculation), whereas in the second
run, LoopFrog performs speculation, guided by hint instructions.
Then, using SimPoint data (representative weights, instructions
per SimPoint and in the benchmark), we estimate the run-time
with and without LoopFrog speculation. Finally, we divide the total
run-times to obtain per-benchmark speedups. We calculate other
statistics similarly based on SimPoint weights.

6.2 Whole-Benchmark Speedup

Figure 6 shows our whole-benchmark speedups over SPEC CPU
2006 and CPU 2017 benchmarks. The geometric mean speedup is
9.2% for CPU 2006 and 9.5% for 2017. LoopFrog accelerates 34 out of
all 47 benchmarks by more than 1%, including 13 out of 20 in CPU
2017. We focus the rest of our evaluation on these 13 benchmarks.
Out of them, 5 achieve over 10% speedup, with imagick gaining
87%, omnetpp 54%, nab 15%, gcc 12% and xalancbmk 11%. There are
also 11 benchmarks from the 2006 suite gaining over 10%.

6.3 Speculation and Region Speedup

Note that the speedups in section 6.2 are over the total run time of
the benchmarks, including parallelized loops and sequential regions,
which do not get an uplift. To achieve this, our loop speedups are
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significantly higher, ranging up to 2.9, with 6 loops achieving over
2x loop speedup, and 44 loops speeding up by 20% or more. Figure 7
shows the degree of LoopFrog threading over the lifetime of each
benchmark. We had at least two threadlets active on average 42% of
the time in the 13 profitable benchmarks (29% over all benchmarks),
and all four threadlets were active 23% of time (16% overall). Using
Amdahl’s law, this translates to a 43% geometric mean in-region
speedup across all CPU 2017 benchmarks.

Figure 8 shows the contributions of architectural execution and
speculation to overall performance improvement, as well as ad-
ditional failed speculation on top. On average, the architectural
threadlet is slowed down by 6% compared to the baseline, due
to resource sharing. The decrease is limited by LoopFrog always
prioritizing the oldest threadlet. Slowdown occurs due to priority
inversion on long-term resource allocations (e.g. ROB slots, mem-
ory bandwidth) as well as perturbations to predictor inputs. In some
cases, we see an uplift in architectural performance, which is due
to the prefetching side-effects of speculation that can reduce cache
misses, as well as speculative threadlets starting work (typically
long-latency cache misses and instructions after them) that only
commit after the threadlet becomes architectural. On average, suc-
cessful speculation recoups the 6% loss and adds the 9.5% speedup.
We also see an additional 31% of instructions committed per cycle
to speculative threadlets that later fail and do not contribute to
architectural IPC. More than two thirds of the failed speculation is
contributed by only 5 benchmarks, where these extra instructions
could be injected into the pipeline without disrupting architectural
progress due to the high degree of under-utilization.

6.4 Analysis

To understand the source of our speedups, we performed additional
analysis of bottlenecks and improvements using a wide range of
detailed simulator statistics, including top-down microarchitectural
analysis [32] metrics. We identified two main classes of speedups,
with five subcategories. We then sorted the profitable loops into
these categories. While some loops benefit from multiple sources,
we focus on the main cause in each case. Because of noise (due to
perturbation and secondary effects), we cannot accurately identify
the reasons for small changes. Thus, when considering speedup,
we limit our analysis to the 38 parallel loops that yielded at least 1%
whole-program speedup for their benchmark. A summary is shown
in table 2. To estimate the fraction of speedup per category based
on this qualitative analysis, we attribute all speedup achieved by
each loop to the best-matching category.?

6.4.1 True Parallelism. For 28 out of 38 loops, the speedups came
primarily from true thread-level parallelism. That is, some of the
pipeline’s bandwidth was left unused by the single threadlet in
sequential mode, or wasted due to misspeculated instructions fol-
lowing branches. In the parallel version, this bandwidth could be
reallocated to speculative threadlets, which could use some fraction
of it to perform work. As this speculative work was later commit-
ted to architectural state, execution speed increased. The natural

2For example, the main loop in omnetpp benefits mostly from branch condition
prefetching, thus all of its speedup is added to this category (even though it benefits
to a smaller extent from data value prefetching), since we cannot accurately tell the
proportions of those gains.
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Figure 6: Full-program speedups across SPEC CPU 2006 and CPU 2017 benchmarks (full runs using reference inputs).
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Figure 7: Utilization of speculative threadlets over time for
profitable SPEC CPU 2017 benchmarks.
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Figure 8: Instructions committed per cycle by the architec- top of predicting a future re-convergence point in the program, the
tural and speculative threadlets (including misspeculation), implicit predictions encoded by LoopFrog’s hints (same value of
normalized to baseline IPC. registers, and independence on memory) allows early execution

and speculative commit of instructions in the continuation. We
found this to be the main bottleneck in 9 loops, which together

question is why multiple threadlets could find work better, given yield 237% of the total speedup from our scheme.
that the total number of instructions in the out-of-order windows
(e.g. reorder buffer) across all threadlets remain the same as it was

in the sequential baseline. We find three main reasons for this. Cutting Dependency Chains. Similarly, the pipeline can also run

out of independent work within the window due to long chains

Memory Parallelism. In highly memory-bound benchmarks, exe- of linearly dependent instructions, even if they do not have high
cution speed is primarily determined by how quickly the proces- latency individually. Since there is no instruction-level parallelism
sor can discover and execute long-latency memory instructions. available between instructions that (directly or indirectly) depend
Single-threaded execution is characterized by alternating bursts of on each other, a single instruction window can only expose limited
higher-IPC, more compute-bound work, and long low-IPC phases, ILP in programs dominated by long dependency chains. As instruc-
waiting for stalled memory instructions before their dependent tions further away in the stream are statistically less likely to be
instructions can be executed. During these low-IPC phases, most dependent, we expose additional ILP due to looking at multiple
or all independent instructions in the window from the stalled far-away subwindows. This is the main gain in 2 loops, accounting
accesses have already been executed, and the window typically for 12%, however, we also observe the same effect across all three
cannot extend further due to a stalled load at the front. Thus, the ‘true parallelism’ categories, likely contributing to more speedup.
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Fraction of
Category | Sub-category Loops | Speedup

Memory parallelism 17 29%
True | Control dependenci 9 23%
parallelism | Control dependencies %
Dependency chains 2 12%
Prefetchin Branch conditions 6 32%
& | Data values 4 3%

Table 2: Sources of performance gains. For each source, we
show the number of loops where it is the main factor, and
the fraction of the total geometric mean speedup achieved
by those loops across all SPEC CPU 2017 benchmarks.

6.4.2  Prefetching. Tenloops (in omnetpp, gcc, povray and exchange?)
had minimal or no successful speculation, but still achieved a perfor-
mance uplift due to the side effects of failed speculation. Specifically,

since speculative accesses bring data into the L1 cache, LoopFrog

can serve as a sophisticated prefetcher. Although sometimes this

prefetching yields benefits by speeding up the delivery of data to

general computations (3% of speedup), we found the main bene-
fit (32% of total) comes from faster computation of branch condi-
tions. This in turn led to faster execution of hard-to-predict, data-
dependent branches, which in turn helped earlier redirection to the

correct path, leading to fewer misspeculated instructions, lower

front-end pressure, and higher average ROB occupancy. Conse-
quently, higher levels of instruction-level parallelism were present

in the window.

This distribution is perhaps not surprising, as it is easy to mask
cache-missing loads using ILP if independent work exists within the
window, but the same would typically not be possible for mispre-
dicting branches, since all future instructions are control-dependent
on the branch. Since modern branch predictors are very good at
predicting most branches, tackling the remaining bottleneck of
data-dependent branches can have a significant impact on perfor-
mance.

6.4.3  Benchmarks With No Speedup. Benchmarks namd, Ibm, blender,

deepsjeng, leela, and xz, showed little or no speedup with the current
scheme. High-coverage loops in these benchmarks tend to fall into
one of several categories: they are either extremely large (Ibm, xz) or
very small (leela) in size, have a low trip count (blender, deepsjeng),
demonstrate high IPC with a saturated pipeline (deepsjeng, namd),
or involve frequent cross-iteration dependencies that require more
advanced DoAcross synchronization.

6.5 Iteration Packing

The iteration-packing optimization affects 5 of the 13 profitable
benchmarks, increasing the overall geometric mean speedup by
0.9 percentage points across SPEC CPU 2017. The mean packing
factor is 2.1, with a maximum of 25X. Since this is a fairly heavy-
weight optimization (requiring value prediction and extra register
tracking), a microarchitecture may choose to omit it, (and still gain
8.6%). Compiler unrolling and code motion may also be a more
light-weight alternative.

11
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Figure 10: Sensitivity of speedups to SSB and conflict detector
granule size (default: 4 bytes).

6.6 Sensitivity to SSB Parameters

We investigate how changing two crucial parameters of the SSB
and conflict detector affect performance.

Figure 9 shows sensitivity to SSB size. We find that speedups are
surprisingly resistant to change even with large changes in size.
Changing the size from the headline 8 KiB to 32 KiB increases the
geometric mean speedup by less than 0.1%, and reducing to 2KiB
only has a 0.4% impact. We find that size affects loop speedups
in a fairly binary way: if the working set fits in the SSB, we can
successfully parallelize, otherwise we lose most parallelization gains
for the loop. Whilst decreasing the size to 512 B does hurt speedups
far more, we find it noteworthy that this setup still gains 6.2%.
Notably, with our 4-byte granules, we only store up to 128 entries
in the SSB, which is only half of the simulated load-store queue’s
capacity.

Figure 10 explores the effects of granule size, which affects both
the storage in the SSB, as well as checking logic in the conflict
detector. We find that scaling up to half-word (4 B) granularity has
no measurable impact on performance beyond noise for any of the
benchmarks. Moving to word size (8 B) only induces a slowdown for
one benchmark (5% for x264), however increasing further introduces
far more false aliasing, resulting in slowdowns. For 16 B granules,
speedups drop to 6.5%, and then to 6% for cache-line-granularity
conflict checking. Note that this is the approach typically used by
related work [12, 20, 28], so our granular conflict checking is a key
novelty.

Low cache associativity can affect the results negatively. We ran
CPU 2017 benchmarks with SSB associativity limited to 4- and 8-
ways across all threadlets. This resulted in a performance hit of 2.0%
and 1.4%, respectively, compared to our headline results. However,
adding a small victim buffer (8 entries, shared) reduced the impact
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Scheme ‘ LoopFrog STAMPede (private cache) (2005) MultiScalar (1995)
Speedup 1.1x (SPEC 2017) 1.16X (subsets of SPEC 1995 and 2000) 2.16X (SPEC 1992)
Cores 1 (4-way SMT) 4 8 (PUs)
Area ~ 1.15%x > 4x ~ 8%
Baseline 8-issue 000 4-issue simple 000, 5 stages 2-issue limited OoO (ROB=32)
Task sizes | ~100-10,000 instructions ~1,400 instructions 10-50 instructions
Deployment compiler, ISA hints OS, compiler, ISA specialist p-arch, compiler, ISA

Table 3: Comparison of LoopFrog with comparable TLS/SpMT schemes [27, 28]. Speedup numbers are not like-for-like due to
wildly different baseline cores, different benchmark sets, and area overheads.

to 1.2% in both cases. This slowdown is almost exclusively suffered
by omnetpp (6.9% slower) and imagick (8.8% slower).

6.7 Generality of LoopFrog

LoopFrog works well on loops with different characteristics. Among
the profitable loops, some contain inner loops, irregular control
flow, function calls, and some are vectorized. By targeting irregular,
medium-grained parallelism, LoopFrog remains highly orthogo-
nal to existing ILP, DLP and TLP techniques. None of our loops
had OpenMP parallel pragmas, although some had pragmas on
outer loops. In these cases, even if parallelization were turned on
for the coarse outer loop, LoopFrog can still deliver finer-grained
parallelism by parallelizing the inner loop. On the SPEC CPU 2017
benchmarks, considering only loops that are not within an OpenMP
parallel region, LoopFrog gains a geometric mean speedup of 7.5%.

6.8 Area and Power Overheads

Our main overheads are due to the addition of threadlets to the
pipeline, the SSB, and the conflict-detection logic. Speculation in-
creases the number of instructions issued by 14%, while L2 cache
accesses only increase by 1.7%, and L2 misses actually decrease by
2.3%. This may occur due to shallower intra-threadlet speculation
and alignment in accesses, and likely yields a small negative change
in power usage from speculation.

Handling threadlets is a simplified form of simultaneous multi-
threading (SMT), which requires a 10-15% increase in area and
power [4, 9, 15]. The SSB’s primary storage area is the granule
cache. The four slices, each with 2 KiB capacity and 4-way cache as-
sociativity, correspond to an approximate area of 0.025 mm? (0.03 nJ
per access) according to CACTI [18] (22 nm, itrs-hp, 1 read/write
port, 1 read-exclusive port). In a 7nm node, using a conservative
scaling factor of 5, the total area for the four slices is 0.02 mm?.
Finally, an implementation of conflict checking based on Bloom
filters, similar to Swarm [12], takes approximately 0.005 mm? of
area at 7 nm (dual-ported SRAM with 8 entries, and 4,096-bit filters).
The area of all additional components is around 2% compared to
the total area of a relatively high-end core, for example, an Arm
Neoverse N1 (1.4 mm? at 7 nm, including private L1 and 1 MB L2
caches [22]). Hence, we expect a total increase of 12-17% in area
compared to a sequential design, and only about 2% if SMT support
already exists. Even with the optimistic Pollack’s rule approximat-
ing traditional performance gains from a 12-17% increase at 6-8%,
LoopFrog’s headline speedup of 9.5% outperforms expected scaling.
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7 Related Work

LoopFrog is built on the idea of thread-level speculation, which has
been explored by a wealth of past papers [7, 30]. LoopFrog’s novelty
is to encode TLS using ISA hints without exposing speculation to
the OS or memory system, and use it to tackle low resource uti-
lization in a wide out-of-order superscalar processor. This enables
the technique to be incorporated into modern high-performance
systems. In contrast, past TLS work focused on multicore or core
federation (thread/processing unit) approaches which involves OS
and architectural impact, or old SMT cores.

Early approaches [16, 17, 27] use a ring of thread units (or process-
ing units) to map computations, with shared speculative memory
(and register) state. Compared to today’s cores the thread units are
simple and have low performance. Thus speedups compared to the
low-powered baseline must compete with 20+ years of microar-
chitectural improvements, including the slowdowns suffered on
non-parallel regions, where sequential performance matters.

Another option is to scale the approach to a multicore design.
Unfortunately, this increases the communication latency. Several
approaches [20, 28] target more coarse-grained parallelism to amor-
tize launching and synchronization overheads. Due to the different
granularity, we see this as largely orthogonal to LoopFrog; indeed,
the two schemes could both run on the same system. The alterna-
tive (explored by Swarm [12, 33]) is to double down on small tasks.
Specialized logic is required to speed up communication, and (in
both cases) there is significant impact on the ISA and operating
system. Furthermore, speculation is exposed to the memory system,
rendering TLS incompatible with traditional multi-core execution.
Due to the number of cores used and special hardware require-
ments, these schemes have a very high area cost compared to a
single core. Furthermore, deployment would be extremely tricky
due to incompatibility with traditional multicore architectures and
memory systems. Code generation is also tricky, leading to only
half of the SPEC CPU 2006 benchmarks compiling due to exception
and control-flow limitations of the prototype.

Using TLS in a simultaneously multithreaded (SMT) core — like
LoopFrog does — has been proposed before [1, 21]. However, past
schemes focus on parallelism found within tens to hundreds of
consecutive program instructions, relying on the LSQ (and ROB)
for reordering and memory disambiguation. We believe the gains
achieved have been superseded by progress in CPU core design.’

3IMT [21] only achieves IPC 1.4 on SPEC CPU 2000 on an 8-wide core, which is
worse than our measurements show on a 4-wide Intel® Xeon© W-2195 machine. IMT
also claims that DMP [1] produces a slowdown.
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We compare LoopFrog to the most relevant past TLS schemes
listed in table 3. It is hard to compare numerically to past schemes
due to highly varied baseline hardware, unavailable artifacts, and
old/limited benchmarks. We found most past work to only use a
limited set of workloads either due to compiler limitations (suggest-
ing a complicated compiler deployment story), poor performance,
or both. Furthermore, many schemes have a far higher hardware
footprint, requiring a specialized re-design of the whole chip or the
memory system. We believe LoopFrog’s strengths lie in its ability
to keep the compiler simple, have no OS impact, and limit hardware
changes and speculative state to the inside of a single core.

Increasing core utilization to gain performance has been ex-
plored by pipelining and helper threading techniques [31]. Recently,
Pipette [19] added architectural support for structuring code into
pipelines with stages decoupled by queues. The authors demon-
strated 1.9% speedup in select irregular applications using 4-way
SMT. However, they acknowledged that the transformations are
challenging to automate, therefore Pipette requires changes to the
programming model. Furthermore, Pipette requires complete inde-
pendence between stages, unlike LoopFrog, restricting the set of
target applications.

Recent work by Eyerman et al. 8] used Tapir-like hints to iden-
tify quasi-independent regions in order to enable selective flushing
on branch mispredicts, and achieve 1.3x (harmonic mean) speedup
over graph applications. However, the speedups depend on high
mispredict rates in addition to task-level parallelism, reducing the
applicability of the technique to only a smaller subset of workloads
LoopFrog can parallelize.

8 Conclusion and Future Work

We identified untapped parallelism, missed by ILP and TLP schemes
in state-of-the-art high-performance cores. We proposed a minimal,
hint-based ISA extension that can mark speculatively parallel re-
gions, and placed them using a prototype compiler. We designed a
low-overhead, in-core microarchitectural extension to take advan-
tage of these hints. Our scheme can be cleanly added to existing
high-performance processors without breaking compatibility. We
demonstrated that our technique can effectively improve perfor-
mance on hard-to-parallelize general purpose workloads, achieving
a full-program geometric mean speedup of 9.2% (SPEC CPU 2006)
and 9.5% (SPEC CPU 2017), speeding up parallel loops by 43%. Fu-
ture work will focus on microarchitectural techniques and compiler
transformations to better handle loops with complex cross-iteration
dependencies, taking advantage of the substrate introduced in this

paper.

Acknowledgments

This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC), grant EP/W00576X/1, and Arm. Addi-
tional data related to this publication is available in the repository
at https://doi.org/10.17863/CAM.120739.

References

[1] Haitham Akkary and Michael A. Driscoll. 1998. A Dynamic Multithreading
Processor. In Proceedings of the International Symposium on Microarchitecture
(MICRO), James O. Bondi and Jim Smith (Eds.). ACM/IEEE Computer Society,
226-236. https://doi.org/10.1109/MICRO.1998.742784

13

—_

2]

[10

[11

[12

=
&

(14

[15

[16

(17]

(18

[19

[21

MICRO 2025, October 18-22, 2025, Seoul, Korea

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The gem5 Simulator. ACM SIGARCH Computer
Architecture News 39, 2 (2011). https://doi.org/10.1145/2024716.2024718
Shekhar Borkar. 2007. Thousand Core Chips: A Technology Perspective. In
Proceedings of the Design Automation Conference (DAC). https://doi.org/10.1145/
1278480.1278667

J. Burns and J.-L. Gaudiot. 2002. SMT Layout Overhead and Scalability. IEEE
Transactions on Parallel and Distributed Systems 13, 2 (2002). https://doi.org/10.
1109/71.983942

Simone Campanoni, Timothy M. Jones, Glenn Holloway, Gu-Yeon Wei, and
David Brooks. 2012. HELIX: Making the Extraction of Thread-Level Parallelism
Mainstream. IEEE Micro 32, 4 (2012). https://doi.org/10.1109/MM.2012.50

Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sankaralingam,
and Doug Burger. 2011. Dark Silicon and the End of Multicore Scaling. In
Proceedings of the International Symposium on Computer Architecture (ISCA).
https://doi.org/10.1145/2000064.2000108

Alvaro Estebanez, Diego R. Llanos, and Arturo Gonzalez-Escribano. 2016. A
Survey on Thread-Level Speculation Techniques. Comput. Surveys 49, 2 (2016).
https://doi.org/10.1145/2938369

Stijn Eyerman, Wim Heirman, Sam Van Den Steen, and Ibrahim Hur. 2021. En-
abling Branch-Mispredict Level Parallelism by Selectively Flushing Instructions.
In Proceedings of the International Symposium on Microarchitecture (MICRO).
https://doi.org/10.1145/3466752.3480045

Josue Feliu, Stijn Eyerman, Julio Sahuquillo, and Salvador Petit. 2016. Sym-
biotic Job Scheduling on the IBM POWERS. In Proceedings of the Interna-
tional Symposium on High Performance Computer Architecture (HPCA). https:
//doi.org/10.1109/HPCA.2016.7446103

Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. 2005. SimPoint 3.0:
Faster and More Flexible Program Phase Analysis. Journal of Instruction Level
Parallelism 7, 4 (2005). http://www.jilp.org/vol7/v7paper14.pdf

Maurice Herlihy and J. Eliot B. Moss. 1993. Transactional memory: architectural
support for lock-free data structures. In Proceedings of the 20th Annual Interna-
tional Symposium on Computer Architecture (ISCA). Association for Computing
Machinery, New York, NY, USA, 12 pages. https://doi.org/10.1145/165123.165164
Mark C. Jeffrey, Suvinay Subramanian, Cong Yan, Joel Emer, and Daniel Sanchez.
2015. A Scalable Architecture for Ordered Parallelism. In Proceedings of the
International Symposium on Microarchitecture (MICRO). https://doi.org/10.1145/
2830772.2830777

Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. 2018. DHTM:
Durable Hardware Transactional Memory. In 2018 ACM/IEEE 45th Annual Inter-
national Symposium on Computer Architecture (ISCA). https://doi.org/10.1109/
ISCA.2018.00045

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis and Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization (CGO). https://doi.org/10.1109/
CGO.2004.1281665

Yingmin Li, K. Skadron, D. Brooks, and Zhigang Hu. 2005. Performance, Energy,
and Thermal Considerations for SMT and CMP Architectures. In Proceedings of
the International Symposium on High-Performance Computer Architecture (HPCA).
https://doi.org/10.1109/HPCA.2005.25

Carlos Madriles, Carlos Garcia Quifiones, F. Jestis Sanchez, Pedro Marcuello,
Antonio Gonzalez, Dean M. Tullsen, Hong Wang, and John Paul Shen. 2008.
Mitosis: A Speculative Multithreaded Processor Based on Precomputation Slices.
IEEE Transactions on Parallel Distributed Systems 19, 7 (2008), 914-925. https:
//doi.org/10.1109/TPDS.2007.70797

Pedro Marcuello, Jordi Tubella, and Antonio Gonzalez. 1999. Value Prediction
for Speculative Multithreaded Architectures. In Proceedings of the International
Symposium on Microarchitecture (MICRO), Ronny Ronen, Matthew K. Farrens,
and Ilan Y. Spillinger (Eds.). ACM/IEEE Computer Society, 230-236. https:
//doi.org/10.1109/MICRO.1999.809461

Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. 2009.
CACTI 6.0: A tool to model large caches. HP laboratories 27 (2009). https:
//www.hpl.hp.com/techreports/2009/HPL-2009-85.pdf

Quan M. Nguyen and Daniel Sanchez. 2020. Pipette: Improving Core Utilization
on Irregular Applications through Intra-Core Pipeline Parallelism. In Proceedings
of the International Symposium on Microarchitecture (MICRO). https://doi.org/10.
1109/MICRO50266.2020.00056

M. Ohmacht, A. Wang, T. Gooding, B. Nathanson, I. Nair, G. Janssen, M. Schaal,
and B. Steinmacher-Burow. 2013. IBM Blue Gene/Q memory subsystem with
speculative execution and transactional memory. IBM Journal of Research and
Development 57,1 (2013). https://doi.org/10.1147/JRD.2012.2228092

1l Park, Babak Falsafi, and T. N. Vijaykumar. 2003. Implicitly-multithreaded
processors. In Proceedings of the International Symposium on Computer Architec-
ture (ISCA), Allan Gottlieb and Kai Li (Eds.). https://doi.org/10.1109/ISCA.2003.
1206987


https://doi.org/10.17863/CAM.120739
https://doi.org/10.1109/MICRO.1998.742784
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/1278480.1278667
https://doi.org/10.1145/1278480.1278667
https://doi.org/10.1109/71.983942
https://doi.org/10.1109/71.983942
https://doi.org/10.1109/MM.2012.50
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.1145/2938369
https://doi.org/10.1145/3466752.3480045
https://doi.org/10.1109/HPCA.2016.7446103
https://doi.org/10.1109/HPCA.2016.7446103
http://www.jilp.org/vol7/v7paper14.pdf
https://doi.org/10.1145/165123.165164
https://doi.org/10.1145/2830772.2830777
https://doi.org/10.1145/2830772.2830777
https://doi.org/10.1109/ISCA.2018.00045
https://doi.org/10.1109/ISCA.2018.00045
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/HPCA.2005.25
https://doi.org/10.1109/TPDS.2007.70797
https://doi.org/10.1109/TPDS.2007.70797
https://doi.org/10.1109/MICRO.1999.809461
https://doi.org/10.1109/MICRO.1999.809461
https://www.hpl.hp.com/techreports/2009/HPL-2009-85.pdf
https://www.hpl.hp.com/techreports/2009/HPL-2009-85.pdf
https://doi.org/10.1109/MICRO50266.2020.00056
https://doi.org/10.1109/MICRO50266.2020.00056
https://doi.org/10.1147/JRD.2012.2228092
https://doi.org/10.1109/ISCA.2003.1206987
https://doi.org/10.1109/ISCA.2003.1206987

MICRO 2025, October 18-22, 2025, Seoul, Korea M Erdés, U Bora, A Bhosale, B Lytton, A Zaidi, AW Chadwick, Y Guo, G Gabrielli and TM Jones

[22] Andrea Pellegrini, Nigel Stephens, Magnus Bruce, Yasuo Ishii, Joseph Pusdesris,
Abhishek Raja, Chris Abernathy, Jinson Koppanalil, Tushar Ringe, Ashok Tum- 29

Computer Systems 23, 3 (2005). https://doi.org/10.1145/1082469.1082471
Suvinay Subramanian, Mark C. Jeffrey, Maleen Abeydeera, Hyun Ryong Lee,

mala, Jamshed Jalal, Mark Werkheiser, and Anitha Kona. 2020. The Arm Neoverse
N1 Platform: Building Blocks for the Next-Gen Cloud-to-Edge Infrastructure SoC.
IEEE Micro 40, 2 (2020). https://doi.org/10.1109/MM.2020.2972222

Tao B. Schardl, William S. Moses, and Charles E. Leiserson. 2017. Tapir: Em-
bedding Fork-Join Parallelism into LLVM’s Intermediate Representation. In Pro-
ceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP). https://doi.org/10.1145/3018743.3018758

André Seznec. 2007. A 256 Kbits L-TAGE branch predictor. https://www.irisa.fr/
caps/people/seznec/L-TAGE.pdf.

Balaram Sinharoy, Ronald N. Kalla, Joel M. Tendler, Richard J. Eickemeyer, and
Jody B. Joyner. 2005. POWERS5 system microarchitecture. IBM Journal of Research
and Development 49, 4-5 (2005), 505-522. https://doi.org/10.1147/RD.494.0505
Balaram Sinharoy, James Van Norstrand, Richard J. Eickemeyer, Hung Q. Le, Jens
Leenstra, Dung Q. Nguyen, B. Konigsburg, K. Ward, M. D. Brown, José E. Mor-
eira, D. Levitan, S. Tung, David Hrusecky, James W. Bishop, Michael Gschwind,
Maarten Boersma, Michael Kroener, Markus Kaltenbach, Tejas Karkhanis, and
K. M. Fernsler. 2015. IBM POWERS processor core microarchitecture. IBM Jour-
nal of Research and Development 59, 1 (2015). https://doi.org/10.1147/JRD.2014.
2376112

Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. 1995. Multiscalar Pro-
cessors. In Proceedings of the International Symposium on Computer Architecture
(ISCA). https://doi.org/10.1145/223982.224451

J. Gregory Steffan, Christopher Colohan, Antonia Zhai, and Todd C. Mowry. 2005.
The STAMPede Approach to Thread-Level Speculation. ACM Transactions on

Victor A. Ying, Joel Emer, and Daniel Sanchez. 2017. Fractal: An Execution Model
for Fine-Grain Nested Speculative Parallelism. In Proceedings of the International
Symposium on Computer Architecture (ISCA). https://doi.org/10.1145/3079856.
3080218

Josep Torrellas. 2011. Speculation, Thread-Level. Springer US, Boston, MA. 1894—
1900 pages. https://doi.org/10.1007/978-0-387-09766-4_170

Neil Vachharajani, Ram Rangan, Easwaran Raman, Matthew J. Bridges, Guil-
herme Ottoni, and David I. August. 2007. Speculative Decoupled Software
Pipelining. In Proceedings of the International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT). IEEE Computer Society, 49-59.
https://doi.org/10.1109/PACT.2007.66

Ahmad Yasin. 2014. A Top-Down method for performance analysis and counters
architecture. In 2014 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS). 35-44. https://doi.org/10.1109/ISPASS.2014.
6844459

Victor A. Ying, Mark C. Jeffrey, and Daniel Sanchez. 2020. T4: Compiling Se-
quential Code for Effective Speculative Parallelization in Hardware. In Proceed-
ings of the International Symposium on Computer Architecture (ISCA). https:
//doi.org/10.1109/ISCA45697.2020.00024

Ali Mustafa Zaidi, Konstantinos Iordanou, Mikel Lujan, and Giacomo Gabrielli.
2021. Loopapalooza: Investigating Limits of Loop-Level Parallelism with a
Compiler-Driven Approach. In Proceedings of the International Symposium on
Performance Analysis of Systems and Software (ISPASS). https://doi.org/10.1109/
ISPASS51385.2021.00030


https://doi.org/10.1109/MM.2020.2972222
https://doi.org/10.1145/3018743.3018758
https://www.irisa.fr/caps/people/seznec/L-TAGE.pdf
https://www.irisa.fr/caps/people/seznec/L-TAGE.pdf
https://doi.org/10.1147/RD.494.0505
https://doi.org/10.1147/JRD.2014.2376112
https://doi.org/10.1147/JRD.2014.2376112
https://doi.org/10.1145/223982.224451
https://doi.org/10.1145/1082469.1082471
https://doi.org/10.1145/3079856.3080218
https://doi.org/10.1145/3079856.3080218
https://doi.org/10.1007/978-0-387-09766-4_170
https://doi.org/10.1109/PACT.2007.66
https://doi.org/10.1109/ISPASS.2014.6844459
https://doi.org/10.1109/ISPASS.2014.6844459
https://doi.org/10.1109/ISCA45697.2020.00024
https://doi.org/10.1109/ISCA45697.2020.00024
https://doi.org/10.1109/ISPASS51385.2021.00030
https://doi.org/10.1109/ISPASS51385.2021.00030

	Abstract
	1 Introduction
	2 Background and Motivation
	3 LoopFrog Architecture
	3.1 Parallelization Hint Instructions
	3.2 Preserving Sequential Semantics
	3.3 Nested Regions

	4 LoopFrog Microarchitecture
	4.1 Speculative State Buffer
	4.2 Conflict Detection
	4.3 Iteration Packing

	5 Compilation and Loop Selection
	5.1 Loop Selection
	5.2 Optimization
	5.3 Hint Insertion

	6 Evaluation
	6.1 Setup
	6.2 Whole-Benchmark Speedup
	6.3 Speculation and Region Speedup
	6.4 Analysis
	6.5 Iteration Packing
	6.6 Sensitivity to SSB Parameters
	6.7 Generality of LoopFrog
	6.8 Area and Power Overheads

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

