
LoopFrog: In-Core Hint-Based Loop Parallelization
Márton Erdős

University of Cambridge

Cambridge, UK

marton.erdos@cl.cam.ac.uk

Utpal Bora

University of Cambridge

Cambridge, UK

utpal.bora@cl.cam.ac.uk

Akshay Bhosale

University of Cambridge

Cambridge, UK

asb227@cl.cam.ac.uk

Bob Lytton

Arm

Cambridge, UK

bob.lytton@arm.com

Ali M. Zaidi

Arm

Cambridge, UK

ali.zaidi@arm.com

Alexandra W. Chadwick

University of Cambridge

Cambridge, UK

alexandra.chadwick@cl.cam.ac.uk

Yuxin Guo

University of Cambridge

Cambridge, UK

yuxin.guo@cl.cam.ac.uk

Giacomo Gabrielli

Arm

Cambridge, UK

giacomo.gabrielli@arm.com

Timothy M. Jones

University of Cambridge

Cambridge, UK

timothy.jones@cl.cam.ac.uk

Abstract
To scale ILP, designers build deeper and wider out-of-order su-

perscalar CPUs. However, this approach incurs quadratic scaling

complexity, area, and energy costs with each generation. While

small loops may benefit from increased instruction-window sizes

and large loops may see speedups via thread-level parallelism across

cores, there remains unexploited medium-granularity parallelism.

We propose LoopFrog to tap into this potential by bringing

thread-level speculation schemes into the modern era. LoopFrog

runs multiple loop iterations from a single thread in parallel within

the microarchitecture. The core can spawn future loop iterations as

new microarchitectural threadlets based on compiler-inserted hints,

which can leapfrog execution beyond the parent thread’s instruction

window, exposing a new, medium-grained parallelism, orthogonal

to traditional ILP and TLP. LoopFrog monitors data dependencies

between executing threadlets, forwards data for true dependencies

and squashes speculative threadlets on ordering violations.

Using an LLVM-based compiler to insert hints, we achieve a

geometric mean loop speedup of 43%, translating to whole-program

speedups of 9.2% on SPEC CPU 2006 and 9.5% on SPEC CPU 2017

benchmarks, with only modest area and power overheads.

CCS Concepts
• Computing methodologies→ Parallel computing method-
ologies; • Software and its engineering→ Compilers.

Keywords
parallelism, ILP, speculation, thread-level speculation, speculative

multithreading, CPU, multithreading, parallelization, architecture

ACM Reference Format:
Márton Erdős, Utpal Bora, Akshay Bhosale, Bob Lytton, Ali M. Zaidi, Alexan-

dra W. Chadwick, Yuxin Guo, Giacomo Gabrielli, and Timothy M. Jones.

This work is licensed under a Creative Commons Attribution 4.0 International License.

MICRO 2025, Seoul, Korea

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1573-0/2025/10

https://doi.org/10.1145/3725843.3756051

2025. LoopFrog: In-Core Hint-Based Loop Parallelization. In 58th IEEE/ACM

International Symposium on Microarchitecture (MICRO ’25), October 18–

22, 2025, Seoul, Republic of Korea. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3725843.3756051

1 Introduction
To extract ever larger amounts of ILP, modern CPUs are built

with increasingly wide microarchitectures and deep out-of-order

instruction windows, incurring significant area and power over-

heads, as well as growing design complexity. However, single-

thread performance scaling exhibits diminishing returns, as com-

plexity/area/power scaling is quadratic with sequential perfor-

mance [3], further complicating processor design trade-offs in the

post-Dennard era [6].

Thread-level speculation (TLS) [27] is a technique originally

proposed three decades ago as a means of boosting IPC. A program

would be divided into a series of tasks that are logically ordered,

but may execute speculatively in parallel. In the event that no data

dependencies exist dynamically between tasks, this speculative

parallelization would enable a processor to execute programs faster.

While this demonstrated promising speedups, fine-grained TLS did

not see commercial deployment, with vendors instead preferring

wider and deeper cores with more aggressive speculation through

long out-of-order windows as a means of boosting ILP. At this point,

the proposed benefit of fine-grained TLS has been subsumed in

general microarchitectural ILP advancements.

In this paper we revisit TLS in the modern era, using it to expose

untapped ILP atmedium granularity [34], beyond the capabilities of

modern out-of-order cores. This different granularity and the highly

improved baseline microarchitecture both present new challenges,

but also opportunities.

Our approach, LoopFrog, is an in-core microarchitectural loop

parallelization scheme, relying on architectural hint instructions.

These hints do not change the semantics of sequential execution,

but serve to indicate detach and reattach points for light-weight

OS-transparent threads, called threadlets, which can speculatively

execute work in parallel, thus increasing pipeline utilization. On

reaching a detach point, the microarchitecture may choose to copy

the current register state to a new threadlet and start its execution

1

https://orcid.org/0000-0002-5146-4361
https://orcid.org/0000-0002-0076-1059
https://orcid.org/0000-0002-1264-5274
https://orcid.org/0009-0000-6157-3185
https://orcid.org/0000-0002-4894-0603
https://orcid.org/0000-0003-4091-5355
https://orcid.org/0009-0007-0169-3864
https://orcid.org/0000-0003-3179-5873
https://orcid.org/0000-0002-4114-7661
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3725843.3756051
https://doi.org/10.1145/3725843.3756051


MICRO 2025, October 18–22, 2025, Seoul, Korea M Erdős, U Bora, A Bhosale, B Lytton, A Zaidi, AW Chadwick, Y Guo, G Gabrielli and TM Jones

0.0

0.5

1.0

1.5

2.0

2 wide
Airmont

4 wide
Ivy Bridge

6 wide
Sunny Cove

8 wide
Raptor Cove

0%

10%

20%

30%

40%

G
e
o
m

e
a
n
 I
P
C

 ■

C
o
m

m
it

 u
ti

lis
a
ti

o
n
 ▲

Figure 1: Geomean instructions per cycle (IPC) and commit
utilization of SPECCPU 2017 intrate C/C++ benchmarksmea-
sured on four different commercial Intel microarchitectures.

at the reattach point, in parallel with the main execution, using the

spare back-end resources of the core. If there are no memory or

register conflicts between the threadlet and the main thread, this

speculative work can eventually be committed.

Through-memory inter-threadlet data dependencies are handled

by a new speculative state buffer (SSB), which sits between the

store buffer and the L1 data cache. The SSB forwards memory data

from older to younger threadlets and identifies true data depen-

dency violations, which require squashing the younger threadlet

and restarting it. Ultimately, threadlets are only retired if no con-

flicts occur, ensuring LoopFrog preserves the exact same semantics

as sequential execution. LoopFrog carefully preserves the architec-

tural memory ordering model, a key requirement for compatibility

with modern multicore systems.

We evaluate LoopFrog using the SPEC CPU 2006 and CPU 2017

benchmark suites, showing geometric mean whole-program speed-

ups of 9.2% and 9.5% respectively. Our main contributions are:

• A lightweight ISA extension and execution model, which

allow the compiler to expose ordered, speculative task paral-

lelism to the microarchitecture using hint instructions.

• Extensions to a general-purpose CPU microarchitecture to

exploit this speculative parallelism at low overhead.

• A detailed characterization of speedups and their causes.

2 Background and Motivation
High-performance microprocessors exploit instruction-level paral-

lelism (ILP) to quickly execute programs. State-of-the-art processors

may execute as many as ten instructions per cycle (IPC) on a single

thread, and there is a trend towards increasing widths across the

industry. Figure 1 shows the geometric mean IPC of the SPEC CPU

2017 intrate C/C++ benchmarks measured on four different Intel

microarchitectures. Notably, we see a strong linear relationship

between the microarchitecture’s designed front-end width and the

measured geometric mean IPC. In other words, recent wider mi-

croarchitectures are better able to extract ILP from these workloads,

increasing instruction throughput.

However, if we consider the percentage of instruction commit

bandwidth used for these same processors, we see the opposite

trend — the wider architectures have a lower fraction of commit

utilization. Given that these wider microarchitectures have more

back-end resources, this trend suggests there is an ever increasing

amount of unused resources that do not contribute to IPC (most of

the time) in newer, wider processors. This presents an opportunity

for optimization that we explore in this work: a scheme to use these

back-end resources to further boost IPC. If microarchitectures do

indeed continue to scale to be even wider in the future, we consider

it likely that there will be an increasing amount of under-utilization

of back-end resources, so any scheme that can beneficially use these

resources will become even more effective.

We build on the idea of thread-level speculation (TLS or SpMT).

Originally introduced by theMultiscalar project [27], TLS partitions

the program into tasks that are speculatively parallelized. If conflicts

arise, tasks are squashed and subsequently re-executed. We discuss

the flavors of TLS in section 7.

3 LoopFrog Architecture
LoopFrog is an in-core TLS scheme designed to make use of idle

back-end resources in wide high-performance microprocessors.

LoopFrog does not target the additional parallelism available in a

multicore system (across-core parallelization), but instead focuses

on maximizing resource utilization within a single core (in-core

parallelization). The trend towards wider and deeper microarchi-

tectures to support high ILP peaks provides a performance scaling

opportunity for LoopFrog, which can improve core utilization in

non-ILP-dominated phases by supplementing them with additional

instruction-level parallelism from parallel regions.

We have a strong focus on carefully reducing the barriers to entry

for successful deployment. To that end, we keep our approach in-

core and hint-based, thus minimizing the impact on the system and

retaining already-exploited parallelism. Overall, the programmer-

visible semantics of the program are designed to be identical in the

case that the LoopFrog hint instructions are treated as nops, allowing

architectural backwards compatibility to existing processors.

LoopFrog introduces three hint instructions (detatch, reattach

and sync) that are placed in loops. Each iteration of a loop can

be seen as a sequence of header, body and continuation sections,

the boundaries of which (along with loop exits) are marked with

hints, as shown in figure 2(a). The hints do not change the sequen-

tial semantics of the program, which must be preserved by the

microarchitecture, but instead serve as guidance to enable addi-

tional speculation. Sequential execution progresses as shown in

figure 2(b), with the out-of-order instruction window (shown as

‘OoO window’) moving downwards in program order.

The header and continuation contain all register loop-carried

dependencies (LCDs), such as induction-variable updates or linked-

list traversals. Currently, only loops with relatively simple register

LCDs are suitable for parallelization with LoopFrog: no register

dataflow is permitted between the body and the continuation, so

they both can only consume input register values from their iter-

ation’s header. Thus, after executing the header for an iteration,

it becomes possible to start executing the body and continuation

in parallel, as shown in figure 2(c). This allows the core to exe-

cute instructions from a window that is split across multiple quasi-

independent regions, increasing the available ILP.

2



LoopFrog: In-Core Hint-Based Loop Parallelization MICRO 2025, October 18–22, 2025, Seoul, Korea

detach
Header

reattach

Body

sync

Continuation Exit 3

Pre-Header

Exit 2

sync

Exit 1

syncHeader

Body

Continuation Exit 3

Exit 2

(a) Loop structure and hints

detach

reattach

detach

reattach

OoO window

(b) Sequential execution (baseline)

detach

reattach

reattach

detach

reattach

detach

reattach

detach
OoO window

...

(c) Parallel execution (LoopFrog)

Figure 2: Static and dynamic view of loops. LoopFrog enables the processor to extract ILP from multiple quasi-independent
regions.

The core uses threadlets to execute the continuation and sub-

sequent iteration(s) in parallel with the current iteration’s body.

These are lightweight execution contexts internal to the core, com-

pletely transparent to the operating system and the programmer. The

set of instructions executed by a threadlet is called an epoch (one

continuation-header-body triple here). Epochs are strictly ordered

based on original program order.

Breaking the current iteration’s continuation into a separate

epoch allows the core to update the simple register LCD values for

the next iteration and start executing its header and body in a new

threadlet, in parallel with the current iteration’s body. The second

iteration can then initiate parallel execution of a third epoch to run

its continuation in a new threadlet, and so on, until all threadlets

in the microarchitecture are utilized.

It is worth noting that the header, body and continuation often do

not line up with programming-language or compiler concepts, and

instead refer to the sections separated by the detach and reattach

hints. Equivalently, the body is the section that is free from any

register LCD updates, and can thus be easily parallelized with future

sections. Therefore, theoretically the LoopFrog compiler can insert

these hints into every loop, although the size of the resulting body

may be small for loops with complex chains of through-register

LCDs. An overly small body results in insufficient parallelization

and poor performance.

3.1 Parallelization Hint Instructions
For loops that are candidates for parallel execution, the header→body

and body→continuation boundaries, as well as loop exits, are

annotated using new branch-like hints, called detach, reattach
and sync (respectively), as shown in figure 2(a). Such hints en-

able the microarchitecture to identify the boundaries of paral-

lel epochs: an epoch starts at header→continuation and ends at

body→continuation.

The proposed hint instructions are inspired from Tapir [23],

which embeds asymmetric parallelization directives into LLVM to

support explicit (i.e. user-specified – Cilk or OpenMP) parallelism in

the compiler, without breaking SSA form and most compiler analy-

ses that rely on it (unlike symmetric fork-join directives). However,

instead of focusing on explicit parallelism, we utilize similar direc-

tives as hints for implicit (i.e. speculative) parallelism instead. The

machine instructions each carry the continuation block’s address,

which serves as a unique region ID for each annotated loop.

A detach marks a potential fork point: execution can proceed

in parallel from here (if the microarchitecture supports it). The cur-

rent epoch will continue executing from the next instruction, and

the successor epoch can be launched in a new threadlet, from the

continuation address C, executing speculative work. The successor

epoch inherits the register state of its predecessor upon detach.
At this point, the current epoch has ‘detached on region C’, and it

will ignore all hints except reattach C and sync C. If it encoun-
ters reattach C, then it has caught up to the successor’s starting

point, and halts. If/once its state has been committed (merged) to

architectural state, the successor’s state can be committed. Once

the current epoch commit succeeds the threadlet can be recycled,

making the successor the oldest, non-speculative threadlet. If, on

the other hand, sync C is encountered instead, then the current

threadlet exits the speculative region, which means that the succes-

sor threadlet spawning was due to a misspeculation. In this case,

the successor is squashed (along with any chained successors), and

the current threadlet, once it becomes non-speculative, continues

sequential execution of the code after the sync C. Thus, the sync
annotation, on each exit edge, enables early exits from the body by

canceling all successors if a given epoch exits the loop. Note that

the body is always a contiguous slice of the dynamic instruction

stream (even if it is not laid out contiguously in the static binary).

3.2 Preserving Sequential Semantics
Because LoopFrog is an implicit parallelization scheme, the sequen-

tial observable semantics of the original serial program must be

strictly preserved. The microarchitecture is responsible for main-

taining the illusion of sequential execution. Since our epochs are

strictly ordered, there is a well-defined total order in which mem-

ory operations and side-effects should appear to happen logically.

Thus, all threadlets must execute speculatively, other than the one

executing the oldest epoch, which is executing architecturally. For

speculative threadlets, the microarchitecture must transparently

buffer all memory writes (and pause execution before side-effecting

3



MICRO 2025, October 18–22, 2025, Seoul, Korea M Erdős, U Bora, A Bhosale, B Lytton, A Zaidi, AW Chadwick, Y Guo, G Gabrielli and TM Jones

operations like exceptions, barriers or IO) until the threadlet can

become architectural, in the correct sequential program order. For

speculative threadlets that become architectural, their buffered up-

dates are merged with the global architectural state and are visible

to the system in the correct sequential program order. This in-order

commit requirement for threadlets eliminates WAW hazards. We

implement multi-versioned copy-on-write into speculative buffers

for threadlets to eliminate WAR hazards as well. Our proposed

scheme is also capable of handling other corner cases of the target

architecture memory model, for example, for Arm, RAR hazards to

the same memory location.

3.3 Nested Regions
Our architecture permits nested parallel regions (e.g. an inner loop

inside the parallel body). Handling such nesting is up to the micro-

architecture. Our experiments currently only parallelize one region

at a time, using the continuation address as a region ID to identify

and ignore hints belonging to inner regions if an outer region is

already being executed in parallel. A different implementation may

dynamically choose the best nesting level to speculate on, or keep

track of profitable/unprofitable region IDs.

Nested parallelization at run time is architecturally permitted

with the existing hints. So long as all nested regions have distinct

IDs, the microarchitecture can parallelize epochs fractally [29],

while maintaining total ordering across all epochs. However, given

the small number of threadlets in our conventional CPU target,

implementing this was not a priority.

4 LoopFrog Microarchitecture
The microarchitecture for executing LoopFrog regions features a

high-performance SMT-like pipeline, supporting multiple threadlet

contexts (executing parallel epochs). Each threadlet has its own

program counter, architectural registers, and logical slice of the

ROB, and instructions are tagged with a threadlet ID in the pipeline.

Therefore, microarchitectural events such as branch predictions

affect instructions only within the same threadlet, and the progress

of different threadlets is decoupled at each stage of the pipeline.

As each threadlet executes a different program epoch, and epochs

are strictly ordered, a total program order is maintained among all

instructions and can be established using the epoch number and the

instruction sequence number. The oldest threadlet is architectural,

representing the state of the program, while all other threadlets

are speculative, and the microarchitecture can freely drop (squash)

them at any point if it decides to do so (for example, due to a

microarchitectural buffer overflow or a dependency conflict).

In order to preserve the sequential semantics of the program,

speculative threadlets are applied (committed) in program order.

Furthermore, threadlets must be squashed if they conflict with a

past epoch (that is, if an unhandled dependence violation occurs). In

effect, our scheme has two levels of commit. First, instructions com-

mit to their threadlet, and second, speculative threadlets commit to

the architectural state of the program once all older threadlets have

finished and they are verified to be non-conflicting. Note that each

threadlet commits when it becomes the oldest and conflict-checked,

and thus it may still have instructions left to execute or commit.

Future instructions committed to this architectural threadlet com-

mit directly to the architectural state, as the threadlet cannot be

squashed anymore.

In a multicore system, the architecture’s memory model imposes

restrictions on programmer-observable memory orderings across

cores, which LoopFrog explicitly preserves. This requires that spec-

ulative threadlets’ memory updates must be hidden from other

cores until they become architectural. Additionally, threadlets must

be squashed if they can no longer be cleanly committed. For exam-

ple, if another core modifies or observes shared memory in a way

that cannot be reconciled with the accesses of the threadlet due to

the architecture’s memory model.

To track dependency violations between threadlets in a core, all

memory accesses update the conflict detector, which finds conflicts

by tracking the read and write sets of each threadlet. This informa-

tion is updated in parallel with the access. Memory accesses from

the architectural threadlet are dispatched directly to the L1 data

cache (L1D) and are externally observable, but they still update the

conflict detector (as a speculative threadlet can conflict with them).

Memory accesses from the speculative threadlets are intercepted

by the Speculative State Buffer (SSB), which sits between the L1D and

the memory pipe. The SSB has three main functions. First, it buffers

speculatively written data, hiding it from the memory system (and

external observers), as well as accesses from older threadlets. Sec-

ond, it serves up-to-date data to speculative threadlets, acting as

a multi-versioned cache. Third, it enables commit and writeback

of buffered data without violating memory-ordering constraints.

Specifically, the SSB participates in the coherence protocol to facili-

tate ordered or atomic commit of threadlets, even in the presence

of memory traffic from other cores.

Figure 3 shows an overview of the CPU pipeline with resources

the threadlets partition, duplicate, or share. Sharing stages is a

well-known technique, widely used in simultaneous multithread-

ing processors, thus is not discussed here. Dynamic partitioning

can be achieved using linked-list structures [8], as implemented

by IBM POWER5 [25] and POWER8 [26]. Older threadlets have

priority when making allocations. We add an SSB (see section 4.1),

conflict detector (section 4.2), and a checkpoint store to the core. A

checkpoint is a snapshot of register state, created when a threadlet

starts executing a new epoch. If the threadlet is squashed, we load

the checkpoint back in and restart it (if multiple threadlets are

squashed, only the oldest one is restarted). Checkpoints can be

taken by copying the register rename map and preventing physical

registers from being recycled. This can be performed lazily in the

background; thus it need not result in a delay.

4.1 Speculative State Buffer
Logically, the SSB holds the values in memory written by each

threadlet, addressed by memory address and threadlet ID. Incom-

ing (speculative) memory accesses are tagged with the ID of the

threadlet that issued them. Speculative writes store values to the

SSB, while speculative reads look up the SSB in parallel with the L1

data cache. The logic in the SSB constructs the most up-to-date data

for that threadlet using the result of the SSB and L1D lookup. This

multi-versioning logic eliminates output (write-after-write) and

4



LoopFrog: In-Core Hint-Based Loop Parallelization MICRO 2025, October 18–22, 2025, Seoul, Korea

Fetch Decode Rename Dispatch Issue

...

...
Execute

...

Writeback Commit

Out-of-Order Engine

Physical Register File

Fetch Q IQ

Re-Order Buffer

Load-StoreQueue Store Buffer

Rename Map
Commit

Rename Map
L1 Instruction

Cache

Speculative
State
Buffer

L1 Data Cache

Conflict
Detector

Checkpoint
Store

Address

Memory instructions

All instructions

Loads
Stores

Legend
Shared structure
Partitioned
Duplicated
New

Figure 3: Overview of changes to the pipeline. The LoopFrog microarchitecture shares existing pipeline resources between
threadlets, except as indicated. Instructions are tagged with a threadlet ID, and can dynamically co-exist in most structures.
The ROB and LSQ are dynamically partitioned into private slices (without expanding them). The fetch queue and rename maps
are duplicated to store threadlet-specific information, and three new structures are added for storing speculative data and
checking speculation.

false (write-after-read) dependencies, and also eliminates true read-

after-write hazards when the read is (correctly) performed after the

write, as described in section 4.1.3. Order violations within each

threadlet are handled by the load-store unit in the pipeline as usual,

true read-after-write violations between threadlets are detected by

the conflict detector (see section 4.2), and conflicts between cores

are handled by the SSB’s coherence logic (section 4.1.4).

The rest of this section discusses the organization of data into

granules and cache lines (section 4.1.1), the structure of the SSB

(section 4.1.2), the versioning logic (section 4.1.3), and the coherence

aspects, including threadlet commit (section 4.1.4).

4.1.1 Granules and Cache Lines. Data in the SSB is organized into

cache lines composed of small granules. This structure helps to

manage metadata, and simplify the conflict checking and access

logic.

A granule is the smallest unit of data tracked for conflict checking

in the SSB. This could be as little as a byte, a word, or up to as

much as a full cache line, as defined by the implementation. The

cache line size should be a multiple of the granule size. Reads and

writes operating on any part of the same granule are considered

as overlapping and thus conflicting by the conflict detector. If, for

example, the granule size is a word and a store updates a byte

in that word, then the SSB executes a read of the whole granule

followed by a write with the modification present. The read fills in

the unwritten portion with up-to-date data from prior threadlets

or main memory. This additional (false) read may lead to a read-

after-write conflict, due to false sharing. The larger the granules,

the more additional false sharing conflicts will likely occur, but the

smaller the conflict checking storage overhead.

A cache line is the unit of allocation and storage within the SSB.

Metadata, including address and threadlet ID, is stored per cache

line. Each cache line may consist of multiple granules. We store

a bitmask per cache line to identify valid granules (i.e., granules

that the SSB contains) within the line. The SSB only reports a hit if

the valid bit is high for a granule targeted by an operation. Upon a

speculative store, additional granules may be written to the cache

line, and the corresponding valid bits are set. During cache write-

back when a threadlet commits, the SSB uses byte-masked writes

(or multiple writes if not supported) in case only some granules are

valid within the current line.

4.1.2 Structure of the SSB. Figure 4 shows an example of the high-

level structure for an SSB supporting 4 threadlet contexts. The SSB

features a separate slice for each threadlet, storing values created by

that threadlet. For three of the contexts, these values are speculative,

and for the fourth one – identified by the 𝑆
arch

counter – they are

architecturally visible, thus they respond to coherence requests

from the memory system, as described in section 4.1.4.

Squashing is implemented by bulk-invalidating all entries in the

affected slices. Speculative writes insert or update entries in the

slice corresponding to their threadlet. Speculative reads trigger a

parallel lookup for the load address in all SSB slices as well as the

first-level data cache (L1D). Together with the 𝑆
arch

counter and

the threadlet ID of the load, the results are all fed into the logic

described in section 4.1.3 to derive the final, most up-to-date value.

Snooped coherence requests trigger a lookup in the architectural

slice, and any requested values are flushed to the memory system.

The structure of each slice is also shown in figure 4. The slice is

very similar to a standard associative cache. Additionally, each line

has a bitmask 𝑉 identifying valid granules in it, and a hit is only

reported if the requested granule’s line is present and the valid bit

for the granule is set. This means the cache can also yield a partial

hit. A counter is added to track the number of lines present. Once

the slice becomes architectural, its data is gradually flushed to the

memory system using unused bandwidth. With each flushed line,

the counter is decreased. Thus, the slice is fully flushed and the

slice can be recycled once the counter hits zero.

A small, fully associative victim cache may be added to each

slice to increase effective associativity. Note that speculative writes

cannot be discarded or evicted without causing the threadlet to fail.

Therefore, the threadlet needs to be stalled or squashed in case the

SSB slice is full, or if it cannot take a write due to low associativity.

The victim cache reduces the occurrence of the latter case.

5



MICRO 2025, October 18–22, 2025, Seoul, Korea M Erdős, U Bora, A Bhosale, B Lytton, A Zaidi, AW Chadwick, Y Guo, G Gabrielli and TM Jones

Slice 0
Tags

A[51:10]

Valid

V[8]

Data

D[256]

×4 ways

𝐶lines
Victim Cache
(optional)

· · ·

Slice 1

· · ·

Slice 2

· · ·

Slice 3

𝑆arch

To/From Memory System

Writes
Addr+Data Threadlet ID

Reads
Addr Threadlet ID Data

Read Logic
(Figure 5)

Figure 4: The high-level microarchitecture of the speculative
state buffer. The SSB consists of a number of slices storing
values for individual threadlets, a read logic circuit, and a
counter 𝑆arch tracking the slice index of the architectural
threadlet. Writes access a single slice only, while reads access
all slices, mainmemory, and 𝑆arch. The return value for reads
is output by the read logic (see section 4.1.3). Coherence re-
quests from memory are observed by all slices and answered
by the architectural slice (see section 4.1.4).

0

1

2

3 9

8

4

5 6

7

4

6

7

3

Memory 𝑇 0 𝑇 1 𝑇 2

SSB entries
Result (𝑇 1)

Figure 5: Example lookup of speculative values. The load
from threadlet 1 (𝑇 1) observes the most recent value for each
granule, ignoring younger threadlets.

4.1.3 Versioning Logic and Value Forwarding. It is possible to have

SSB slices work completely independently, with each operation

only performing a lookup in the corresponding slice. However, in

this case, we suffer a memory conflict whenever the write set of one

threadlet overlaps with the read set of a concurrent threadlet, even if

the accesses occur in the correct order. Although these are true read-

after-write conflicts, we can eliminate them by performing lookups

in all slices, and combining the results carefully. Figure 5 shows the

result of this logic. The newest value across the memory system

and all older threadlets is returned for each granule, while values

from younger threadlets are ignored. This forwarding also ensures

that a re-execution of a conflicting read will correctly observe the

prior write and thus avoid triggering the same conflict again.

For a speculative load, we can use the threadlet number 𝑇 of the

lookup, and the number of the architectural slice 𝑆
arch

to work out

the ordering of threadlets, and thus the values to take. Main mem-

ory contains the oldest values, followed by the slice 𝑆
arch

, which

corresponds to the architectural threadlet. Then, incrementing the

threadlet number (modulo the total number of threadlets) one-by-

one yields newer and newer threadlets. Threadlets younger than

𝑇 are younger than the load instruction. Thus, they contain val-

ues created later in program order, and we ignore them during the

lookup. This method can be implemented as a simple combinational

logic circuit.

4.1.4 Coherence andCommit. By performing speculation, LoopFrog

reorders memory operations. Through a combination of multi-

versioning, value forwarding, and squashing, we have ensured that

the single-threaded semantics of the program are never changed.

However, modern architectures also place limits on the reordering

of memory operations from the point of view of an external ob-

server. Specifically, LoopFrog must adhere to the memory model,

and only reorder memory operations if this is allowed.

To achieve this, LoopFrog never changes the order in which

operations are exposed. As the precise ordering between operations

from the same speculative threadlet is lost, these are all exposed

atomically, at the same time, at threadlet commit. Architectural

accesses are exposed immediately, just as during single-threaded

execution.

Atomic commit is implemented similarly to hardware transac-

tional memory [11, 13], although deadlocks and livelocks cannot

occur in our case (since we only attempt to commit each threadlet

once, and continue in architectural mode upon a failure). To facili-

tate atomic commit, the SSB sends coherence messages during the

lifetime of the threadlet to obtain affected cache lines. Lines in the

read set are obtained in readable (e.g. Shared) state, and lines in the

write set in a writable (e.g. Modified) state. If another cache later

requests a line in an incompatible state, then the line is given up

and the threadlet is squashed. To do this, the SSB snoops coherence

traffic, and checks requests against the read and write sets of the

conflict detector (see section 4.2). Once all lines are obtained and

the threadlet becomes the oldest, atomic commit can occur. The

𝑆
arch

counter is incremented in a single cycle, making all lines in the

the corresponding SSB slice part of the coherent memory system at

once. The SSB slice continues to snoop coherence requests for lines

it has (i.e. the part of the write set not yet flushed), and it responds

by flushing data immediately so that the requester gets the updated

version.

We consider the ability of the SSB to respect the memory model

and hide speculation from the memory system crucial for deploya-

bility, since doing so maintains the correctness of multi-threaded

programs, shared memory mappings and memory-mapped files

and devices. Even on relaxed memory architectures (such as Arm

or RISC-V), this is necessary, as some limits are still in place on

reordering (e.g. between address or data-dependent instructions, or

for special memory). Without this commit mechanism, the memory

system and architecture would need to be redesigned.

6



LoopFrog: In-Core Hint-Based Loop Parallelization MICRO 2025, October 18–22, 2025, Seoul, Korea

Algorithm 1 Conflict detection logic.

Require: Read and write sets Rd(𝑇 ), Wr(𝑇 ) for each threadlet 𝑇

1: function SpeculativeRead(Granules 𝐺 , Threadlet 𝑇 )
2: Fwd← 𝐺 \Wr(𝑇 ) // Derive forwarded set.

3: Rd(𝑇 ) ← Rd(𝑇 ) ∪ Fwd // Granule read by threadlet iff forwarded.

4: functionWrite(Granules 𝐺 , Threadlet 𝑇 )
5: Wr(𝑇 ) ←Wr(𝑇 ) ∪𝐺 // Add to write set.

6:

7: // Check for conflicts

8: Fwd← 𝐺

9: for all 𝑡 from Successor(𝑇 ) to YoungestThreadlet()

10: if Fwd ∩ Rd(𝑡) ≠ ∅ // 𝑡 observed stale value!

11: sqash(𝑡 ) // Squash and restart 𝑡 , recycle 𝑡 + 1, 𝑡 + 2, . . .
12: break
13: Fwd← Fwd \Wr(𝑡) // All 𝑔 ∈ Wr(𝑡 ) forwarded from 𝑡 , not𝑇 .

4.1.5 Implementation Choices. Note that while we treat the SSB in

the preceding discussion and our experimental setup as a distinct

microarchitectural component, the functionality it provides could

in fact be subsumed by either the store/merge buffers in the core,

or by a multi-versioned L1D, if the relative structure sizes allow.

4.2 Conflict Detection
The conflict detector checks the speculation for correctness, and

initiates corrective action in the form of squashing threadlets if any

speculative reads obtained stale data due to incorrect reordering

with prior writes. The conflict detector checks for true read-after-

write dependencies between threadlets in the same core, where the

read is from a later threadlet but it was serviced before the write in

the SSB. Note that all other types of conflict are handled without

squashing, as described in section 4.1.

To find violations, the conflict detector maintains the read and

write sets (Rd(𝑇 ), Wr(𝑇 )) for each threadlet𝑇 , and performs checks

on speculative reads and all writes, as shown in algorithm 1.

Upon a speculative read, no conflict can be discovered (as the

read is the latest operation seen), so we simply update the read

set of the threadlet. Granules already in the write set have been

produced by prior writes in the same threadlet and not writes in

prior threadlets. Thus, we exclude these from the threadlet’s read

set. This is safe, as the values read are always up to date due to

ordering within each threadlet.

Upon a write, we add the written granules to the write set for

later, and iterate over all younger speculative threadlets 𝑡 to check

for conflicts between the current write𝑊 and reads 𝑅 from future

threadlets that were executed before𝑊 . The Fwd set contains the

granules created by 𝑊 that the read 𝑅 from threadlet 𝑡 should

observe. Before incrementing 𝑡 , we exclude granules in the write set

of 𝑡 from Fwd. To understand why, consider a sequence of accesses

to the same location in the program: writes𝑊1, . . . ,𝑊𝑛 followed by

a read 𝑅. Clearly, 𝑅 should (only) observe𝑊𝑛 , as𝑊𝑛 overwrites the

values produced by prior writes𝑊1, . . . ,𝑊𝑛−1. If 𝑅 reads this value,

then there is no conflict, otherwise there is a conflict between 𝑅 and

𝑊𝑛 . In the algorithm, consider𝑊 =𝑊1. For any granule 𝑔, having

𝑔 ∈ Wr(𝑡) means there is an intervening𝑊2, between𝑊 and all

reads 𝑅 from threadlets 𝑡 ′ younger than 𝑡 , for granule 𝑔. 𝑅 may or

may not conflict with𝑊𝑛 , depending on the timings of accesses,

so we do not squash during the current conflict check (from𝑊 ).

Instead, the conflict check initiated by𝑊𝑛 is guaranteed to pick up

the conflict if it occurred. If we do identify a conflict, there may still

be intervening writes in program order (which have not happened

yet), but a conflict is inevitable, and so we squash immediately.

During the lifetime of a threadlet, conflict checking can safely

run in the background, without impeding accesses; thus its latency

is not critical. However, before the threadlet commits, all checks

targeting its reads need to finish.We add a small delay to account for

in-progress conflict checks to finish before the threadlet commits.

The read and write sets of threadlets may be implemented in

hardware using Bloom filters, similarly to prior work [12]. Doing so

leads to a low false-positive rate, but guarantees no false negatives,

making the approach safe and efficient.

4.3 Iteration Packing
A number of loops with largely independent iterations are small,

containing only tens of instructions on average (sometimes with

high variability). If iterations are too small, naïve parallelization

will result in a slowdown. For LoopFrog to expose additional paral-

lelism, speculative threadlets need to jump ahead of the baseline

CPU’s out-of-order window, or at least past some hard-to-predict

branches. Furthermore, even LoopFrog’s thread spawning over-

heads (e.g. frontend pipeline latency) become significant on such

an ultra-low scale.

Thus, to increase the size of each epoch, the microarchitecture

can choose to jump further ahead on detach and pack 𝑁 loop

iterations into each epoch. When detaching from iteration 𝐼 , the

microarchitecture predicts the register starting state of iteration

𝐼 +𝑁 . The successor is assigned to execute from 𝐼 +𝑁 onwards, and

the current threadlet will execute the iterations until that point.

We use the first few iterations of each loop to train three predic-

tors, which work together to control iteration packing. The first

estimates the size of each epoch to derive a reasonable packing

factor, targeting a specific epoch size. The second predictor predicts

the set of induction variables (IV) (or other loop-carried depen-

dencies) based on cumulative read and write sets across iterations.

We treat a register as an induction variable if it is both in the read

and write sets (that is, it changes) and the new value is consumed

in a later iteration. The third predictor performs value prediction

on the suspected induction-variable registers. Iteration packing is

only performed if the value predictor can confidently predict all

IV registers. The microarchitecture compares predictions to final

values, and it safely updates mispredicted registers, or squashes the

successor if the stale value has already been consumed.

The general technique of iteration packing can be applied with

arbitrarily complex predictors. In particular, we could use any value

predictor to handle complicated loop-carried dependencies and

find the optimal packing factor. For example, the microarchitecture

could execute N copies of the continuation and header (which

essentially form the precomputation slice [16]) before entering the

body. Note that the microarchitecture still needs to verify either

7



MICRO 2025, October 18–22, 2025, Seoul, Korea M Erdős, U Bora, A Bhosale, B Lytton, A Zaidi, AW Chadwick, Y Guo, G Gabrielli and TM Jones

the final values computed by the p-slice, or its execution, as the p-

slice could conflict with the body. We found that even rudimentary

predictors suffice to make a difference and tackle the common case.

To set the packing factor, we calculate an exponential moving

average (EMA) of past iteration sizes to estimate the likely iteration

size 𝑆 . This can be updated using simple logic 𝑆 ← 𝛼𝑆 + (1 − 𝛼)𝐼 ,
where 𝐼 is the size of the new iteration, and 0 < 𝛼 < 1 is a constant,

yet it characterizes common patterns (e.g. constant, phase-based,

or noisy sizes) well. We then choose the smallest packing factor 𝑃

such that 𝑃 × 𝑆 is greater than the ROB size.

To handle the common case of linear iteration, we use a simple

strided predictor to predict the value of induction variables. That

is, the next value is always predicted as the current value plus a

fixed offset. A saturating confidence counter is used to check pre-

dictions (with small positive update on success and large penalty

on failure). Both the starting value and offset are reset if confidence

hits zero. This predictor is simple, quick to train, and covers strided

induction variables with occasional conditional updates. We found

mispredictions to be rare whenever confidence was high enough for

packing to occur. These cases were caught by comparing and veri-

fying register start states. Note that memory conflict detection and

disambiguation are also still performed as described in sections 4.1

and 4.2.

5 Compilation and Loop Selection
Although a LoopFrog compiler is not the main focus of this pa-

per, the relatively simple code-generation requirements are a key

strength of the technique, especially compared to schemes based

on tasks [27, 33], pipelining [19] or auto-parallelization [5, 31].

Code generation for LoopFrog has three main components: loop

selection, hint insertion, and transformations to increase parallelism.

Our prototype requires manual loop selection using #pragma an-
notations, but performs hint insertion automatically. Optimizing

transformations (beyond standard -O3 passes) are left to future

work.

5.1 Loop Selection
In our prototype, we use profiling information to annotate the most

profitable loops in the source code, thus simulating perfect static

loop selection. The best loops are picked, but the microarchitecture

parallelizes all occurrences of them (except those nested in another

parallel loop), even if some are unprofitable.

Automatic loop selection is an interesting problem that should be

considered both statically and dynamically. Static selection should

exclude loops very unlikely to be profitable, while dynamic selection

avoids unprofitable parallelization by ignoring hints and treating

them as a NOPs. Thus, the overhead of a dynamically de-selected

loop is two NOPs per iteration (plus one at the loop exit). This

adds costs in very tight inner loops (which should thus be statically

deselected), but has negligible impact in larger loops on a wide out-

of-order superscalar core. Additionally, unprofitable loops must

be excluded by either static or dynamic deselection, as they may

lead to slowdown (up to 10% in our tests). Typically, these loops

either have very frequent conflicts, overflow the SSB, have low

iteration counts, or they already achieve near-maximal performance

in the baseline core due to out-of-order execution. A good solution

to loop selection will likely use a combination of compiler static

analysis, binary profiling techniques, and run-time performance

monitoring. The latter may be based on performance counters,

or trying both sequential and parallel versions. The boundaries

between these components, interfaces for encoding information

and possible heuristics present a rich field for future research.

5.2 Optimization
We execute our compiler pass after running all standard compiler

optimization passes (-O3), including vectorization. In addition to

this, we do not perform any LoopFrog-specific optimizations. Such

optimizations could increase the size of the parallel body by elimi-

nating or moving loop-carried dependencies. Compiler unrolling

could also be used together with code motion to increase the size

of iterations and each parallel body.

5.3 Hint Insertion
The compiler pass inserts hints automatically into each selected

loop. To do this, it annotates every loop exit edge with a sync,
and considers possible placements of detach and reattach. The
placement of these hints determines the boundaries of the three

loop sections, the header, body and continuation. The header is the

region above the detach, the body sits between the two hints, and

the continuation is the region below the reattach. Since the body
contains the parallel code, we try to maximize its size. However, the

compiler must ensure that no true register loop-carried dependence

exists between the body and future sections. This excludes some

detach-reattach pairs. The current prototype does not consider
through-memory LCDs (except those lowered due to register pres-

sure in the backend) and just blindly maximizes the body size based

on profiling information.

6 Evaluation
In this section we show that our implementation is able to take

advantage of parallelism exposed by the compiler hints. We demon-

strate that this can translate tomeaningful whole-program speedups,

even for historically hard-to-parallelize general-purpose workloads.

6.1 Setup
We evaluate our proposal for a 4-threadlet configuration using an

extended gem5 [2] CPUmodel, based on an 8-wide OoOmicroarchi-

tecture described in table 1. All resources are dynamically shared

between the threadlets
1
, thus our speedups come from better uti-

lization of existing resources. We duplicated the fetch queues per

threadlet to better simulate a modern, decoupled front-end. Shar-

ing branch predictor tables appears to work relatively well due to

TAGE’s ability to learn noisy patterns, although a LoopFrog-aware

branch predictor may be beneficial. We do not model the Bloom

filters (but account generously for the checking latency), as we be-

lieve false aliasing is a second-order effect (due to our fine-grained

granules). With a naïve design, this could lead to 2% of epochs fail-

ing, but improvements – such as more detailed secondary checks –

are possible.

1
Partitioning statically into 4 threadlets inside each parallel loop (even if only

fewer threadlets are alive) produced similar speedups as long as the whole ROB could

be used outside of parallel loops.

8



LoopFrog: In-Core Hint-Based Loop Parallelization MICRO 2025, October 18–22, 2025, Seoul, Korea

Core

Pipeline 4GHz, 8-wide, dynamically shared by 4 threadlet contexts

Fetch

4 fetch buffers (partitioned 1 × 4 / 2 × 2 / 4 × 1), max 4 insts

per buffer, picking ≤ 8 insts/cycle/threadlet

Structures

Dynamically shared: 1024-entry ROB, 384-entry IQ, 256-

entry LQ and SQ, Duplicated: 32-entry Fetch Queue

Register File 1024 int & 768 fp physical registers

FUs/pipes

7 ALU+Branch, 2 ALU+Mul+Div, 4 SIMD+FP (2 Di-

v/Sqrt/SimdMul + 2 SimdShift/Cvt), 4 Load, 2 Store pipes

Branch Pred

256 Kbits LTAGE [24] (13-component TAGE + 256-entry

Loop), 4096-entry BTB, 48-entry RAS. Tables shared and

updated by all contexts. (Global) history per threadlet.

SSB

Work Queue 72-entry (incl. architectural and reattach ops)

Granules & lines 4 B granules, 32 B cache lines

Granule Cache 4 slices, 8KiB in total, associativity not modelled

Access Latency 1-cycle writes, 3-cycle reads (incl. L1D lookup)

Conflict checking

4-cycle checking latency. No false positives modeled (ideal-

ized Bloom filter)

Memory System

L1I 64KiB 4-way, 1-cycle hit, 16 MSHRs (×8 targets)

L1D

64KiB 4-way, 2-cycle hit, 10 MSHRs (×16), 12 write buffers,
stride (degree: 2) prefetcher

L2

4MiB 8-way, 11-cycle hit, 32 MSHRs (×16), 32 write buffers,
tagged, stride (degree: 8) and neighbor prefetchers

DRAM 32GiB DDR3-1600 RAM (≈ 60 ns access latency, 100GiB/s)
Table 1: Simulation parameters for an aggressive 8-wide core.

The binaries were obtained using the LLVM [14] compiler en-

abling all -O3 optimizations, including vectorization, as described

in section 5.

We select up to 15 SimPoints [10] per workload, each SimPoint

containing 250 million instructions with a warmup period of 50

million instructions to evaluate speedups on full runs of these

benchmarks. Clustering yields 8-13 SimPoints for most workloads.

We run the gem5 simulation twice per SimPoint. In the baseline

run, hints are ignored (no speculation), whereas in the second

run, LoopFrog performs speculation, guided by hint instructions.

Then, using SimPoint data (representative weights, instructions

per SimPoint and in the benchmark), we estimate the run-time

with and without LoopFrog speculation. Finally, we divide the total

run-times to obtain per-benchmark speedups. We calculate other

statistics similarly based on SimPoint weights.

6.2 Whole-Benchmark Speedup
Figure 6 shows our whole-benchmark speedups over SPEC CPU

2006 and CPU 2017 benchmarks. The geometric mean speedup is

9.2% for CPU 2006 and 9.5% for 2017. LoopFrog accelerates 34 out of

all 47 benchmarks by more than 1%, including 13 out of 20 in CPU

2017. We focus the rest of our evaluation on these 13 benchmarks.

Out of them, 5 achieve over 10% speedup, with imagick gaining

87%, omnetpp 54%, nab 15%, gcc 12% and xalancbmk 11%. There are

also 11 benchmarks from the 2006 suite gaining over 10%.

6.3 Speculation and Region Speedup
Note that the speedups in section 6.2 are over the total run time of

the benchmarks, including parallelized loops and sequential regions,

which do not get an uplift. To achieve this, our loop speedups are

significantly higher, ranging up to 2.9×, with 6 loops achieving over
2× loop speedup, and 44 loops speeding up by 20% or more. Figure 7

shows the degree of LoopFrog threading over the lifetime of each

benchmark. We had at least two threadlets active on average 42% of

the time in the 13 profitable benchmarks (29% over all benchmarks),

and all four threadlets were active 23% of time (16% overall). Using

Amdahl’s law, this translates to a 43% geometric mean in-region

speedup across all CPU 2017 benchmarks.

Figure 8 shows the contributions of architectural execution and

speculation to overall performance improvement, as well as ad-

ditional failed speculation on top. On average, the architectural

threadlet is slowed down by 6% compared to the baseline, due

to resource sharing. The decrease is limited by LoopFrog always

prioritizing the oldest threadlet. Slowdown occurs due to priority

inversion on long-term resource allocations (e.g. ROB slots, mem-

ory bandwidth) as well as perturbations to predictor inputs. In some

cases, we see an uplift in architectural performance, which is due

to the prefetching side-effects of speculation that can reduce cache

misses, as well as speculative threadlets starting work (typically

long-latency cache misses and instructions after them) that only

commit after the threadlet becomes architectural. On average, suc-

cessful speculation recoups the 6% loss and adds the 9.5% speedup.

We also see an additional 31% of instructions committed per cycle

to speculative threadlets that later fail and do not contribute to

architectural IPC. More than two thirds of the failed speculation is

contributed by only 5 benchmarks, where these extra instructions

could be injected into the pipeline without disrupting architectural

progress due to the high degree of under-utilization.

6.4 Analysis
To understand the source of our speedups, we performed additional

analysis of bottlenecks and improvements using a wide range of

detailed simulator statistics, including top-down microarchitectural

analysis [32] metrics. We identified two main classes of speedups,

with five subcategories. We then sorted the profitable loops into

these categories. While some loops benefit from multiple sources,

we focus on the main cause in each case. Because of noise (due to

perturbation and secondary effects), we cannot accurately identify

the reasons for small changes. Thus, when considering speedup,

we limit our analysis to the 38 parallel loops that yielded at least 1%

whole-program speedup for their benchmark. A summary is shown

in table 2. To estimate the fraction of speedup per category based

on this qualitative analysis, we attribute all speedup achieved by

each loop to the best-matching category.
2

6.4.1 True Parallelism. For 28 out of 38 loops, the speedups came

primarily from true thread-level parallelism. That is, some of the

pipeline’s bandwidth was left unused by the single threadlet in

sequential mode, or wasted due to misspeculated instructions fol-

lowing branches. In the parallel version, this bandwidth could be

reallocated to speculative threadlets, which could use some fraction

of it to perform work. As this speculative work was later commit-

ted to architectural state, execution speed increased. The natural

2
For example, the main loop in omnetpp benefits mostly from branch condition

prefetching, thus all of its speedup is added to this category (even though it benefits

to a smaller extent from data value prefetching), since we cannot accurately tell the

proportions of those gains.

9



MICRO 2025, October 18–22, 2025, Seoul, Korea M Erdős, U Bora, A Bhosale, B Lytton, A Zaidi, AW Chadwick, Y Guo, G Gabrielli and TM Jones

4
0
0
.p
e
r
lb
e
n
c
h

4
0
1
.b
z
ip
2

4
0
3
.g
c
c

4
1
0
.b
w
a
v
e
s

4
1
6
.g
a
m
e
s
s

4
2
9
.m
c
f

4
3
3
.m
il
c

4
3
4
.z
e
u
s
m
p

4
3
5
.g
r
o
m
a
c
s

4
3
6
.c
a
c
tu
s
A
D
M

4
3
7
.l
e
s
li
e
3
d

4
4
4
.n
a
m
d

4
4
5
.g
o
b
m
k

4
4
7
.d
e
a
lI
I

4
5
0
.s
o
p
le
x

4
5
3
.p
o
v
r
a
y

4
5
4
.c
a
lc
u
li
x

4
5
6
.h
m
m
e
r

4
5
8
.s
je
n
g

4
5
9
.G
e
m
s
F
D
T
D

4
6
2
.l
ib
q
u
a
n
tu
m

4
6
4
.h
2
6
4
r
e
f

4
7
0
.l
b
m

4
7
1
.o
m
n
e
tp
p

4
7
3
.a
s
ta
r

4
8
2
.s
p
h
in
x
3

4
8
3
.x
a
la
n
c
b
m
k

Ge
om

ea
n (
20
06
)

5
0
2
.g
c
c

5
0
3
.b
w
a
v
e
s

5
0
5
.m
c
f

5
0
7
.c
a
c
tu
B
S
S
N

5
0
8
.n
a
m
d

5
1
0
.p
a
r
e
s
t

5
1
1
.p
o
v
r
a
y

5
1
9
.l
b
m

5
2
0
.o
m
n
e
tp
p

5
2
3
.x
a
la
n
c
b
m
k

5
2
5
.x
2
6
4

5
2
6
.b
le
n
d
e
r

5
3
1
.d
e
e
p
s
je
n
g

5
3
8
.i
m
a
g
ic
k

5
4
1
.l
e
e
la

5
4
4
.n
a
b

5
4
8
.e
x
c
h
a
n
g
e
2

5
4
9
.f
o
to
n
ik
3
d

5
5
4
.r
o
m
s

5
5
7
.x
z

Ge
om

ea
n (
20
17
)

1

1.1

1.2

1.3

1.1

1.2

1.3

9
.2
%

9
.5
%

1.51 1.54 1.87

S
p
e
e
d
u
p

Figure 6: Full-program speedups across SPEC CPU 2006 and CPU 2017 benchmarks (full runs using reference inputs).

5
0
2
.g
c
c

5
0
3
.b
w
a
v
e
s

5
0
5
.m
c
f

5
0
7
.c
a
c
tu
B
S
S
N

5
1
0
.p
a
r
e
s
t

5
1
1
.p
o
v
r
a
y

5
2
0
.o
m
n
e
tp
p

5
2
3
.x
a
la
n
c
b
m
k

5
2
5
.x
2
6
4

5
3
8
.i
m
a
g
ic
k

5
4
4
.n
a
b

5
4
8
.e
x
c
h
a
n
g
e
2

5
4
9
.f
o
to
n
ik
3
d

5
5
4
.r
o
m
s

Av
era

ge

Av
era

ge
(al
l)

0

20

40

60

80

100

%
o
f
r
u
n
t
i
m
e

1 Threadlet

2 Threadlets

3 Threadlets

4 Threadlets

Figure 7: Utilization of speculative threadlets over time for
profitable SPEC CPU 2017 benchmarks.

5
0
2
.g
c
c

5
0
3
.b
w
a
v
e
s

5
0
5
.m
c
f

5
0
7
.c
a
c
tu
B
S
S
N

5
1
0
.p
a
r
e
s
t

5
1
1
.p
o
v
r
a
y

5
2
0
.o
m
n
e
tp
p

5
2
3
.x
a
la
n
c
b
m
k

5
2
5
.x
2
6
4

5
3
8
.i
m
a
g
ic
k

5
4
4
.n
a
b

5
4
8
.e
x
c
h
a
n
g
e
2

5
4
9
.f
o
to
n
ik
3
d

5
5
4
.r
o
m
s

Ge
om

ea
n

0

0.5

1

1.5

2

4.7

I
P
C
r
e
l
a
t
i
v
e
t
o
b
a
s
e
l
i
n
e
(
c
o
m
m
i
t
)

Misspeculation

Successful speculation

Architectural threadlet

Figure 8: Instructions committed per cycle by the architec-
tural and speculative threadlets (including misspeculation),
normalized to baseline IPC.

question is why multiple threadlets could find work better, given

that the total number of instructions in the out-of-order windows

(e.g. reorder buffer) across all threadlets remain the same as it was

in the sequential baseline. We find three main reasons for this.

Memory Parallelism. In highly memory-bound benchmarks, exe-

cution speed is primarily determined by how quickly the proces-

sor can discover and execute long-latency memory instructions.

Single-threaded execution is characterized by alternating bursts of

higher-IPC, more compute-bound work, and long low-IPC phases,

waiting for stalled memory instructions before their dependent

instructions can be executed. During these low-IPC phases, most

or all independent instructions in the window from the stalled

accesses have already been executed, and the window typically

cannot extend further due to a stalled load at the front. Thus, the

pipeline sits highly underutilized and performing work from specu-

lative threadlets is very cheap. During low-IPC phases of the oldest

threadlet, speculative threadlets can run ahead to discover more

high-latency memory instructions, far in the future, and initiate the

accesses. This early discovery leads to timely dispatch, as well as

an increase in memory-level parallelism. This is because far away

accesses in the instruction stream are more likely to be independent

due to the way code is structured, thus the instruction windows (on

average) contain more accesses that are ready to go. Note that this is

despite the total number of instructions in the windows remaining

the same. Additionally, having up to 4 streams of instructions with

opposing phases naturally lining up creates a more steady instruc-

tion mix, reducing contention on core resources such as integer

or floating-point ALUs, or vector execution pipes. Memory access

latency dominates performance in 17 profitable loops, accounting

for 29% of our gains. Additionally, memory-level parallelism plays

an important role in many other loops.

Cutting Control Dependencies. Since threadlets have independent

ROB slices, branch mispredictions in one threadlet do not affect

the other threadlets. Thus, the hints encode high-level control flow

predictions, breaking some (true) control flow dependencies. On

top of predicting a future re-convergence point in the program, the

implicit predictions encoded by LoopFrog’s hints (same value of

registers, and independence on memory) allows early execution

and speculative commit of instructions in the continuation. We

found this to be the main bottleneck in 9 loops, which together

yield 23% of the total speedup from our scheme.

Cutting Dependency Chains. Similarly, the pipeline can also run

out of independent work within the window due to long chains

of linearly dependent instructions, even if they do not have high

latency individually. Since there is no instruction-level parallelism

available between instructions that (directly or indirectly) depend

on each other, a single instruction window can only expose limited

ILP in programs dominated by long dependency chains. As instruc-

tions further away in the stream are statistically less likely to be

dependent, we expose additional ILP due to looking at multiple

far-away subwindows. This is the main gain in 2 loops, accounting

for 12%, however, we also observe the same effect across all three

‘true parallelism’ categories, likely contributing to more speedup.

10



LoopFrog: In-Core Hint-Based Loop Parallelization MICRO 2025, October 18–22, 2025, Seoul, Korea

Category Sub-category Loops
Fraction of
Speedup

True

parallelism

Memory parallelism 17 29%

Control dependencies 9 23%

Dependency chains 2 12%

Prefetching

Branch conditions 6 32%

Data values 4 3%

Table 2: Sources of performance gains. For each source, we
show the number of loops where it is the main factor, and
the fraction of the total geometric mean speedup achieved
by those loops across all SPEC CPU 2017 benchmarks.

6.4.2 Prefetching. Ten loops (in omnetpp, gcc, povray and exchange2)

had minimal or no successful speculation, but still achieved a perfor-

mance uplift due to the side effects of failed speculation. Specifically,

since speculative accesses bring data into the L1 cache, LoopFrog

can serve as a sophisticated prefetcher. Although sometimes this

prefetching yields benefits by speeding up the delivery of data to

general computations (3% of speedup), we found the main bene-

fit (32% of total) comes from faster computation of branch condi-

tions. This in turn led to faster execution of hard-to-predict, data-

dependent branches, which in turn helped earlier redirection to the

correct path, leading to fewer misspeculated instructions, lower

front-end pressure, and higher average ROB occupancy. Conse-

quently, higher levels of instruction-level parallelism were present

in the window.

This distribution is perhaps not surprising, as it is easy to mask

cache-missing loads using ILP if independent work exists within the

window, but the same would typically not be possible for mispre-

dicting branches, since all future instructions are control-dependent

on the branch. Since modern branch predictors are very good at

predicting most branches, tackling the remaining bottleneck of

data-dependent branches can have a significant impact on perfor-

mance.

6.4.3 BenchmarksWith No Speedup. Benchmarks namd, lbm, blender,

deepsjeng, leela, and xz, showed little or no speedup with the current

scheme. High-coverage loops in these benchmarks tend to fall into

one of several categories: they are either extremely large (lbm, xz) or

very small (leela) in size, have a low trip count (blender, deepsjeng),

demonstrate high IPC with a saturated pipeline (deepsjeng, namd),

or involve frequent cross-iteration dependencies that require more

advanced DoAcross synchronization.

6.5 Iteration Packing
The iteration-packing optimization affects 5 of the 13 profitable

benchmarks, increasing the overall geometric mean speedup by

0.9 percentage points across SPEC CPU 2017. The mean packing

factor is 2.1×, with a maximum of 25×. Since this is a fairly heavy-

weight optimization (requiring value prediction and extra register

tracking), a microarchitecture may choose to omit it, (and still gain

8.6%). Compiler unrolling and code motion may also be a more

light-weight alternative.

5
0
2
.g
c
c

5
0
3
.b
w
a
v
e
s

5
0
5
.m
c
f

5
0
7
.c
a
c
tu
B
S
S
N

5
1
0
.p
a
r
e
s
t

5
1
1
.p
o
v
r
a
y

5
2
0
.o
m
n
e
tp
p

5
2
3
.x
a
la
n
c
b
m
k

5
2
5
.x
2
6
4

5
3
8
.i
m
a
g
ic
k

5
4
4
.n
a
b

5
4
8
.e
x
c
h
a
n
g
e
2

5
4
9
.f
o
to
n
ik
3
d

5
5
4
.r
o
m
s

Ge
om

ea
n (
all
)

1

1.1

1.2

1.3

1.1

1.2

1.3

1
.7
1

1
.5

1
.8
7

1
.5
4

1
.8
7

1
.5
4

1
.8
7

S
p
e
e
d
u
p

512 B

2 KB

8 KB

32 KB

Figure 9: Sensitivity to SSB size (default: 8 KiB).

5
0
2
.g
c
c

5
0
3
.b
w
a
v
e
s

5
0
5
.m
c
f

5
0
7
.c
a
c
tu
B
S
S
N

5
1
0
.p
a
r
e
s
t

5
1
1
.p
o
v
r
a
y

5
2
0
.o
m
n
e
tp
p

5
2
3
.x
a
la
n
c
b
m
k

5
2
5
.x
2
6
4

5
3
8
.i
m
a
g
ic
k

5
4
4
.n
a
b

5
4
8
.e
x
c
h
a
n
g
e
2

5
4
9
.f
o
to
n
ik
3
d

5
5
4
.r
o
m
s

Ge
om

ea
n (
all
)

1

1.2

1.4

1.6

1.1

1.2

1.3

1.5

1
.8
7

1
.8
7

S
p
e
e
d
u
p

1 Byte

4 Bytes

16 Bytes

64 Bytes

Figure 10: Sensitivity of speedups to SSB and conflict detector
granule size (default: 4 bytes).

6.6 Sensitivity to SSB Parameters
We investigate how changing two crucial parameters of the SSB

and conflict detector affect performance.

Figure 9 shows sensitivity to SSB size. We find that speedups are

surprisingly resistant to change even with large changes in size.

Changing the size from the headline 8 KiB to 32 KiB increases the

geometric mean speedup by less than 0.1%, and reducing to 2 KiB

only has a 0.4% impact. We find that size affects loop speedups

in a fairly binary way: if the working set fits in the SSB, we can

successfully parallelize, otherwisewe losemost parallelization gains

for the loop. Whilst decreasing the size to 512 B does hurt speedups

far more, we find it noteworthy that this setup still gains 6.2%.

Notably, with our 4-byte granules, we only store up to 128 entries

in the SSB, which is only half of the simulated load-store queue’s

capacity.

Figure 10 explores the effects of granule size, which affects both

the storage in the SSB, as well as checking logic in the conflict

detector. We find that scaling up to half-word (4 B) granularity has

no measurable impact on performance beyond noise for any of the

benchmarks. Moving to word size (8 B) only induces a slowdown for

one benchmark (5% for x264), however increasing further introduces

far more false aliasing, resulting in slowdowns. For 16 B granules,

speedups drop to 6.5%, and then to 6% for cache-line-granularity

conflict checking. Note that this is the approach typically used by

related work [12, 20, 28], so our granular conflict checking is a key

novelty.

Low cache associativity can affect the results negatively. We ran

CPU 2017 benchmarks with SSB associativity limited to 4- and 8-

ways across all threadlets. This resulted in a performance hit of 2.0%

and 1.4%, respectively, compared to our headline results. However,

adding a small victim buffer (8 entries, shared) reduced the impact

11



MICRO 2025, October 18–22, 2025, Seoul, Korea M Erdős, U Bora, A Bhosale, B Lytton, A Zaidi, AW Chadwick, Y Guo, G Gabrielli and TM Jones

Scheme LoopFrog STAMPede (private cache) (2005) MultiScalar (1995)

Speedup 1.1× (SPEC 2017) 1.16× (subsets of SPEC 1995 and 2000) 2.16× (SPEC 1992)

Cores 1 (4-way SMT) 4 8 (PUs)

Area ∼ 1.15× > 4× ∼ 8×
Baseline 8-issue OoO 4-issue simple OoO, 5 stages 2-issue limited OoO (ROB=32)

Task sizes ∼100–10,000 instructions ∼1,400 instructions 10–50 instructions

Deployment compiler, ISA hints OS, compiler, ISA specialist 𝜇-arch, compiler, ISA

Table 3: Comparison of LoopFrog with comparable TLS/SpMT schemes [27, 28]. Speedup numbers are not like-for-like due to
wildly different baseline cores, different benchmark sets, and area overheads.

to 1.2% in both cases. This slowdown is almost exclusively suffered

by omnetpp (6.9% slower) and imagick (8.8% slower).

6.7 Generality of LoopFrog
LoopFrog works well on loops with different characteristics. Among

the profitable loops, some contain inner loops, irregular control

flow, function calls, and some are vectorized. By targeting irregular,

medium-grained parallelism, LoopFrog remains highly orthogo-

nal to existing ILP, DLP and TLP techniques. None of our loops

had OpenMP parallel pragmas, although some had pragmas on

outer loops. In these cases, even if parallelization were turned on

for the coarse outer loop, LoopFrog can still deliver finer-grained

parallelism by parallelizing the inner loop. On the SPEC CPU 2017

benchmarks, considering only loops that are not within an OpenMP

parallel region, LoopFrog gains a geometric mean speedup of 7.5%.

6.8 Area and Power Overheads
Our main overheads are due to the addition of threadlets to the

pipeline, the SSB, and the conflict-detection logic. Speculation in-

creases the number of instructions issued by 14%, while L2 cache

accesses only increase by 1.7%, and L2 misses actually decrease by

2.3%. This may occur due to shallower intra-threadlet speculation

and alignment in accesses, and likely yields a small negative change

in power usage from speculation.

Handling threadlets is a simplified form of simultaneous multi-

threading (SMT), which requires a 10–15% increase in area and

power [4, 9, 15]. The SSB’s primary storage area is the granule

cache. The four slices, each with 2 KiB capacity and 4-way cache as-

sociativity, correspond to an approximate area of 0.025mm
2
(0.03 nJ

per access) according to CACTI [18] (22 nm, itrs-hp, 1 read/write
port, 1 read-exclusive port). In a 7 nm node, using a conservative

scaling factor of 5, the total area for the four slices is 0.02mm
2
.

Finally, an implementation of conflict checking based on Bloom

filters, similar to Swarm [12], takes approximately 0.005mm
2
of

area at 7 nm (dual-ported SRAMwith 8 entries, and 4,096-bit filters).

The area of all additional components is around 2% compared to

the total area of a relatively high-end core, for example, an Arm

Neoverse N1 (1.4mm
2
at 7 nm, including private L1 and 1 MB L2

caches [22]). Hence, we expect a total increase of 12–17% in area

compared to a sequential design, and only about 2% if SMT support

already exists. Even with the optimistic Pollack’s rule approximat-

ing traditional performance gains from a 12–17% increase at 6–8%,

LoopFrog’s headline speedup of 9.5% outperforms expected scaling.

7 Related Work
LoopFrog is built on the idea of thread-level speculation, which has

been explored by a wealth of past papers [7, 30]. LoopFrog’s novelty

is to encode TLS using ISA hints without exposing speculation to

the OS or memory system, and use it to tackle low resource uti-

lization in a wide out-of-order superscalar processor. This enables

the technique to be incorporated into modern high-performance

systems. In contrast, past TLS work focused on multicore or core

federation (thread/processing unit) approaches which involves OS

and architectural impact, or old SMT cores.

Early approaches [16, 17, 27] use a ring of thread units (or process-

ing units) to map computations, with shared speculative memory

(and register) state. Compared to today’s cores the thread units are

simple and have low performance. Thus speedups compared to the

low-powered baseline must compete with 20+ years of microar-

chitectural improvements, including the slowdowns suffered on

non-parallel regions, where sequential performance matters.

Another option is to scale the approach to a multicore design.

Unfortunately, this increases the communication latency. Several

approaches [20, 28] target more coarse-grained parallelism to amor-

tize launching and synchronization overheads. Due to the different

granularity, we see this as largely orthogonal to LoopFrog; indeed,

the two schemes could both run on the same system. The alterna-

tive (explored by Swarm [12, 33]) is to double down on small tasks.

Specialized logic is required to speed up communication, and (in

both cases) there is significant impact on the ISA and operating

system. Furthermore, speculation is exposed to the memory system,

rendering TLS incompatible with traditional multi-core execution.

Due to the number of cores used and special hardware require-

ments, these schemes have a very high area cost compared to a

single core. Furthermore, deployment would be extremely tricky

due to incompatibility with traditional multicore architectures and

memory systems. Code generation is also tricky, leading to only

half of the SPEC CPU 2006 benchmarks compiling due to exception

and control-flow limitations of the prototype.

Using TLS in a simultaneously multithreaded (SMT) core – like

LoopFrog does – has been proposed before [1, 21]. However, past

schemes focus on parallelism found within tens to hundreds of

consecutive program instructions, relying on the LSQ (and ROB)

for reordering and memory disambiguation. We believe the gains

achieved have been superseded by progress in CPU core design.
3

3
IMT [21] only achieves IPC 1.4 on SPEC CPU 2000 on an 8-wide core, which is

worse than our measurements show on a 4-wide Intel© Xeon© W-2195 machine. IMT

also claims that DMP [1] produces a slowdown.

12



LoopFrog: In-Core Hint-Based Loop Parallelization MICRO 2025, October 18–22, 2025, Seoul, Korea

We compare LoopFrog to the most relevant past TLS schemes

listed in table 3. It is hard to compare numerically to past schemes

due to highly varied baseline hardware, unavailable artifacts, and

old/limited benchmarks. We found most past work to only use a

limited set of workloads either due to compiler limitations (suggest-

ing a complicated compiler deployment story), poor performance,

or both. Furthermore, many schemes have a far higher hardware

footprint, requiring a specialized re-design of the whole chip or the

memory system. We believe LoopFrog’s strengths lie in its ability

to keep the compiler simple, have no OS impact, and limit hardware

changes and speculative state to the inside of a single core.

Increasing core utilization to gain performance has been ex-

plored by pipelining and helper threading techniques [31]. Recently,

Pipette [19] added architectural support for structuring code into

pipelines with stages decoupled by queues. The authors demon-

strated 1.9× speedup in select irregular applications using 4-way

SMT. However, they acknowledged that the transformations are

challenging to automate, therefore Pipette requires changes to the

programming model. Furthermore, Pipette requires complete inde-

pendence between stages, unlike LoopFrog, restricting the set of

target applications.

Recent work by Eyerman et al. [8] used Tapir-like hints to iden-

tify quasi-independent regions in order to enable selective flushing

on branch mispredicts, and achieve 1.3× (harmonic mean) speedup

over graph applications. However, the speedups depend on high

mispredict rates in addition to task-level parallelism, reducing the

applicability of the technique to only a smaller subset of workloads

LoopFrog can parallelize.

8 Conclusion and Future Work
We identified untapped parallelism, missed by ILP and TLP schemes

in state-of-the-art high-performance cores. We proposed a minimal,

hint-based ISA extension that can mark speculatively parallel re-

gions, and placed them using a prototype compiler. We designed a

low-overhead, in-core microarchitectural extension to take advan-

tage of these hints. Our scheme can be cleanly added to existing

high-performance processors without breaking compatibility. We

demonstrated that our technique can effectively improve perfor-

mance on hard-to-parallelize general purpose workloads, achieving

a full-program geometric mean speedup of 9.2% (SPEC CPU 2006)

and 9.5% (SPEC CPU 2017), speeding up parallel loops by 43%. Fu-

ture work will focus on microarchitectural techniques and compiler

transformations to better handle loops with complex cross-iteration

dependencies, taking advantage of the substrate introduced in this

paper.

Acknowledgments
This work was supported by the Engineering and Physical Sciences

Research Council (EPSRC), grant EP/W00576X/1, and Arm. Addi-

tional data related to this publication is available in the repository

at https://doi.org/10.17863/CAM.120739.

References
[1] Haitham Akkary and Michael A. Driscoll. 1998. A Dynamic Multithreading

Processor. In Proceedings of the International Symposium on Microarchitecture

(MICRO), James O. Bondi and Jim Smith (Eds.). ACM/IEEE Computer Society,

226–236. https://doi.org/10.1109/MICRO.1998.742784

[2] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh

Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.

Hill, and David A. Wood. 2011. The gem5 Simulator. ACM SIGARCH Computer

Architecture News 39, 2 (2011). https://doi.org/10.1145/2024716.2024718

[3] Shekhar Borkar. 2007. Thousand Core Chips: A Technology Perspective. In

Proceedings of the Design Automation Conference (DAC). https://doi.org/10.1145/

1278480.1278667

[4] J. Burns and J.-L. Gaudiot. 2002. SMT Layout Overhead and Scalability. IEEE

Transactions on Parallel and Distributed Systems 13, 2 (2002). https://doi.org/10.

1109/71.983942

[5] Simone Campanoni, Timothy M. Jones, Glenn Holloway, Gu-Yeon Wei, and

David Brooks. 2012. HELIX: Making the Extraction of Thread-Level Parallelism

Mainstream. IEEE Micro 32, 4 (2012). https://doi.org/10.1109/MM.2012.50

[6] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sankaralingam,

and Doug Burger. 2011. Dark Silicon and the End of Multicore Scaling. In

Proceedings of the International Symposium on Computer Architecture (ISCA).

https://doi.org/10.1145/2000064.2000108

[7] Alvaro Estebanez, Diego R. Llanos, and Arturo Gonzalez-Escribano. 2016. A

Survey on Thread-Level Speculation Techniques. Comput. Surveys 49, 2 (2016).

https://doi.org/10.1145/2938369

[8] Stijn Eyerman, Wim Heirman, Sam Van Den Steen, and Ibrahim Hur. 2021. En-

abling Branch-Mispredict Level Parallelism by Selectively Flushing Instructions.

In Proceedings of the International Symposium on Microarchitecture (MICRO).

https://doi.org/10.1145/3466752.3480045

[9] Josue Feliu, Stijn Eyerman, Julio Sahuquillo, and Salvador Petit. 2016. Sym-

biotic Job Scheduling on the IBM POWER8. In Proceedings of the Interna-

tional Symposium on High Performance Computer Architecture (HPCA). https:

//doi.org/10.1109/HPCA.2016.7446103

[10] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. 2005. SimPoint 3.0:

Faster and More Flexible Program Phase Analysis. Journal of Instruction Level

Parallelism 7, 4 (2005). http://www.jilp.org/vol7/v7paper14.pdf

[11] Maurice Herlihy and J. Eliot B. Moss. 1993. Transactional memory: architectural

support for lock-free data structures. In Proceedings of the 20th Annual Interna-

tional Symposium on Computer Architecture (ISCA). Association for Computing

Machinery, New York, NY, USA, 12 pages. https://doi.org/10.1145/165123.165164

[12] Mark C. Jeffrey, Suvinay Subramanian, Cong Yan, Joel Emer, and Daniel Sanchez.

2015. A Scalable Architecture for Ordered Parallelism. In Proceedings of the

International Symposium on Microarchitecture (MICRO). https://doi.org/10.1145/

2830772.2830777

[13] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. 2018. DHTM:

Durable Hardware Transactional Memory. In 2018 ACM/IEEE 45th Annual Inter-

national Symposium on Computer Architecture (ISCA). https://doi.org/10.1109/

ISCA.2018.00045

[14] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for

Lifelong ProgramAnalysis and Transformation. In Proceedings of the International

Symposium on Code Generation and Optimization (CGO). https://doi.org/10.1109/

CGO.2004.1281665

[15] Yingmin Li, K. Skadron, D. Brooks, and Zhigang Hu. 2005. Performance, Energy,

and Thermal Considerations for SMT and CMP Architectures. In Proceedings of

the International Symposium on High-Performance Computer Architecture (HPCA).

https://doi.org/10.1109/HPCA.2005.25

[16] Carlos Madriles, Carlos García Quiñones, F. Jesús Sánchez, Pedro Marcuello,

Antonio González, Dean M. Tullsen, Hong Wang, and John Paul Shen. 2008.

Mitosis: A Speculative Multithreaded Processor Based on Precomputation Slices.

IEEE Transactions on Parallel Distributed Systems 19, 7 (2008), 914–925. https:

//doi.org/10.1109/TPDS.2007.70797

[17] Pedro Marcuello, Jordi Tubella, and Antonio González. 1999. Value Prediction

for Speculative Multithreaded Architectures. In Proceedings of the International

Symposium on Microarchitecture (MICRO), Ronny Ronen, Matthew K. Farrens,

and Ilan Y. Spillinger (Eds.). ACM/IEEE Computer Society, 230–236. https:

//doi.org/10.1109/MICRO.1999.809461

[18] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. 2009.

CACTI 6.0: A tool to model large caches. HP laboratories 27 (2009). https:

//www.hpl.hp.com/techreports/2009/HPL-2009-85.pdf

[19] Quan M. Nguyen and Daniel Sanchez. 2020. Pipette: Improving Core Utilization

on Irregular Applications through Intra-Core Pipeline Parallelism. In Proceedings

of the International Symposium on Microarchitecture (MICRO). https://doi.org/10.

1109/MICRO50266.2020.00056

[20] M. Ohmacht, A. Wang, T. Gooding, B. Nathanson, I. Nair, G. Janssen, M. Schaal,

and B. Steinmacher-Burow. 2013. IBM Blue Gene/Q memory subsystem with

speculative execution and transactional memory. IBM Journal of Research and

Development 57, 1 (2013). https://doi.org/10.1147/JRD.2012.2228092

[21] Il Park, Babak Falsafi, and T. N. Vijaykumar. 2003. Implicitly-multithreaded

processors. In Proceedings of the International Symposium on Computer Architec-

ture (ISCA), Allan Gottlieb and Kai Li (Eds.). https://doi.org/10.1109/ISCA.2003.

1206987

13

https://doi.org/10.17863/CAM.120739
https://doi.org/10.1109/MICRO.1998.742784
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/1278480.1278667
https://doi.org/10.1145/1278480.1278667
https://doi.org/10.1109/71.983942
https://doi.org/10.1109/71.983942
https://doi.org/10.1109/MM.2012.50
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.1145/2938369
https://doi.org/10.1145/3466752.3480045
https://doi.org/10.1109/HPCA.2016.7446103
https://doi.org/10.1109/HPCA.2016.7446103
http://www.jilp.org/vol7/v7paper14.pdf
https://doi.org/10.1145/165123.165164
https://doi.org/10.1145/2830772.2830777
https://doi.org/10.1145/2830772.2830777
https://doi.org/10.1109/ISCA.2018.00045
https://doi.org/10.1109/ISCA.2018.00045
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/HPCA.2005.25
https://doi.org/10.1109/TPDS.2007.70797
https://doi.org/10.1109/TPDS.2007.70797
https://doi.org/10.1109/MICRO.1999.809461
https://doi.org/10.1109/MICRO.1999.809461
https://www.hpl.hp.com/techreports/2009/HPL-2009-85.pdf
https://www.hpl.hp.com/techreports/2009/HPL-2009-85.pdf
https://doi.org/10.1109/MICRO50266.2020.00056
https://doi.org/10.1109/MICRO50266.2020.00056
https://doi.org/10.1147/JRD.2012.2228092
https://doi.org/10.1109/ISCA.2003.1206987
https://doi.org/10.1109/ISCA.2003.1206987


MICRO 2025, October 18–22, 2025, Seoul, Korea M Erdős, U Bora, A Bhosale, B Lytton, A Zaidi, AW Chadwick, Y Guo, G Gabrielli and TM Jones

[22] Andrea Pellegrini, Nigel Stephens, Magnus Bruce, Yasuo Ishii, Joseph Pusdesris,

Abhishek Raja, Chris Abernathy, Jinson Koppanalil, Tushar Ringe, Ashok Tum-

mala, Jamshed Jalal, MarkWerkheiser, and Anitha Kona. 2020. The Arm Neoverse

N1 Platform: Building Blocks for the Next-Gen Cloud-to-Edge Infrastructure SoC.

IEEE Micro 40, 2 (2020). https://doi.org/10.1109/MM.2020.2972222

[23] Tao B. Schardl, William S. Moses, and Charles E. Leiserson. 2017. Tapir: Em-

bedding Fork-Join Parallelism into LLVM’s Intermediate Representation. In Pro-

ceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP). https://doi.org/10.1145/3018743.3018758

[24] André Seznec. 2007. A 256 Kbits L-TAGE branch predictor. https://www.irisa.fr/

caps/people/seznec/L-TAGE.pdf.

[25] Balaram Sinharoy, Ronald N. Kalla, Joel M. Tendler, Richard J. Eickemeyer, and

Jody B. Joyner. 2005. POWER5 system microarchitecture. IBM Journal of Research

and Development 49, 4-5 (2005), 505–522. https://doi.org/10.1147/RD.494.0505

[26] Balaram Sinharoy, James Van Norstrand, Richard J. Eickemeyer, Hung Q. Le, Jens

Leenstra, Dung Q. Nguyen, B. Konigsburg, K. Ward, M. D. Brown, José E. Mor-

eira, D. Levitan, S. Tung, David Hrusecky, James W. Bishop, Michael Gschwind,

Maarten Boersma, Michael Kroener, Markus Kaltenbach, Tejas Karkhanis, and

K. M. Fernsler. 2015. IBM POWER8 processor core microarchitecture. IBM Jour-

nal of Research and Development 59, 1 (2015). https://doi.org/10.1147/JRD.2014.

2376112

[27] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. 1995. Multiscalar Pro-

cessors. In Proceedings of the International Symposium on Computer Architecture

(ISCA). https://doi.org/10.1145/223982.224451

[28] J. Gregory Steffan, Christopher Colohan, Antonia Zhai, and Todd C. Mowry. 2005.

The STAMPede Approach to Thread-Level Speculation. ACM Transactions on

Computer Systems 23, 3 (2005). https://doi.org/10.1145/1082469.1082471

[29] Suvinay Subramanian, Mark C. Jeffrey, Maleen Abeydeera, Hyun Ryong Lee,

Victor A. Ying, Joel Emer, and Daniel Sanchez. 2017. Fractal: An Execution Model

for Fine-Grain Nested Speculative Parallelism. In Proceedings of the International

Symposium on Computer Architecture (ISCA). https://doi.org/10.1145/3079856.

3080218

[30] Josep Torrellas. 2011. Speculation, Thread-Level. Springer US, Boston, MA. 1894–

1900 pages. https://doi.org/10.1007/978-0-387-09766-4_170

[31] Neil Vachharajani, Ram Rangan, Easwaran Raman, Matthew J. Bridges, Guil-

herme Ottoni, and David I. August. 2007. Speculative Decoupled Software

Pipelining. In Proceedings of the International Conference on Parallel Archi-

tectures and Compilation Techniques (PACT). IEEE Computer Society, 49–59.

https://doi.org/10.1109/PACT.2007.66

[32] Ahmad Yasin. 2014. A Top-Down method for performance analysis and counters

architecture. In 2014 IEEE International Symposium on Performance Analysis

of Systems and Software (ISPASS). 35–44. https://doi.org/10.1109/ISPASS.2014.

6844459

[33] Victor A. Ying, Mark C. Jeffrey, and Daniel Sanchez. 2020. T4: Compiling Se-

quential Code for Effective Speculative Parallelization in Hardware. In Proceed-

ings of the International Symposium on Computer Architecture (ISCA). https:

//doi.org/10.1109/ISCA45697.2020.00024

[34] Ali Mustafa Zaidi, Konstantinos Iordanou, Mikel Luján, and Giacomo Gabrielli.

2021. Loopapalooza: Investigating Limits of Loop-Level Parallelism with a

Compiler-Driven Approach. In Proceedings of the International Symposium on

Performance Analysis of Systems and Software (ISPASS). https://doi.org/10.1109/

ISPASS51385.2021.00030

14

https://doi.org/10.1109/MM.2020.2972222
https://doi.org/10.1145/3018743.3018758
https://www.irisa.fr/caps/people/seznec/L-TAGE.pdf
https://www.irisa.fr/caps/people/seznec/L-TAGE.pdf
https://doi.org/10.1147/RD.494.0505
https://doi.org/10.1147/JRD.2014.2376112
https://doi.org/10.1147/JRD.2014.2376112
https://doi.org/10.1145/223982.224451
https://doi.org/10.1145/1082469.1082471
https://doi.org/10.1145/3079856.3080218
https://doi.org/10.1145/3079856.3080218
https://doi.org/10.1007/978-0-387-09766-4_170
https://doi.org/10.1109/PACT.2007.66
https://doi.org/10.1109/ISPASS.2014.6844459
https://doi.org/10.1109/ISPASS.2014.6844459
https://doi.org/10.1109/ISCA45697.2020.00024
https://doi.org/10.1109/ISCA45697.2020.00024
https://doi.org/10.1109/ISPASS51385.2021.00030
https://doi.org/10.1109/ISPASS51385.2021.00030

	Abstract
	1 Introduction
	2 Background and Motivation
	3 LoopFrog Architecture
	3.1 Parallelization Hint Instructions
	3.2 Preserving Sequential Semantics
	3.3 Nested Regions

	4 LoopFrog Microarchitecture
	4.1 Speculative State Buffer
	4.2 Conflict Detection
	4.3 Iteration Packing

	5 Compilation and Loop Selection
	5.1 Loop Selection
	5.2 Optimization
	5.3 Hint Insertion

	6 Evaluation
	6.1 Setup
	6.2 Whole-Benchmark Speedup
	6.3 Speculation and Region Speedup
	6.4 Analysis
	6.5 Iteration Packing
	6.6 Sensitivity to SSB Parameters
	6.7 Generality of LoopFrog
	6.8 Area and Power Overheads

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

