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ABSTRACT
Low-level languages, which require manual memory management
from the programmer, remain in wide use for performance-critical
applications. Memory-safety bugs are common, and now a ma-
jor source of exploits. In particular, a use-after-free bug occurs
when an object is erroneously deallocated, whilst pointers to it re-
main active in memory, and those (dangling) pointers are later used
to access the object. An attacker can reallocate the memory area
backing an erroneously freed object, then overwrite its contents,
injecting carefully chosen data into the host program, thus altering
its execution and achieving privilege escalation.

We present MineSweeper, a system to mitigate use-after-free
vulnerabilities by retaining freed allocations in a quarantine, until
no pointers to them remain in program memory, thus preventing
their reallocation until it is safe. MineSweeper performs efficient
linear sweeps of memory to identify quarantined items that have
no dangling pointers to them, and thus can be safely reallocated.
This allows MineSweeper to be significantly more efficient than
previous transitive marking procedure techniques.

MineSweeper, attached to JeMalloc, improves security at an ac-
ceptable overhead in memory footprint (11.1% on average) and
an execution-time cost of only 5.4% (geometric mean for SPEC
CPU2006), with 9.6% additional threaded CPU usage. These figures
considerably improve on the state-of-the-art for non-probabilistic
drop-in temporal-safety systems, and make MineSweeper the only
such scheme suitable for deployment in real-world production en-
vironments.

CCS CONCEPTS
• Security and privacy → Software and application security; Sys-
tems security.
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1 INTRODUCTION
Low-level languages, including C/C++, remain popular [34, 43],
especially for performance-critical and systems applications. These
languages feature manual memory management: programmers are
responsible for allocating objects (e.g. malloc() or new), and for
deallocating them (e.g. free() or delete). This has led to wide-
spread memory-safety violations. Use-after-free errors, in particular,
are numerous [11, 17] and hard to find. These occur if the pro-
gram frees allocations, but retains pointers to them, then uses these
(now-)dangling pointers to perform (erroneous) memory accesses.
Attackers can reallocate erroneously freed allocations and write
carefully crafted data into them; a common example is diverting
control on a virtual-function call. As other vulnerabilities get miti-
gated, attackers have turned to use-after-free as the easiest target,
leading to a consistent rise in exploits (Figure 1).

We demonstrate with MineSweeper that it is finally possible to
eliminate use-after-free vulnerabilities in software with low enough
overhead [33] for use in production systems, and with no source-
code modification. MineSweeper intercepts the programmer’s freed
allocations, and quarantines them until they can be demonstrated
safe. Periodic, simple linear sweeps of program memory are used to
identify which parts of the quarantine have dangling pointers, and
so cannot safely be reused, replacing the complex garbage-collector-
style mark-and-sweep used in existing mechanisms [2].

1.1 Contributions
• MineSweeper demonstrates that a simple linear sweep of
memory can efficiently locate dangling pointers.

• Zero-filling memory in free() makes these linear sweeps
feasible: this removes dangling pointers from quarantined
allocations, thus flattening the reference graph and breaking
circular dependencies.

• We offer two operation modes, performing mostly or fully
concurrent sweeps. The former matches security guarantees
of previous systems while improving performance; the latter
proposes a novel way to reduce overheads even further by
eliminating stop-the-world periods, at the cost of a very
minor relaxation of guarantees.

• We present a drop-in1 approach to mitigating heap temporal-
memory-safety violations, with an efficient implementation,
on top of JeMalloc [15], implementing a) concurrent, non-
blocking sweeps with respect to the program, b) parallel

1Drop-in: without the need for hardware support or recompilation, and preserving
compatibility with otherwise correct programs.
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(a) Use-after-frees in the National Vulnerability Database [27]
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Figure 1: Reported use-after-free (CWE416) / double-free
(CWE415) vulnerabilities by year.

sweeping using multiple background threads, c) thread-local
quarantine buffers to reduce lock contention, d) unmapping
of physical memory for large quarantined allocations, and
e) enhanced allocator cleanup to reduce the impact of frag-
mentation on memory overheads.

MineSweeper significantly outperforms any other non-probabilistic
Standard-C-compatible temporal-safety system. The geometricmean
slowdown for SPEC CPU2006 is only 5.4 % with just 11.1 % mem-
ory overhead (or 8.2 % slowdown at 11.7 % memory for the mostly
concurrent version).

1.2 Threat Model
We assume that a non-malicious application executes in the pres-
ence of an attacker. The application may contain any number
of temporal-memory-safety violations on the heap. Spatial-safety
bugs, such as buffer overflows, are orthogonal, thus not addressed
by MineSweeper. Stack temporal-safety violations are rare and
amenable to static analysis [12, 36], and not addressed by similar
techniques [2, 17, 37, 39, 41].

The attacker can allocate memory and store data to regions
they have allocated. For example, indirectly, through carefully con-
structed inputs, or a script running in a sandbox environment. The
attacker’s goal is to extend their control over the host application
(perform privilege escalation), for example, by redirecting control
flow and executing arbitrary instructions, or engaging in Return-
Oriented Programming (ROP). A typical example would be a script

Object *x = new Object ();

// ...

delete x;

// ...

x->fn(); // Use -after -free error!

Listing 1: Use-after-free vulnerability in C++.

on a malicious website aiming to break the browser’s sandboxing
mechanism in order to install malware. They will succeed at this if
they are given control of an allocation that temporally aliases with a
different allocation at a different program point, where the pointer
has been falsely freed and reallocated despite still being in use, and
can then change the data within.

MineSweeper is designed to find pointers that are correctly
aligned, and not hidden such as by xoring [32] themwith other data.
It maintains the property that, should such a pointer exist to an ob-
ject freed by the programmer, this object will be kept in quarantine
and not reused by any new allocation, thus preventing old objects
and new objects from aliasing each other. MineSweeper preserves
compatibility with hidden and misaligned pointers; while these are
rare, they are common enough that not supporting them breaks
real programs [2]. MineSweeper achieves this by not freeing any-
thing the programmer has not requested to be freed, unlike garbage
collectors [8], which are unsafe in C/C++ without additional prove-
nance tracking and sticking strictly to the C/C++ standard [5], and
significantly more expensive than MineSweeper [2, 5]. It gives no
additional security guarantees for objects whose only pointers are
hidden. It also does not guarantee that an object cannot be read or
written to while in quarantine; as with recent work [2, 21, 37, 39, 41],
our approach prevents use-after-reallocate, turning bugs into benign
use-after-free or clean termination, thus preventing exploits. This
means that MineSweeper aims to mitigate, not debug, use-after-
frees, unlike MTE [4] or AddressSanitizer [29], though it could be
combined with these mechanisms to raise their level of guarantees.

We present two implementations: a mostly concurrent [8] ver-
sion that guarantees to find all such pointers accessible within the
program, and a fully concurrent version that guarantees that it will
find all dangling pointers that have not been moved or copied after
their referenced objects have been freed.

2 BACKGROUND
A memory-safety violation occurs when a program attempts to ac-
cess or deallocate memory that is not allocated to the intended
object (i.e. unallocated or in a different allocation). We can distin-
guish temporal and spatial violations; the former have become a
bigger problem [17] in frequency and severity. A use-after-free bug
is a temporal-memory-safety violation occurring when the program
accesses memory that used to belong to the intended object, but no
longer does (the object was deallocated). An example is in Listing 1.

These bugs are often hard to find. The point of deallocation and
use may be located far away, particularly if performed via different
references. Hence it can be challenging to find [35] use-after-free
errors using static analysis or traditional debugging techniques.
Until the memory range is unmapped or reallocated by the memory
allocator, accesses will succeed, hiding the bug.
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(a) Initial structure (before the call to delete)

(b) Structure after reallocation by the attacker. A call to x->fn() now
executes the malicious code

Figure 2: Exploit for the use-after-free in Listing 1.

A use-after-reallocate bug occurs if the illegal reuse (after free) is
performed after the (virtual) memory region has been reassigned to
a new allocation.Use-after-free in itself is either benign2 or results in
a memory-protection violation, thus immediate clean termination.
However, if an attacker can turn it into a use-after-reallocate, then
the program may corrupt its state (memory content and control
flow) in a way controlled by the attacker. A common [2, 41] exploit
is shown in Figure 2. The program erroneously frees an object x,
but keeps a dangling pointer. The attacker then requests objects
of the same size, and fills them with carefully constructed data:
fake virtual-function tables, pointing to malicious code. One such
allocation is likely to reuse the (virtual) memory range of x. Finally,
the program performs a virtual-function call using the dangling
pointer, jumping to the malicious code (e.g. a sequence of libc
gadgets [24] to bypass memory protection).

3 MINESWEEPER
MineSweeper is a system for mitigating use-after-free vulnerabili-
ties in production systems. It requires no changes to the applications
it protects, even legacy programs, since it improves security without
changing program semantics. Memory can be safely recycled (and
eventually reallocated) after it has been free()’d by the program-
mer and there are no (dangling) pointers to it left in memory. The
latter can be discovered cheaply via periodic sweeps of memory.

Allocations wait in quarantine until the absence of pointers to
them can be demonstrated. Sweeps of program memory are used
to test this: each word of memory is checked for potential dan-
gling pointers to quarantined allocations. If a sweep encounters no
pointers to a given quarantined allocation, the allocation is released
from quarantine. Allocations failing this test remain quarantined
until demonstrated safe by future sweeps. In our JeMalloc imple-
mentation, the quarantine is an agnostic layer above the allocator,
interfacing with the public je_free() API only upon verification.

2In non-secure allocators that store metadata in-place (e.g. GNU malloc), this may
corrupt allocator metadata. JeMalloc, which MineSweeper is built upon, already stores
metadata separately to avoid this.

(a) Regular system

(b) MineSweeper

Figure 3: Life-cycle of memory allocations.

Rather than sweeping after every single call to free(), Mine-
Sweeper only performs a sweep once the total size of quarantined
allocations exceeds a certain threshold (relative to the total memory
use of the application). This way, the cost of sweeping is amortised
over a number of allocations. This causes a trade-off between mem-
ory and run-time overhead.

MineSweeper guards against use-after-reallocate errors by keep-
ing memory live in the quarantine until the application overwrites
or deallocates all dangling pointers to it, thus making it inaccessible.
It also protects against double frees, by making calls to free() —
while a dangling pointer exists — idempotent from each other, by
de-duplicating3 quarantine entries by keeping a shadow map of
entries that picks up duplicates, and only invoking one true free().

We next give a high-level description of the algorithm and im-
plementation details. Section 4 describes optimisations.

3.1 Overview
MineSweeper adds a layer between the application and the memory
allocator (Figure 3). It intercepts calls to free(), and delays actual
deallocation until a sweep demonstrates the absence of (dangling)
pointers to the allocation. When an allocation is passed to free(), it
is quarantined until a sweep demonstrates its safety. The quarantine
is a list of allocations; quarantining simply means registering an
allocation in this list. Accesses to quarantined allocations are use-
after-free errors MineSweeper successfully prevented.

Sweeps are executed periodically, when a given proportion of
the heap is in quarantine. A sweep is performed in three phases:
the first scans all active memory for potential pointers, and records
their targets in a shadowmap (Figure 4 and Section 3.2). The second
(optional) phase briefly stops the world, re-checking modified pages
during the first pass, to give total coverage of any dangling pointers
that may have moved. The final pass iterates through quarantined

3In debug mode, it reports double-frees.
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Figure 4: MineSweeper after the first (marking) phase of the
sweep. This checks all program memory (top) for pointers.
Words of memory targeted by pointer(s) are marked (yellow)
in the shadow space (bottom). Allocations in quarantine that
do not contain marked words (green) have no pointers, so
are safely deallocated in the second phase. If a word of data
(𝑛) happens to equal the address of an allocation, then it is a
‘false pointer’ (purple), preventing deallocation.

allocations, using the shadow map to identify allocations with
dangling pointers to them. Such allocations fail to free, and stay in
quarantine until a future sweep demonstrates them safe. The rest
are released from quarantine and recycled.

3.2 Base Design
We implemented MineSweeper as a layer over the top of JeMal-
loc [15]; though much of the implementation is allocator-agnostic,
MineSweeper hooks into the allocator’s public API and slightly
extends it to efficiently identify active memory ranges, exclude
allocator metadata structures, and control JeMalloc’s memory cycle
to limit fragmentation. We also add 1 B to the requested size of
each allocation, so that C/C++ end() pointers lie within the same
allocation, since one-past-the-end pointers are considered valid
references to objects in the C/C++ standard [10].

Shadow Map. The shadow map marks the targets of pointers,
and is consulted for each quarantined allocation, to see if pointers
have been discovered to it, preventing recycling.

The shadow map is, conceptually, an array of bits, containing
one bit per granule of virtual memory. Figure 5 shows how the
shadow space finds dangling pointers. In the first phase of the sweep,
each word 𝑝 of memory is interpreted as a pointer, its ‘granule
index’ 𝑔(𝑝) is calculated and used to index and set the shadow-
map bit. In the second phase, for each quarantined allocation, the
corresponding shadow bits are checked. If any of them are set, then
there is a (possible) dangling pointer to the allocation (including
those pointing to a location at an offset inside the allocation), and
the allocation is left in quarantine. Otherwise, it is deallocated.

Figure 5: Operation of the shadow space. For any 𝑝 pointing
into the allocation starting at address a and of size size there
is a corresponding mark bit.

This is implemented as a flat space, as in previous work [37, 41],
with one bit per every 128 bits; the smallest allocation granule. This
is sufficient to uniquely distinguish each allocation; theoretically, we
could use a less precise shadowmap, at the expense of some aliasing
between adjacent allocations and less efficient reuse of memory,
but this shadow space is already small (less than 1% overhead).

When to Sweep. A sweep is triggered if a certain proportion of
the heap is in quarantine. While previous work [2] chose a value of
25 %, targeting a memory usage increase of a third, MineSweeper
targets 15 % instead, because its efficient sweep allows it to trade
off towards being more aggressive at limiting memory overheads.
Still, this is configurable.

Failed frees are subtracted from both sides, because these often
fail again in the next sweep, and otherwise could cause sweeps
to be performed very frequently: for example, if at least 15 % of
the heap is taken up by failed frees, then a sweep would be per-
formed on every free(). Ignoring failed frees means that maximum
memory overhead can exceed the target, especially in the presence
of dangling pointers causing failed frees. The allocator itself may
also cause larger or smaller overheads, due to fragmentation from
the quarantine, and we shall see that allocators typically need to
be made aware of the quarantine cycle if these factors are to be
minimised. Still, large overheads from such factors are rare [7].

3.3 Compatibility
MineSweeper preserves compatibility with existing C/C++ appli-
cations. Thus, it cannot alter the semantics of memory allocator
functions (e.g. free()). Achieving this makes approximation in-
evitable. Although it can never recycle an object not freed by the
programmer, MineSweeper both over- and under-approximates:

• Since pointers cannot be distinguished from arbitrary data,
MineSweeper considers each (aligned) memory word as a
pointer. This may lead to ‘unlucky’ data preventing deal-
location: an integer 𝑋 can cause the allocation containing
address 𝑋 to be left in quarantine.

• The application might hide pointers (using pointer arith-
metic, e.g. in XOR lists, or by writing into a file), so Mine-
Sweeper may miss pointers during the sweep. Note, however,
that C-standard-compliant pointer arithmetic, including past-
the-end pointers, will have no impact on coverage4.

Neither approximation is novel to MineSweeper. The former is
used by conservative garbage collectors [8] and MarkUs [2]. Its
performance impact is limited by the sparsity of the address space.
4We check the full shadow-map range corresponding to the allocation before recycling
it. We serve each allocation request with an allocation at least 1 B larger than the
requested size to accommodate past-the-end pointers.
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The latter is used by all drop-in use-after-free prevention schemes
based on passive revocation [2, 8, 30] or pointer nullification [17,
21, 35, 42]. Its coverage impact is negligible, due to extremely low
prevalence [2] and because the attacker has no control over it.

4 OPTIMISATIONS
This section describes optimisations and improvements to the above
base design. Locations freed by the programmer are zeroed, to elim-
inate circular references on the quarantined heap. Large dealloca-
tions are immediately unmapped in quarantine, to prevent their
consumption of space and their usage of operating-system state.
The sweep threshold is adapted to reflect this. MineSweeper is
adapted to utilise a parallel and concurrent sweeping mechanism,
moving the bulk of the overheads to background sweeper threads.
Finally, we adapt JeMalloc’s memory cycle to be better adapted to
quarantine, siginficantly reducing fragmentation in the process.

4.1 Zeroing
Allocations in quarantine could still contain pointers, thus delay-
ing, or altogether preventing, the reuse of other allocations (or
themselves). This means that, without modification, whenever a
quarantined allocation contains a pointer, the pointed-to allocation
cannot be deallocated before the allocation containing the pointer.
Worse still, any cyclic pointer structures entering quarantine will
never be deallocated.

Mark & sweep garbage collectors [8], and MarkUs [2], solve
the problem by using a transitive marking procedure. The problem
solved by marking, on the algorithmic level, is reachability (from a
set 𝑅 of starting nodes, the ‘root set’) on a multi-level (and cyclic)
reference graph.

MineSweeper only needs to solve a special case. We can assume
that all nodes outside the quarantine (𝑄) are reachable and only
elements accessible from outside 𝑄 need to be found (transitively)
from edges into𝑄 . This is reasonable, as the only unreachable nodes
outside 𝑄 correspond to leaked memory, the amount of which
should be low in working programs. It is safe, because it leads
to an over-approximation: some memory may fail to free (due to
dangling pointers within leaked memory), but this will never cause
MineSweeper to deallocate memory with dangling pointers.

Rather than a transitive procedure, we use a linear sweep of
memory to find all edges ending in𝑄 (and starting anywhere). This
captures all dangling pointers, but also pointers inside 𝑄 , which
can cause cyclic references that prevent mutually referenced quar-
antined nodes, inaccessible in practice, from being freed [30]. We
eliminate these, and other dangling pointers in Q, by using the pro-
grammer’s free() to zero any data placed in quarantine. Figure 6
shows the simplification.

4.2 Page Unmapping
For quarantined allocations, the associated virtual-memory range
cannot be safely reused until a sweep shows the absence of dangling
pointers to it. However, the corresponding physical memory can be
released without affecting correctness. If a quarantined allocation
spans full pages of memory, then MineSweeper releases its physical
pages, as in MarkUs [2].

(a) Original problem (Mark & Sweep GC [8], MarkUs [2]). Solution:
transitive closure of 𝑅.

(b) Edges from𝑄 deleted. Solution: nodes in𝑄 with incoming edges,
by linear sweep (and nodes outside𝑄).

Figure 6: A simplification of the marking problem.

MineSweeper invokes system calls to protect unmapped pages
from accesses, to prevent dangling pointers to be written to them,
and excludes them from sweeping. They do not count towards stan-
dard memory usage or quarantine-size sweep thresholds. Still, in
order to keep pressure on kernel and allocator data structures low,
we still initiate a sweep once a proportion of the quarantine equiv-
alent to nine times the program’s total physical-memory footprint
is unmapped.

4.3 Concurrency
The sweep is largely independent of the application thread: to limit
its performance impact, we can run it concurrently with the appli-
cation. Still, the sweep should see a consistent picture of memory
to avoid pointers being lost5.

The standard solution from garbage collectors is to perform a
mostly parallel pass [8]: at the start of the procedure, all pages are
marked as unwritable, and a signal handler catches writes to them
and adds the pages to a list. A second stop-the-world pass checks
only these modified locations. In order to give exactly equivalent
guarantees to MarkUs [2], we implemented a similar technique.
Since signal handling in this way caused undefined behaviour [23]
in our test set, we used a more modern alternative to record the
dirty pages: namely, the soft-dirty support in Linux [14], which uses
the operating-system kernel to directly record modified pages.

Still, as MineSweeper, much like any drop-in technique [2], must
approximate already (Section 3.1), we consider this brief stop-the-
world to be surplus to requirements, and do not recommend its
5This would be caused when the program moves the only copy of a dangling pointer
from address 𝐵 to some address𝐴 < 𝐵 in memory, while the sweep is between𝐴 and
𝐵, then deletes the copy from 𝐵; the sweep sees the pointer in neither𝐴 nor 𝐵.
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use by default. MineSweeper can afford to relax these guarantees
further than garbage-collector-based systems [8], precisely because
it is not a garbage collector. It guarantees that only locations the
programmer has intentionally placed in quarantine can be freed,
avoiding breaking correct programs.

Without the stop-the-world, MineSweeper only sweeps memory
once, without necessarily getting a fully consistent image. It guar-
antees that all pages that are live when the allocation enters the
quarantine (and remain live) are examined during the sweep that
recycles the allocation. To provide this, the sweep only recycles
allocations already in quarantine when it starts; any allocations
placed in quarantine between the start and end of a sweep can only
be recycled by a future sweep.

The lack of stop-the-world only changes MineSweeper’s proper-
ties when the programmermoves around dangling pointers, already
in quarantine, before using them. We view this as unlikely, and an
attacker is unlikely to be able to introduce dangling-pointer move-
ment themselves. Unless the threat model is especially paranoid,
it is sufficient to capture dangling pointers that only move before
being incorrectly freed.

4.4 Parallel Sweeping
To limit the performance impact further, the marking phase of
the sweep is parallelised to multiple threads. This is especially
important in the mostly concurrent mode of operation, as a faster
stop-the-world (re)sweep directly reduces run time. However, faster
concurrent sweeps are also beneficial, as they mean allocations
are recycled more promptly, thus reducing memory impact, and
allocator (metadata) pressure.

We implement parallel sweeping using a main sweeper thread
and some (6 by default) helpers. When the program thread adds
entries into the global quarantine, it checks the sweep criteria, and
signals the main sweeper if a sweep is required. The sweeper then
“locks in” the set of allocations that are considered for recycling in
the sweep (placing any subsequent frees into a new quarantine for
the next sweep), divides up the memory to sweep (heap, stack and
globals) equally, and dispatches the helpers. Once the sweeper and
all helpers finish sweeping, the sweeper divides up the quarantine
list equally among them, and the helpers recycle unmarked allo-
cations in their part of the list. The list is then compacted by the
main sweeper thread.

4.5 Fragmentation Management
MineSweeper needs to keep track of active and released pages in
order to sweep the correct regions of memory. By default, JeMalloc
uses madvise() to release (‘purge’) unneeded physical memory, and
relies on OS demand-allocation when it is needed again. We cannot
safely disregard these purged pages from sweeps, as a temporal-
memory-safety violation could result in pointers being written to
them. However, a sweep would trigger demand-allocation, thus
defeating the point of purging in the first place. Therefore, we hook
onto JeMalloc’s extent management via the extent hook API to mod-
ify this behaviour; instead of a purge call and demand-allocation,
we use a pair of calls: decommit and commit. On decommit, we
mark the page as unmapped in a small shadow bitmap, discard the
backing physical memory, and protect the range against accesses.

On commit, we clear the mark in the shadow bitmap, and restore
the original access protections of the page.

JeMalloc walks its own structures to purge unneeded extents pe-
riodically, using a 10-second sigmoidal decay curve. MineSweeper
modifies this to trigger a full purge after every sweep, using the
background sweeper thread. As with the small-block sweeping
mechanism in MarkUs [2], it appears that allocators with large,
variable-sized quarantines must clean their free structures more ag-
gressively than those without, and do so in a way that synchronises
with the end of a sweeping procedure. MineSweeper implementa-
tions that do not integrate with allocator-purging mechanisms risk
high memory consumption.

5 EVALUATION
First, we present the performance impact of MineSweeper on SPEC
CPU2006 (Section 5.2), comparing to other schemes in the literature.
This is followed by the performance of the mostly concurrent ver-
sion (Section 5.3), and analyses of optimisations (Section 5.4) and
sources of overhead (Section 5.5). Finally, we look at multi-threaded
workloads (Section 5.6).

5.1 Setup
The figures were produced on a desktop machine featuring an In-
tel Core i7-7700 CPU (3.6 GHz base, 4.2 GHz turbo boost, 4 cores,
8 threads, 8MiB L3 cache, DDR4 RAM), running Ubuntu 16.04
LTS. We evaluate over SPEC CPU2006 [16] and SPECspeed2017 [9]
benchmark suites (using reference inputs), with memory usage
collected using PSRecord [? ]. We load JeMalloc and MineSweeper
as shared libraries. We use the fully concurrent version of Mine-
Sweeper throughout, except in Section 5.3. We reran the open-
source implementations [1, 38] of the two previous best schemes —
MarkUs and FFMalloc — on our system, and compare slowdown
and memory overheads to these. We use the version with unmod-
ified JeMalloc loaded as a baseline for these three techniques, as
doing so avoids using JeMalloc’s 2 % geometric mean speedup to
mask our overheads, while using the same baseline to compare
the three relevant techniques. The allocator is an inherent part
of FFMalloc and MarkUs, while MineSweeper can freely choose a
high-performance allocator, such as JeMalloc. We use the figures
as reported in the relevant papers for the other schemes. These
use slightly more flattering baseline of GNU malloc, but this makes
little difference.

5.2 SPEC CPU2006
Figure 7 compares the slowdown ofMineSweeper on SPECCPU2006
to other techniques. Figure 9 zooms in onMarkUs [2], FFMalloc [39]
and MineSweeper. Figure 10 compares memory overheads.

MineSweeper performs significantly better than all other tech-
niques on allocation-heavy workloads, and shows little to no over-
head for other benchmarks. MineSweeper only suffers a geometric
mean slowdown of 5.4 % (worst case: 72.7 % for xalancbmk), with a
geomean memory footprint increase of only 11.1 %. Together, these
show that MineSweeper clearly outperforms the state-of-the-art.

FFMalloc causes lower slowdown (3.5 %) than Minesweeper, but
at the cost of adverse memory behaviour (244 % overhead, 1,070 %
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worst case). FFMalloc is a page-table-protection method, imple-
menting a custom one-time allocator from scratch. The allocator
never reuses the same virtual-memory range; virtual memory is
always mapped in increasing order of addresses. Once all alloca-
tions from a page are free()-d, the physical page is unmapped. For
multiple workloads (perlbench, omnetpp, xalancbmk, sphinx3),
FFMalloc changes the memory usage from largely constant over
time to constantly increasing, which hints that fragmentation is
the main cause for the extremely high memory usage. We show the
trace over time for sphinx3 in Figure 8.

MarkUs achieves 15.5 % mean slowdown (2.97× worst case), at
12.3 % average memory overhead. MarkUs is a garbage-collector-
inspired use-after-free mitigation. When the programmer’s quar-
antined frees take up 25% of the total heap, a marking pass is
performed via the Boehm Garbage Collector [8], a widely known
conservative collector for C/C++, followed by a quarantine-list walk
to deallocate unmarked allocations. MineSweeper demonstrates
that linear sweeps of memory are more efficient, while solving the
problem of circular references caused when not using a transitive
marking procedure. Unlike MarkUs, MineSweeper is implemented
in a state-of-the-art allocator [15]. These factors allowMineSweeper
to substantially outperform MarkUs.

MineSweeper demonstrates overheads that makes it the only
scheme suitable for wide-scale deployment, exhibiting consistently
low overhead both in time and memory.
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Run-Times. MineSweeper only exhibits slowdowns above 5 %
for five workloads, all allocation intensive: xalancbmk (73 %), gcc
(17 %), perlbench (9.7 %), omnetpp (5.6 %) and sphinx3 (5.2 %).

Memory Usage. Figure 11 shows memory-usage overheads. The
increase in both average and peak memory usage is shown; the
average can be interpreted as additional RAM usage when running
many ‘small’ applications side-by-side, while the peak shows the
increase in RAM required for running one ‘large’ application. Over-
heads are reasonable: the worst case is 62.7 % (gcc) for the average,
and 93.4 % (gcc) for the peak. The geometric mean increase is only
11.1 % average, and 17.7 % peak.

CPU Utilisation. Another source of overhead is increased CPU
utilisation, given we sweep in a dedicated thread. This could affect
other workloads on a multi-core system. Figure 12 shows the ad-
ditional average CPU usage resulting from adding MineSweeper.
The maximum overhead is 129 %, for xalancbmk, but the geometric
mean is only 9.6 %; while sweeping uses some CPU time, these costs
should be acceptable in modern multi-core systems.

DRAM Traffic. There is a worry that accesses made during our
sweeps could evict program data from all caches, leading to an
increased DRAM bandwidth utilisation, potentially affecting other
programs on the same system. We measured DRAM bandwidth
impact of Minesweeper, and we found no significant change. This
is likely because sweeps are too infrequent to evict program data
from the last-level cache.
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Sweep Counts. To put the overheads in context, we show the num-
ber of sweeps triggered by the fully concurrent version per bench-
mark in Figure 14. Several benchmarks in SPEC are very allocation-
heavy. The benchmark with the highest number of sweeps (1, 075)
is omnetpp. Xalancbmk is also very sweep-intensive: it triggers 654
sweeps, and almost all of them happen close together, towards the
end of the benchmark. The fact that the number of sweeps does not
correlate perfectly with slowdown figures shows that sweeping is
not our only overhead, and not always the main one (Section 5.5).
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5.3 Mostly Concurrent Version
The version with mostly concurrent sweeping — instead of fully
concurrent — provides slightly stronger security guarantees: the
sweep is guaranteed to find any dangling pointers (not obscured
via pointer arithmetic), even if the program moves them around.
This comes with a slightly higher slowdown of 8.2 % and a similar
memory cost of 11.7 %, as shown in Figure 13. This version provides
the same guarantees as MarkUs at half the time cost (and similar
memory overhead).
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5.4 Optimisations
Optimisations play an important role in reducing the overheads of
MineSweeper. Figures 15 and 16 show the run-time and memory-
usage overheads, respectively, after applying optimisations one-by-
one. Since optimisations affect each other, we put them in decreas-
ing order of estimated importance.

Unoptimised. This version exhibits very high overheads for the
allocation-intensive benchmarks. The lack of zeroing leads to failed
frees and together with the lack of unmapping, this leads to a high
increase in memory footprint. Since sweeping is not offloaded, this
also translates to a high time cost for allocation-intensive bench-
marks (where sweeps are triggered frequently). Gcc and milc ex-
haust the available (32GB) DRAM, and get terminated.

Zeroing. Zeroing cuts memory usage by increasing the amount
of memory that can be reclaimed during sweeps (Section 4.1), by
removing pointers from within quarantined data itself. It also im-
proves execution time, by reducing the memory footprint: this
reduces pressure on metadata structures in the kernel, allocator,
and MineSweeper. Gcc still uses too much memory to finish.

Unmapping. Unmapping highly reduces memory overheads, es-
pecially for benchmarks where larger allocations are prevalent.
The geometric mean memory overhead reduces to just 21.1 %. Un-
mapping saves memory by releasing pages early. This is especially
important for gcc, which is cut from over 50× overhead (killed
after using 30GiB of memory) to just 1.4×. Overall, this sequential
version gives a 9.5 % time and 21.1 % memory overhead.

Concurrency. Offloading the sweep to a dedicated sweeper thread
trades off a run-time overhead reduction for a negative impact on
memory overhead. Increased memory overheads stem from the
fact that recycling of memory is delayed relative to the application
thread (which can make progress during the sweep). The time sav-
ings show the effectiveness of offloading the sweep. Time overhead
is cut to 5.0 % but memory overhead increases to 24.1 %.

Purging. Triggering a cleanup operation in JeMalloc after each
sweep incurs a time cost (to 5.4 % slowdown), but significantly
decreases memory usage to 11.1 %.

5.5 Source of Overheads
We test some ‘partial’ versions — only performing a subset of the
MineSweeper functions — to find out where overheads originate
from. Figure 17 shows overheads on five of the most affected bench-
marks under the following versions of MineSweeper, incrementally
adding features as follows:

(1) Base overheads: the MineSweeper library is loaded, data
structures are initialised and maintained, but free() simply
forwards the allocation to JeMalloc for recycling.

(2) Unmapping + Zeroing: on free(), we unmap (and imme-
diately remap) large enough allocations, and zero-fill small
ones, then forward the allocation to JeMalloc for recycling.

(3) Quarantining: free() quarantines allocations until the next
sweep, which simply recycles all quarantined items, in the
application thread.

(4) Concurrency: same as quarantining, but recycle in the sweeper
thread (still without sweeping). This adds the overheads of
thread management and thread-local cache movement.

(5) Sweeping: quarantine, sweep memory, check which frees
would fail, but deallocate regardless.

(6) Full version, leaving failed frees in quarantine.
Base overheads are negligible (1.1 % time, 0.2 % memory), un-

mapping and zeroing cost some time, but save memory (5.8 % time,
−2.7 % memory), then quarantining adds the time overhead, and in-
creases memory usage (17.9 % time, 14.8 % memory). This is mostly
due to delay-of-reuse, and thus worse cache utilisation. The remain-
ing sources of overhead gradually add the remaining memory usage
impact, reaching 39.4 % in the full version (for these 5 benchmarks).

5.6 SPECspeed2017
Figure 18 shows the results of applying MineSweeper to more mod-
ern workloads, under highly threaded code. For multi-threaded
workloads, we used the best of the 4-thread and 8-thread configu-
rations for both the baseline and the MineSweeper (and MarkUs,
FFMalloc) versions, separately. MarkUs [2] and FFMalloc [39] are
shown for comparison. MineSweeper achieves a geometric mean
slowdown of 10.8 % with a memory overhead of 7.9 %. FFMalloc
comes in at 5.3 % time and 22.2 % memory, while Markus achieves
16.3 % time and 12.6 % memory. FFMalloc achieves a lower mem-
ory overhead here compared to SPEC CPU2006, because fewer
workloads trigger its worst-case fragmentation. Still, the steadily
increasing overheads over time with FFMalloc, shown in Figure 8,
still appear here; for example, perlbench reaches 4× overhead by
the time it finishes execution, despite its average overheads being
lower due to growth over time.

The largest slowdown for MineSweeper is 2×, for xalancbmk;
this is caused by the act of quarantine introducing many more
L2 and L3 cache misses, by preventing quick reuse of deallocated
memory, rather than the action of the sweeper itself. The slowest
parallel benchmark is wrf with 66 %. This shows good scalability
on a desktop machine, even when sweeper threads compete for
CPU resources with the application’s threads themselves.

5.7 Mimalloc-Bench Stress Tests
We evaluated our implementation (alongside FFMalloc andMarkUs)
on the stress tests in the mimalloc-bench repository [18]. Originally
made for evaluating an industrial-strength allocator, mimalloc [19],
these tests have extremely high allocation and deallocation rates;
most of them do not do any work, other than allocating and free-
ing memory. They test performance under different single- and
multi-threaded allocation-deallocation patterns. We present the
results in Figure 19. Despite the unrealistic pressure, MineSweeper
only suffers a slowdown of 2.7× and a memory usage increase of
4.0× compared to the JeMalloc baseline (worst-case slowdown: 31×;
memory: 27×)6. While MarkUs outperforms this in terms of mem-
ory (1.7×), it suffers a 6.7× slowdown, with 121× in the worst case.
FFMalloc does slightly better on time (2.16×), but suffers a high

6This worst-case memory behaviour occurs for glibc-thread. This is an outlier, with
a baseline memory footprint of just 4MiB, and its large number of threads can therefore
collectively build up large local quarantines, to limit communication overheads, in
relative terms even if they remain small in absolute terms.
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Figure 15: Run-time overhead under different optimisation levels (Section 4)
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Figure 16: Average memory overhead under different optimisation levels (Section 4). Values with ‘>’ failed from lack of DRAM.

(7.2×) geometric-mean memory cost, and its memory overhead
balloons to 97× in the worst case. MineSweeper avoids such high
overheads, should it become overwhelmed by the allocation rate,
by pausing new allocations in the program briefly when the sweep
is struggling to keep up. In such extreme allocation-heavy work-
loads, MineSweeper also makes it possible to trade off slowdown
for memory usage by altering the pausing threshold.

MineSweeper avoids extreme overheads despite the fact that
many of these benchmarks only allocate and deallocate, without
doing any real work. This is not realistic, and violates our assump-
tion that the sweeps can happen in the background, keeping up
with the application. MarkUs suffers from the same issue, but the
underlying allocator better handles aggressively reclaiming mem-
ory from many small quarantined allocations than JeMalloc, and
limits worst-case overheads from high allocation rates by falling
back to stop-the-world marking procedures to reduce pressure.
Mimalloc-bench is often unrealistic; many tests deallocate things
entirely in allocation order. Therefore, while the allocation fre-
quency gives some challenge to FFMalloc, the fragmentation issues
it sees in real-world workloads do not manifest. This explains the
excellent memory behaviour of FFMalloc on mstressN, sh8bench
and xmalloc-testN, despite worst cases of 97×.

5.8 Summary
MineSweeper significantly outperforms the state-of-the-art, with a
geometric mean slowdown of only 5.4 %, and an average memory

overhead of just 11.1 %. It delivers stable performance, with better
average and worst-case behaviours — when considering both mem-
ory and execution time — than all previous systems, making it the
only scheme viable for wide adoption in production environments.

6 RELATEDWORK
Here we categorise and relate previously published systems solving
the same or closely related problems to MineSweeper.

6.1 Memory Debuggers
These systems help find memory bugs, including temporal- and
spatial-safety violations, in a debug environment. This is achieved
by allocator modification, poisoning of deallocated and unallocated
memory regions, binary instrumentation and shadow structures.
AddressSanitizer [29] and Valgrind [25] are two notable examples,
but limited checks are available even in memory allocators like
Scudo [? ]. These systems are not designed to be comprehensive
mitigations; instead, they give detailed error reports to help devel-
opers locate bugs.

6.2 Probabilistic Defenses
These approaches aim to make it harder to exploit memory-safety
bugs. DieHard [6] introduces probabilistic memory safety, and uses
a range of techniques to harden programs (replication, heap ran-
domisation, reallocation delay, separatingmetadata). DieHarder [26]
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Figure 17: Sources of overheads

and FreeGuard [31] improve performance and protections. These
can be bypassed by sophisticated exploits [17]. Cling [3] constrains
reuse of virtual addresses to allocations from the same ‘call site’.
Hardened allocators, like Scudo [? ] fall into this category too.

Arm’s Memory Tagging Extension [4] attaches a tag to each
memory allocation. The (otherwise unused) top byte of each pointer
is repurposed to store the tag. Hardware and kernel support is used
to compare tags between the pointer and its target on each memory
access. They assign different tags to subsequent allocations and
subsequent reuses of the same region. The downside is the require-
ment for hardware support, and the limited number of tag bits,
which make the protection only probabilistic. Still, such hardware
mechanisms could combine with MineSweeper to achieve deter-
ministic protection both with significantly lower overheads than in
software alone, by allowing limited reuse of regions, and detection
rather than just mitigation of attacks.

6.3 Page-Table Protection Methods
Some schemes mitigate use-after-free vulnerabilities by using page-
table permissions. All allocations are placed in different pages, and
revocation is performed on deallocation by prohibiting access using
mprotect on the page table. This idea has been used by some debug-
gers (Electric Fence, PageHeap). Dhurjati and Adve [13] recognise
that objects can be co-located in physical memory (with aliasing
virtual pages, one for each object). They also use compiler analysis
and a transformation called ‘automatic pool allocation’ to reuse
virtual addresses. Oscar [12] adds a high water-mark, which enables
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Figure 18: Overheads for SPECspeed2017. Starred bench-
marks parallelised via OpenMP.

it to manually specify virtual addresses when mremap’ing virtual
aliases, thus discarding the old mapping altogether. For small allo-
cations, Oscar suffers high overheads from TLB pressure, system
calls, and page-table size. For large allocations, Oscar behaves simi-
larly to MineSweeper, where the physical pages backing them are
unmapped. Another technique that uses the latter strategy is FFMal-
loc [39], which never recycles virtual pages, and instead unmaps
physical pages only when all objects inside have been deallocated.
Many mechanisms presented here are orthogonal to those in FF-
Malloc, meaning there may be benefit in combining the approaches.

6.4 Pointer Nullification
These schemes actively revoke pointers by overwriting them with
an invalid value, usually NULL. DangNull [17] uses red-black trees
to precisely identify in- and out-bound pointers for each object,
and nullify pointers to free()’d allocations. FreeSentry [42] uses
a linked list instead of a red-black tree. DangSan [35] notes that
pointer metadata is heavily write-intensive: it is written on every
pointer store but only read once per object on deallocation. There-
fore, they structure it as a log, with some de-duplication, to move
work to deallocation. pSweeper [21] offloads pointer nullification
to a background thread. This thread repeatedly, with a possible
sleep period in between, sweeps live pointers for dangling ones.
Deallocation is delayed until a full sweep is performed after the call
to free(). pSweeper keeps a live pointer table, so that the sweep
can locate live pointers, and to make nullification safe.
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Figure 19: Overheads for mimalloc-bench

6.5 CHERIvoke & Cornucopia
These schemes augment CHERI [40]—an architectural extension
enabling spatial safety—with a temporal-safety mechanism. CHERI-
voke [41] describes the algorithm and evaluates it in simulation.
Cornucopia [37] optimises this with new architectural features,
implements concurrency, and comprehensively evaluates a full
(FPGA) prototype. The CHERIvoke algorithm is a pointer nullifi-
cation scheme (Section 6.4). Like MineSweeper, it uses a shadow
map, and performs linear sweeps through memory; however, in
CHERIvoke, this is used to mark regions of memory currently in
quarantine, which are eliminated by the sweeping mechanism un-
like in MineSweeper. This is possible because in CHERI, pointers
are replaced by architecturally visible capability objects, unlike the
standard C model, which represents them as integers.

6.6 Passive Revocation
Passive revocation systems (including MineSweeper) work by track-
ing dangling pointers, like nullification techniques, but passively
observe them instead of actively revoking. Instead, they delay deal-
location until allocations are inaccessible.

High-level languages eliminate use-after-frees by automating
memory management: (the equivalent of) free() is called from
the garbage collector once the allocation is no longer live. Garbage
collection is unsafe generally in C due to unconstrained pointer
arithmetic. BoehmGC [8] attempts to defy this for specially written
applications, implementing ‘conservative’ garbage collection in
C/C++. However, runtime overheads are very high [2] compared to

MineSweeper. Furthermore, for performance the programmer can
still perform deallocation manually, leaving scope for use-after-free
errors, and the garbage collector can falsely delete hidden objects
the programmer hasn’t freed, causing use-after-free errors itself.

CRCount [30] uses reference counting. An object is only deallo-
cated if the programmer has free()’d it, and the reference count
hits 0. Compiler support is used to keep a bitmap (similar to Mine-
Sweeper’s shadow space in format) identifying which words of
memory contain pointers. This helps to keep an accurate reference
count per object at runtime. Like MineSweeper, CRCount realises
that zero-filling of free()’d allocations can be used to remove
references, thus simplifying the problem of garbage collection on
free()’d allocations.However, reference counting, as opposed to
sweeping, requires updates on all writes to pointer fields, in addi-
tion to the work on free() calls. This results in overheads on even
non-allocation-intensive workloads (e.g., mcf, povray).

MarkUs [2] uses periodic marking passes to identify allocations
in quarantine that are not live, and thus safe for deallocation. Mine-
Sweeper improves on this by using zeroing (Section 4.1) to simplify
the problem (from reachability on the reference graph to identifying
nodes with incoming edges), and using a simple sweep of memory to
identify quarantined allocations targeted by pointers. MineSweeper
is also more secure than MarkUs, as it stores metadata out-of-line,
where it cannot be overwritten or reused [20] by an attacker.

7 SUMMARY AND CONCLUSIONS
We have presented MineSweeper, a drop-in mitigation for use-after-
free vulnerabilities, motivated by the prevalence of use-after-free
errors and exploits.

MineSweeper is a passive revocation scheme: it delays dealloca-
tion using a quarantine until it can prove that the allocation is no
longer reachable via dangling pointers. We simplify the problem of
reachability to that of identifying quarantined allocations without
pointers to them. MineSweeper locates pointers by periodic sweeps
of program memory, marking pointer targets in a shadow map. Af-
ter a sweep, it releases unmarked allocations back to the memory
allocator. MineSweeper makes the conservative assumption that
each word of memory is—potentially—a pointer, thus it requires no
type information or costly pointer tracking.

Our implementation on top of JeMalloc significantly outper-
forms previous software-only mitigation schemes by giving low
overheads on both performance (5.4 %) and memory (11.1 %) simul-
taneously. More generally, MineSweeper can be easily integrated
with any allocator: we have also built a Scudo implementation
at 4.4% overhead. In short, low-overhead temporal safety is now
widely practical, and should be deployable at scale.
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A ARTIFACT APPENDIX
A.1 Abstract
This artifact contains our MineSweeper implementation, an alloca-
tor extension implemented on top of JeMalloc to mitigate use-after-
free attacks, together with scripts to evaluate its running time and
memory overheads on the SPEC CPU2006 benchmarks. The base
implementation itself and a minimally modified JeMalloc mem-
ory allocator are fetched from their own repositories, compiled,
and dynamically loaded in the SPEC config scripts. Run-times are
reported by SPEC, while memory usage is monitored using the
psrecord python package.

A.2 Artifact Check-List (Meta-Information)
• Algorithm: Intercept memory allocator calls, delay-of-reuse quara-
tine, linear sweeps of memory to safely release quarantined ele-
ments.

• Program: SPEC CPU2006 (not supplied)
• Compilation: g++, autoconf, make
• Data Set: SPEC CPU 2006 (c/c++)
• Run-Time Environment: Ubuntu system (tested on 16.04 and
20.04)

• Hardware: An x86_64 machine with sudo access to install depen-
dencies and mount the SPEC ISO image.

• Execution: SPEC runscripts provided for dynamically linking in
MineSweeper

• Metrics: Slowdown, memory usage increase
• Output: Two text files in the results directory, containing raw
values and relative overhead in running time and physical memory
usage (respectively) between the baseline and minesweeper.

• Experiments: 2 runs of the benchmarks: baseline (jemalloc only)
and with minesweeper.so dynamically loaded

• Disk Space Required (Approximately): 10GB
• Time Needed to Prepare Workflow (Approximately): 1h
• Time Needed to Complete Experiments (Approximately): 8h
• Publicly Available?: Yes
• Code Licenses: 2-Clause BSD License
• Workflow Framework Used?: No
• Archived?: 10.5281/zenodo.5748402

A.3 Description
A.3.1 How to Access. Clone the git repository at
https://github.com/EMarci15/asplos22-minesweeper-reproduce, in-
cluding its submodules. An archived copy is available at https:
//doi.org/10.5281/zenodo.5748402.

A.3.2 Hardware dependencies. An x86-64 system running Ubuntu
18.04 or newer. Older Ubuntu releases and other Linux distribu-
tionts may also work, perhaps with altered package dependencies
(untested).

A.3.3 Software Dependencies. Our package dependencies can be
installed using our script (scripts/dependencies.sh). A SPEC
CPU2006 disk image is required to run the experiments over SPEC.

A.4 Installation
You can install our artifact using the below sequence of commands.
Firstly, clone the repository:

git clone --recurse -submodules https :// github.

↩→ com/EMarci15/asplos22 -minesweeper -

↩→ reproduce.git

Then, place your SPEC CPU2006 ISO disk image file in the base
folder (asplos22-minesweeper-reproduce). The file extension
must be ‘.iso’, and the name must include ‘cpu2006’.

After this, in the simplest case, you can get, install, build and
run the experiments by running do_all.sh in the scripts folder:

cd asplos22 -minesweeper -reproduce

cd scripts

./ do_all.sh

Note: this will request sudo access to install dependencies.
If something is wrong, you can perform the steps in do_all.sh

one-by-one. Make sure you change directories to scripts before
starting each script. See the comments in do_all.sh for details of
what each script does. If debugging is necessary, it helps to reduce
the size of benchmarks by swapping –size=ref to –size=test in
both run_spec.sh and run_psrec.sh

Minesweeper comes as two separate git repositories. These are
both included as submodules in the main artifact. The repository
called "minesweeper-public" contains the minesweeper library im-
plementation itself, while "jemalloc-msweeper-public" contains a
minimally modified7 JeMalloc memory allocator. Both are compiled
to shared libraries, so that they can be dynamically loaded in the
experiments.

In case you encounter issues, you can try following the instruc-
tions in the repository’s README.md file to run the experiments
inside a docker container.

A.5 Experiment Workflow
The do_all.sh script performs both time and memory evaluation
experiments.

For time (slowdown) evaluation, the SPEC CPU2006 suite is
invoked twice:8

(1) Baseline: (only) jemalloc.so is loaded (see the definition of
ENV_LD_PRELOAD in spec_confs/x86_64_je.cfg),

(2) MineSweeper: both jemalloc.so and minesweeper.so are
loaded.

For the memory overhead experiment, our script invokes the
SPEC suite twice for each benchmark (individually), wrapped by
psrecord.

A.6 Evaluation and Expected Results
The evaluation scripts called by do_all.sh produce two text files,
results/time.txt and results/memory.txt. Both are printed to
the screen at the end of the run.

Running times are extracted from the SPEC result text files. Mem-
ory analysis in result/memory.txt is extracted from the memory
traces9 in the ps folder.
7Modifications: treat metadata extents and allocation extents differently, use sbrk
for allocation extents (instead of mmap), and increase size by 1 in malloc() (so end()
pointers point to the same allocation). These resulted in no measurable slowdown.
8The artifact only does a single iteration, while in the paper, we took the median of
three runs.
9The traces themselves include the footprint of the SPEC tools, but our script removes
this in order not to skew results in our favour.
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Results vary between systems, but we expect a geomean slow-
down of around 5.4% and memory overhead around 11.1%.

A.7 Experiment Customisation
You can run with different benchmark suites by using LD_PRELOAD
as described in Appendix A.5, although this may require a little bit
of work on result extraction. Adapting to SPEC CPU2017 is fairly
straightforward.

To runMineSweeper on a dynamically linked binary prog_binary,
compile our jemalloc andminesweeper versions into a directory lib
and run:

LD_PRELOAD=lib/minesweeper.so:lib/jemalloc.so

↩→ ./ prog_binary

A.8 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-
badging

• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html
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