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Embedded processor performance is dependent on both the underlying architecture and the

compiler optimisations applied. However, designing both simultaneously is extremely difficult to
achieve due to the time constraints designers must work under. Therefore, current methodology
involves designing compiler and architecture in isolation, leading to sub-optimal performance of

the final product.
This paper develops a novel approach to this co-design space problem. For our specific design

space, we demonstrate that we can automatically predict the performance that an optimising
compiler would achieve without actually tuning it for any of the microarchitecture configurations

considered. Once trained, a single run of the program compiled with the standard optimisation
setting is enough to make a prediction on the new microarchitecture with just a 3.2% error
rate on average. This allows the designer to accurately choose an architectural configuration with

knowledge of how an optimising compiler will perform on it. We use this to find the best optimising
compiler/architectural configuration in our co-design space and demonstrate that it achieves an
average 19% performance improvement and energy savings of 16% compared to the baseline,
nearly doubling the energy-efficiency measured as the energy-delay-squared product (EDD).

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Retar-
getable compilers; C.4 [Computer Systems Organisation]: Performance of systems—De-
sign studies, modelling techniques; C.0 [Computer Systems Organisation]: General—Hard-

ware/software interfaces

General Terms: Design, Experimentation, Performance

Additional Key Words and Phrases: Architecture/compiler co-design, design-space exploration,
performance prediction

1. INTRODUCTION

Embedded system performance is usually achieved via efficient processor design and
optimising compiler technology. Fast time-to-market is critical for the success of
any new product and therefore it is crucial to design new microprocessors quickly,
without sacrificing performance. However, during early design stages, architectural
decisions must be taken with only limited knowledge of other system components,
especially the compiler. Ideally we would like to consider both architecture and
optimising compiler design simultaneously, selecting the best combination.
Unfortunately exploring this combined design or co-design space is extremely time

consuming. For each architecture to consider we would have to build an optimising
compiler, which is clearly impractical. Instead, typical design methodology consists
of first selecting an architecture under the assumption that the optimising compiler
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can deliver a certain level of performance. Then, a compiler is built and tuned for
that architecture which will hopefully deliver the performance levels assumed.

Clearly this is a sub-optimal way of designing systems. The compiler team may
not be able to deliver a compiler that achieves the architect’s expectations. More
fundamentally, if we could predict the performance of the eventual optimising com-
piler on any architecture, then an entirely different architecture may have been
chosen. This inability to directly investigate the combined architecture/optimising
compiler interactions means we end up designing tomorrow’s architectures based
on yesterday’s compiler technology.

In this paper we propose a novel approach to this co-design space problem. We
build a machine-learning model that can automatically predict the performance of
an optimising compiler across an arbitrary microarchitecture space without tuning
the compiler first. This allows the designer to accurately determine the perfor-
mance of any microarchitecture from our design space as if an optimising com-
piler had been tune for each of them. Given a small sample (less than 0.01%) of
the microarchitecture and optimisation space, our model can predict the perfor-
mance of a yet-to-be-tuned optimising compiler using information gained from a
non-optimising baseline compiler. This achieves an error rate of 3.2% across all
sampled microarchitectures in the co-design space.

The use of predictors, particularly to reduce simulation time, is not new. Several
authors have shown that it is possible to predict the performance of a fixed program
on an architecture space when compiling with fixed optimisations [İpek et al. 2006;
Joseph et al. 2006a; Lee et al. 2007]. Other researchers have shown that it is possible
to predict the impact of compiler optimisations on a fixed architecture [Vuduc et al.
2004; Cavazos et al. 2006; Cavazos et al. 2007]. In [Vaswani et al. 2007] this is
taken one step further where a model predicts the performance of compiler settings
on different microarchitectures for a fixed program. However, as we will show in
section 5, this approach fails to accurately predict the performance of an optimising
compiler. To the best of our knowledge, we propose the first model to predict the
performance of an optimising compiler across the microarchitecture space before
the compiler is tuned.

In this work we separately explore the microarchitectural and compiler optimi-
sation spaces. We show that there is the potential for significant improvement
over the baseline processor and compiler by exploring the combined (co-design)
space. We also demonstrate that the optimal compiler for one architecture is not
the best for all. We build our model that predicts the performance of an opti-
mising compiler on any architecture from our design space that consists of various
cache and branch predictor configurations. We then use it to find the best architec-
tural/optimising compiler configuration and demonstrate that for this architecture,
an optimising compiler can deliver the predicted performance. The best design
achieves significant performance increases of 19%, 16% savings in energy and an
energy-delay-squared product (EDD) of 0.55.

The rest of this paper is structured as follows. Section 2 describes our experi-
mental methodology. Section 3 characterises the microarchitectural and compiler
optimisation spaces in isolation whilst section 4 explores the combined design space.
We build a machine-learning model in section 5 and evaluate it against a state-of-
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the-art alternative approach in section 6. Here we also show how our model is used
to select the best microarchitecture/optimising compiler combination and that this
configuration does achieve the predicted level of performance. Finally, section 7
describes related work and section 8 concludes.

2. METHODOLOGY

In this section we describe the baseline architecture and compiler infrastructure
used as a reference point for the later sections on design space exploration. We
also briefly describe the benchmarks used and define the notion of an optimising

compiler.

2.1 Optimising Compiler

This work considers the performance of an optimising compiler across a large mi-
croarchitectural design space. Without actually building an optimising compiler for
each microarchitectural configuration, it is difficult to verify the performance that
it will achieve. However, previous research [Triantafyllis et al. 2003; Kulkarni et al.
2004; Cooper et al. 2005; Haneda et al. 2005; Pan and Eigenmann 2006; Cavazos
et al. 2007] has shown that using iterative compilation over randomly-selected flag
combinations can out-perform an optimising compiler tuned for a specific configu-
ration. This can be considered an upper bound on the performance an optimising
compiler can achieve.
Hence, in this paper, we define an optimising compiler as a compiler that uses

iterative compilation over 1000 randomly-selected flag combinations on the specific
architecture to be tuned. This means that the optimising compiler uses the flags
that lead to the best performance after running 1000 flag combinations on the
architecture it is compiling for.

2.2 Microarchitecture / Compiler Co-Design Space

To evaluate the effectiveness of co-design space exploration, we chose to use the Intel
XScale processor [Intel Corporation ] as our baseline architecture. This processor
uses the ARM ISA and is typically found in embedded systems. Its configuration
is shown in table I, column 3. In section 3.2 we show that in fact this is a well
balanced design for energy and execution time.
Our benchmarks are compiled with gcc version 4.1.0. This compiler is widely

used within industry. In our experiments, all compiler optimisations are enabled
from the command line by using the flags available. The co-design space is the
combined space of all microarchitectural configurations and compiler optimisations.
We describe these in more detail in sections 3.1 and 3.3.

2.3 Experimental Framework

We used the Xtrem simulator [Contreras et al. 2004] which has been validated for
cycles and energy consumption against the Intel XScale processor. Using Cacti [Tar-
jan et al. 2006] we accurately modelled the access latencies of each cache configu-
ration to ensure our experiments were as realistic as possible.

We used the full MiBench suite [Guthaus et al. 2001] to evaluate the performance
of our system. All 35 programs were run to completion. For each benchmark we
chose the inputs leading to at least 100 million executed instructions where possible.
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Fig. 1. Cycles, energy, ED and EDD for each MiBench program when compiled with O2 and O3,

normalised to O1 (lower than 1 means better than O1).

Programs susan c, susan e, djpeg, tiff2rgba and search have been run with the large
input set whilst all others have been run with the small inputs.

To perform our experiments we chose 200 microarchitectural configurations and
1000 compiler optimisations from our total design space using uniform random
sampling. In total, for 35 benchmarks, we ran 7 million simulations to create this
sample space.

We explored the microarchitectural, compiler and co-design spaces using exe-
cution time (cycles), energy and the energy-delay (ED) and energy-delay-squared
(EDD) products. These two metrics are widely used among architects and repre-
sent the trade-offs between performance and energy consumption in a single value,
the lower the better.

2.4 Baseline Optimisation Level

We wanted to ensure that our baseline compiler optimisation level was realistic and
effective. We therefore considered the three default optimisation levels available in
gcc: O1, O2 and O3.

Figure 1 shows the performance, energy consumption, ED and EDD per bench-
mark for each of these optimisation levels, normalised to O1. As can be seen, the
optimisation levels O2 and O3 affect each benchmark in varying degrees. However,
surprisingly, on average they both produce the same execution time as O1. There
is similar variation for energy, although on average there is higher consumption
when using O2 or O3. When we look at the trade-off between performance and
energy, ED and EDD, it is clear that O1 represents the best choice. Hence, we
chose O1 as our baseline optimisation. Note that the accuracy of our predictor is
not affected in any way by this choice.
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Table I. Microarchitectural parameters and the range of values they can take. Each parameter
varies as a power of two, with 288,000 total configurations. Also shown are the baseline values.

Parameter Low → High Baseline

ICache size 4K → 128K 32K

ICache associativity 4 → 64 32
ICache block size 8 → 64 32

DCache size 4K → 128K 32K

DCache associativity 4 → 64 32

DCache block size 8 → 64 32

BTB size 128 entries → 2048 entries 512 entries
BTB associativity 1 → 8 1

3. MICROARCHITECTURE AND COMPILER DESIGN IN ISOLATION

Current microprocessor design methodology involves choosing and optimising a
microarchitecture whilst developing the compiler independently. In this section we
show how these two stages are usually performed.

3.1 Microarchitecture Design Space

We have picked a typical microarchitectural design space, whose parameters are
shown in table I. Also shown is the range of values each parameter can take and
our baseline microarchitecture which is based on the configuration of the XScale
processor [Intel Corporation ]. We have chosen to vary the cache and branch predic-
tor configurations in this work because they are critical components in an embedded
processor. The total design space consists of 288,000 different configurations. In
our experiments we have used a sample space of 200 randomly selected configura-
tions. To evaluate the architecture space independently from the compiler space,
we have compiled each benchmark using the baseline optimisation (O1).

3.2 Microarchitecture Exploration

Figure 2 shows our microarchitectural design space. Each graph shows the per-
formance achieved by each microarchitectural configuration in terms of execution
time, energy, ED and EDD across the MiBench suite, normalised to the baseline ar-
chitecture. The baseline performance is shown with a horizontal line. Each graph is
independently ordered from lowest to highest. These graphs show that the baseline
is actually a very good choice. For both execution time and energy consumption
it is within the top 15% of all configurations, for ED it is within the top 5% and
within the top 2% for EDD. However, there is room for improvement. Selecting a
better architecture leads to an ED value of 0.93 compared with the baseline.
Figure 3 shows the best execution time, energy, ED and EDD value for each

benchmark, normalised to the baseline architecture. We picked the microarchi-
tectural configurations leading to the best performance for each metric over the
whole MiBench suite. In terms of execution time, three benchmarks achieve a 10%
performance gain on this configuration, but the majority perform similarly to the
baseline. Considering energy, the majority of benchmarks achieve 20% savings over
the baseline configuration (the average saving in energy is 19%). However, the
ED value for some benchmarks is over 1 because this configuration actually loses
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Fig. 2. The average execution time, energy, ED and EDD of each microarchitectural configuration
across the whole benchmark suite compiled with O1. Each graph is independently ordered from

lowest to highest and is normalised by the baseline configuration.
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Fig. 3. Execution time, energy, ED and EDD for each benchmark compiled with O1 on the
microarchitectural configuration performing best for each metric.
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Table II. Compiler optimisations and the values they can take. There are 642 million combinations.
The baseline is O1 with no further optimisations enabled.

N◦ Flag

1 -fthread-jumps/⊘
2 -fcrossjumping/⊘

3 -foptimize-sibling-calls/⊘

4 -fcse-follow-jumps/⊘

5 -fcse-skip-blocks/⊘

6 -fexpensive-optimizations/⊘
7 -fstrength-reduce/⊘

8 -frerun-cse-after-loop/⊘

9 -frerun-loop-opt/⊘

10 -fcaller-saves/⊘
11 -fpeephole2/⊘

12 -fregmove/⊘
13 -freorder-blocks/⊘

14 -falign-functions/⊘
15 -falign-jumps/⊘

16 -falign-loops/⊘

17 -falign-labels/⊘
18 -ftree-vrp/⊘

19 -ftree-pre/⊘
20 -funswitch-loops/⊘

N◦ Flag Values

21 -fgcse/⊘
22 -fno-gcse-lm/⊘

23 -fgcse-sm/⊘

24 -fgcse-las/⊘

25 -fgcse-after-reload/⊘

26 –param max-gcse-passe = 1,2,3,4

27 -fschedule-insns/-fschedule-insns2/⊘

28 -fno-sched-interblock/⊘
29 -fno-sched-spec/⊘

30 -finline-functions/⊘
31 –param max-inline-insns-auto=10,30,...,190

32 –param large-function-insns= 1300,1500,...,3300
33 –param large-function-growth=20,50,100,200,...,500

34 –param large-unit-insns= 4000,6000,...,20000
35 –param inline-unit-growth= 10,20,30,...,100,200,300
36 –param inline-call-cost= 10,12,...,30

37 -funroll-loops/-funroll-all-loops/⊘
38 –param max-unroll-times= 2,4,6,...,20

39 –param max-unrolled-insns= 50,75,100,...,400

performance for these benchmarks. We cannot specialise the architecture for each
program, so this configuration that is the best for ED overall, is not necessarily the
best for each program.

On average, we see that we can only achieve a modest ED and EDD value of 0.93
over the baseline architecture. This is actually not a surprise, since the baseline
architecture corresponds to the XScale processor and has already been highly tuned.

3.3 Compiler Optimisation Space

Having considered the microarchitecture design space in isolation, we now wish to
explore the compiler space alone to show its characteristics when optimising for
the baseline architecture. The optimisation space we have considered is shown in
table II. It is similar to the optimisations considered by other researchers [Vaswani
et al. 2007], allowing meaningful comparisons with existing work. There are 642
million different combinations of optimisations when considering turning the flags
either on or off. We also considered changing the behaviour of the heuristics that
control some of the optimisations, leading to a total of 1.69 ∗ 1017 unique optimi-
sations.

Since exhaustive enumeration of this optimisation space is not feasible, we ex-
plored it by choosing 1000 different optimisations using uniform random sampling.
We then ran the benchmarks compiled with these flags on the baseline architecture.
As stated previously, we define an optimising compiler as an iterative compiler that
uses the best of these 1000 randomly-selected flag settings.
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Fig. 4. Distribution of the compiler optimisation design space on a per-benchmark basis for
execution time, energy, ED and EDD (the lower the better). The bottom and top of the box

represent the 25% and 75% quantiles respectively, the band near the middle the median whilst
the bottom and top ends of the whiskers represent the minimum and maximum respectively.

3.4 Compiler Optimisation Exploration

Figure 4 shows the execution time, energy, ED and EDD design spaces on a per-
benchmark basis. We show each benchmark individually because the best com-
bination of optimisation flags varies between programs. In these graphs we show
the minimum, maximum, median, 25% and 75% quantiles. Also shown in the final
column is the geometric mean from using these different optimisations across all
benchmarks.
What is immediately clear is that for some benchmarks there is significant im-

provement to be obtained in execution time over the baseline optimisation (e.g.
search at 0.44 and crc at 0.47). This also shows that picking the wrong optimisa-
tions can significantly degrade performance or increase energy consumption. On
this baseline architecture, the compiler can do little to improve the performance
or save energy on some programs (e.g. basicmath and patricia). In terms of ED
or EDD, there is significant scope for improvement for some benchmarks, but on
others the compiler optimisations have little impact. For example, sha achieves an
ED value of 0.48 in the best case but qsort does not gain from optimisation. The
best case flags chosen on a per-benchmark basis give the performance of the opti-
mising compiler. On average, this can reduce execution time by 19%, save 13% of
the energy consumption and achieve an ED value of 0.72 or an EDD value of 0.60.
This is compared to the best ED value of 0.93 when varying the microarchitectural
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space alone. Not surprisingly, there is more room for improvement in the compiler
space because the architecture has already been significantly tuned.

3.5 Different Optimisations For Each Program

Knowing the performance of the best flags for each application is meaningful but it
is also important to see whether these flags are actually different from program to
program. To understand which optimisation parameters have an impact on perfor-
mance and energy, we have taken each program individually and optimised them
for EDD. Then the optimisation settings were ranked from the best to the worst
EDD values and those within the top 5% of the best (100% being the performance
of O1) were retained. The first ten best were always retained independently of
their performance to ensure there were enough flag settings to conduct an analysis.
Each boolean flag is marked as important if it is turned on or off at least 90% of

the time within the set of the top 5%. For the parameter flags such as max-unroll-

times , the flags are marked as important if the standard deviation within the top
5% was significantly lower than the standard deviation across all the settings. The
value reported in this case is simply the mean of the parameters present in the top
5%.
Figure 5 shows the values of the important flags for each benchmark individually,

since the best combination of optimisation flags varies from program to program.
As can be seen the importance of the flags and their corresponding values are
dependent on the program for some of the flag settings. For instance consider op-
timisation number 27 (fschedule-insns): for program susan s it is better to disable
this optimisation, whereas for program pgp it is better to enable it with instruction
scheduling policy 1 and for program rawcaudio with policy 2. These two policies
influence when the instruction scheduling will be performed (before register alloca-
tion in one case and after in the other). This clearly shows that the flag settings
that achieve the best EDD are different from program to program.

3.6 Summary

Up to this point we have considered the microarchitecture and compiler optimisa-
tion spaces independently. In particular we have shown that the efficiency of the
architecture could be improved, reducing the energy consumed by 19%. In the
compiler space, we have shown that execution time could be reduced by 19% when
selecting the right set of optimisations to apply per program.
The next section combines these spaces, considering their co-design and explores

the improvement that is available in terms of execution time and energy.

4. CO-DESIGN SPACE EXPLORATION

This section demonstrates that by exploring the co-design space we can find an
architectural/optimising compiler configuration that achieves even higher perfor-
mance than can be achieved when considering the architecture and compiler in
isolation. Furthermore we show that tuning the compiler separately to the mi-
croarchitecture can lead to sub-optimal performance of the final system.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.



1
0

·
C
.
D
u
b
ac
h
et

al
.

39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

ba
si

cm
at

h

bi
tc

nt
s

qs
or

t

su
sa

n_
c

su
sa

n_
e

su
sa

n_
s

cj
pe

g

dj
pe

g

la
m

e

m
ad

pl
ay

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

lo
ut

di
jk

st
ra

pa
tr

ic
ia gs

is
pe

ll

sa
y

se
ar

ch

bf
_d

bf
_e pg

p

pg
p_

sa

rij
nd

ae
l_

d

rij
nd

ae
l_

e

sh
a

ra
w

ca
ud

io

ra
w

da
ud

io cr
c fft

fft
_i

to
as

t

un
to

as
t

O
pt

im
is

at
io

ns

1

2

1

14

230

1

2

15

242

0

1

3

0

0

2

2

13

348

1

1

0

1

2

2

1

12

222

1

0

1

12

236

1

1

3

2

0

0

0

1

2

0

1

1

2

1

136

2140

217

13000

20

2

11

1

0

0

2

1

110

2300

12000

46

19

0

0

1

12

239

0

1

1

2

2

1

122

2490

13200

52

19

0

0

1

2

2

1

150

2530

177

10600

20

1

11

305

0

0

0

0

1

1

2

1

136

2230

17

2

11

275

1

1

170

2730

240

10600

17

0

1

3

2

13

245

1

1

2

2

1

13

236

1

146

2380

149

12200

16

0

0

1

1

1

0

1

172

2590

16200

12

1

14

200

2

1

130

2170

185

10400

22

1

282

1

15

227

1

1

2

1

12

265

1

2

2

13

270

0

1

1

101

2453

10933

73

19

1

207

0

1

3

1

1

111

2241

12367

83

19

1

11

218

0

2

1

11

236

0

2

1

11

236

1

0

1

1

64

2310

8200

21

2

12

230

0

1

1

1

3

2

0

1

0

1

118

2280

13400

22

1

1

2

1

155

2282

12000

15

2

14

257

0

1

2

1

92

2320

23

2

13

1

2

1

2300

21

2

12

1

0

1

0

1

2

1

13

215

1

1

3

1

136

2500

10769

19

2

13

290

F
ig
.
5
.
Im

p
o
rt
a
n
t
fl
a
g
s
a
n
d

th
ei
r
co

rr
es
p
o
n
d
in
g
v
a
lu
es

th
a
t
le
a
d

to
th

e
b
es
t
E
D
D

v
a
lu
e
fo
r
a
ll

th
e
M
iB

en
ch

p
ro
g
ra
m
s
o
n
th

e
b
a
se
li
n
e
a
rc
h
it
ec
tu

re
.
A
s
ca

n
b
e
se
en

th
e
o
p
ti
m
is
a
ti
o
n
s
th

a
t
le
a
d

to
th

e
b
es
t
E
D
D

a
re

d
iff
er
en

t
fr
o
m

p
ro
g
ra
m

to
p
ro
g
ra
m
.

A
C
M

T
ra

n
sa

c
ti
o
n
s
o
n

E
m
b
e
d
d
e
d

C
o
m
p
u
ti
n
g
S
y
st
e
m
s,

V
o
l.

V
,
N
o
.
N
,
M

o
n
th

2
0
Y
Y
.



Exploring and Predicting the Architecture/Optimising Compiler Co-Design Space · 11

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

E
xe

cu
tio

n 
tim

e 
(n

or
m

al
is

ed
 to

 O
1)

Architectural Configurations
 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

E
xe

cu
tio

n 
tim

e 
(n

or
m

al
is

ed
 to

 O
1)

Architectural Configurations

O1

(a) Cycles

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

E
ne

rg
y 

(n
or

m
al

is
ed

 to
 O

1)

Architectural Configurations
 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

E
ne

rg
y 

(n
or

m
al

is
ed

 to
 O

1)

Architectural Configurations

O1

(b) Energy

 0

 1

 2

 3

 4

 5

 6

 7

E
D

 (
no

rm
al

is
ed

 to
 O

1)

Architectural Configurations
 0

 1

 2

 3

 4

 5

 6

 7

E
D

 (
no

rm
al

is
ed

 to
 O

1)

Architectural Configurations

O1

(c) ED

 0

 1

 2

 3

 4

 5

 6

 7

 8

E
D

D
 (

no
rm

al
is

ed
 to

 O
1)

Architectural Configurations
 0

 1

 2

 3

 4

 5

 6

 7

 8

E
D

D
 (

no
rm

al
is

ed
 to

 O
1)

Architectural Configurations

O1

(d) EDD

Fig. 6. The co-design space for execution time, energy, ED and EDD for each microarchitectural

configuration across the whole benchmark suite considering the best and worst optimisations for
each program. The region in white is the co-design space, with the line showing the performance
of O1 on each architecture. Each graph is independently ordered from lowest to highest and is
normalised by O1 on the baseline configuration.

4.1 Exploration

Figure 6 shows the co-design space across microarchitectural configurations for ex-
ecution time, energy, ED and EDD. The performance of the baseline compiler on
each configuration is shown by the solid line. The performance of the optimising
compiler on each configuration is also shown. Here we have selected the best com-
piler optimisations on a per-program basis for each microarchitectural configuration
in our sample space. This represents the lower bound on the execution time, energy
consumption, ED or EDD achievable for each architecture. Hence we have shaded
the region below it. Also shown is the performance when selecting the worst com-
piler optimisations which represents the upper bound and we have shaded the area
above this.
It is immediately clear that there is large room for improvement over the baseline

compiler optimisation across the whole microarchitectural space in terms of execu-
tion time, ED and EDD. All four graphs show that picking the wrong optimisations
can lead to significant degradation of each metric. Hence, it is important to know
the performance of the optimising compiler on each architecture individually.
In figure 7 we show the execution time, energy, ED and EDD values on a per-
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Fig. 7. Execution time, energy, ED and EDD for each benchmark on the microarchitec-
tural/optimisation configuration performing the best for each metric. The microarchitecture is

the same across programs however it varies depending on the target metric.

benchmark basis for the microarchitectural / optimisation configurations that per-
form the best for each metric. In terms of execution time, 13 benchmarks achieve a
20% improvement whilst the largest energy savings of 63% are achieved by search.
For ED, the majority of benchmarks achieve a reasonable value of 0.8 or under. It is
interesting to compare these results with those achieved when performing microar-
chitecture space exploration alone (figure 3). We can see that performing co-design
space exploration leads to more balanced results across benchmarks in terms of
ED (the maximum value is now 1.3, before it was 1.7). Similar conclusions can be
drawn for the EDD metric. This is because the optimising compiler is able to take
advantage of the microarchitecture, whereas before all benchmarks were compiled
with O1.
On average, considering the co-design space of compiler optimisations and mi-

croarchitectural configurations brings significant benefits. We can reduce execution
time by 21%, save 29% of energy or achieve an ED value of 0.67 and an EDD value
of 0.55. This is compared with an ED of 0.93, when varying the microarchitecture
alone, or 0.72 when only considering compiler optimisations. This shows the ben-
efits of performing co-design space exploration compared with independent design
of compiler and architecture.

4.2 Optimisation Sensitivity to Microarchitecture

The previous sections have shown that co-design space exploration is beneficial
over performing microarchitecture and optimisation space exploration in isolation.
This section now considers the effects of finding the best flag settings for a specific
program on the baseline architecture and using them across the microarchitectural
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Fig. 8. Optimising program toast on the baseline architecture and running it on all other microar-

chitectural configurations. All the values are normalised by O1 on the baseline microarchitecture.

space for the same program. In other words, we wish to examine whether a fixed
set of optimisation flags exists for a particular program that can lead to the best
performance independently of the microarchitecture.
Figure 8 shows an example for the toast benchmark when optimising the program

on the baseline architecture and running it on the other configurations. As can be
seen, the optimisations that are the best for the baseline microarchitecture actually
perform worse than compiling with O1 on other configurations for cycles, ED and
EDD. Critically, the best compiler optimisations vary across the microarchitecture
space. However, for energy it seems to make little difference. As seen earlier, this
is due to the fact that the compiler optimisations have very little impact on the
energy consumption.
Figure 9 shows this averaged across all benchmarks. Here we have run all pro-

grams using 1000 optimisations on the baseline architecture and those optimisations
that are within 5% of the best found for each benchmark were selected (a different
set for each program). They are called the baseline good optimisations. Then, we
have run the benchmarks compiled with these baseline good optimisations on the
rest of the microarchitectures to determine the average cycle, energy, ED and EDD
values that they achieve. For each configuration, the performance of the baseline

good optimisations were evaluated using the distance from the best value achievable
on that configuration. We normalised the distances by the performance of the best
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Fig. 9. Optimising on the baseline architecture and running on all other microarchitectural config-
urations. Optimisations that are good on the baseline microarchitecture can perform worse than

O1 on other configurations. All the results are averaged across all benchmarks.

optimisation (distance=0%) and the performance of O1 (distance=100%).
For ED and EDD we can see that on half (1/2) the architectures the good op-

timisations for the baseline are at least 15% away from the best. For a quarter
(1/4) of the architectures, these good optimisations are at least around 50% away
from the best. Crucially, the good optimisations on the baseline architecture are
actually worse than O1 for one tenth (1/10) of the microarchitectures. This shows
that good optimisations for one architecture are not necessary suitable for others.
In essence, the optimal compiler optimisations to apply for one architecture are not
the best for all. Therefore the compiler has to be tuned on each configuration and
cannot be developed independently of the microarchitecture.

4.3 Summary

This section has shown the importance of performing co-design space exploration.
When the optimisation space is explored at the same time as the microarchitec-
ture space, significant improvements can be gained over the baseline. However,
designing the architecture without considering the optimisation space can result in
sub-optimal performance on the final system. Considering both spaces together,
we can achieve an ED value of 0.67, compared with 0.93 when designing the mi-
croarchitecture alone, or 0.72 when exploring only the compiler optimisation space.

5. PREDICTING THE PERFORMANCE OF AN OPTIMISING COMPILER

In previous sections we have presented the characteristics of our design spaces and
shown that the optimal compiler for one architecture is not the best for all. To do
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Fig. 10. Example use of the model for the program fft when considering ED (the darker a dot,
the better the ED value is over the baseline O1). First performance counters are collected, then

PCA is used to select two components (a). Training configurations are then selected and a search
of their optimisation spaces for the best performance is conducted (b). Finally, the SVM model is
trained to determine the contour map around configurations (c). This map provides a prediction
of the real performance of the optimising compiler (d).

this we have explored a sample of the total design space, considering 200 microar-
chitectural configurations and 1000 compiler optimisations over 35 benchmarks. In
practise, however, it is not desirable to conduct such a costly co-design space explo-
ration. We now address this issue by building a machine-learning model to predict
the performance of the optimising compiler on any variation of the microarchitec-
tural space considered in section 3.1.
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Table III. The performance counters used to characterise the microarchitectures.

Parallelism Resource usage Cache information

Instructions per cycle ALU / MAC / Shifter usage Insn cache access rate

Decoder access rate Insn cache miss rate

Register file access rate Data cache access rate
Branch pred. access rate Data cache miss rate

5.1 Overview

Our model is built in three steps, with an example on the benchmark fft shown
in figure 10. A new model is created for each benchmark we wish to predict for.
First we run the program compiled with O1 on a number of randomly-selected
microarchitectures (200 in our case). We gather performance counters which allow
us to characterise its behaviour (figure 10(a)). From this we can select a number
of architectural configurations for training (figure 10(b)). We then explore the
optimisation space of these configurations by running the program using different
compiler settings in order to estimate the best performance achievable. Finally the
model is trained with the results of this exploration (figure 10(c)) and predictions
can be made for the entire space. These predictions can be directly compared with
the real space (figure 10(d)). The next sections describe these steps in more detail.

5.2 Characterisation of Microarchitectures with Performance Counters

To characterise each microarchitecture in the co-design space, we gather features
that can be used as an input to our model. Our model can use these features to
determine the performance improvement an optimising compiler can achieve over a
standard baseline compiler for any microarchitecture from our space. The features
we use are performance counters extracted from a single run of the program with
the default optimisation level (O1) on each architecture.

We have chosen nine performance counters to extract shown in table III. Perfor-
mance counters like these are typically found in processor analytic models [Karkha-
nis and Smith 2004; Eyerman et al. 2006]. We then use Principal Component Anal-
ysis (PCA) to summarise the nine features into two values, or principal components.
Figure 10(a) shows these components (PC1 & PC2) over 200 microarchitectures for
the benchmark fft.

5.3 Gathering Training Data

Before being able to build our model, a few microarchitectures need to be selected
to train the model with. For each of these, an exploration of the optimisation space
is required to obtain the performance of the best optimisation settings. For this
reason it is important to select carefully the training configurations so as to avoid
unnecessary explorations.
To achieve high efficiency, we select the training samples that best cover the pro-

jected space. We therefore use the K-Means algorithm [Lloyd 1982] to find clusters
of microarchitectures based on the performance counters. Then one representa-
tive microarchitecture is selected for each cluster followed by an exploration of the
optimisation space for that particular microarchitecture. Figure 10(b) shows the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.



Exploring and Predicting the Architecture/Optimising Compiler Co-Design Space · 17

configurations being selected for training for the benchmark fft with a number of
clusters set to 12. The optimal number of clusters selected is discussed later in
section 6.2 where the technique is evaluated. As can be seen the selected microar-
chitectures successfully cover the space.
Once this selection has taken place, we search the compiler optimisation space

on each of the selected microarchitectures using iterative compilation with 1000
randomly-selected optimisations. Note that this search could be made more effi-
cient by using more advanced search strategies [Triantafyllis et al. 2003; Almagor
et al. 2004; Cooper et al. 2005; Haneda et al. 2005]. However, this is orthogonal to
the focus of this paper. The result of this search corresponds to an estimation of the
maximum performance achievable on each of the selected training microarchitec-
tures. This is shown in figure 10(b) where darker points lead to better performance.
With this data gathered, the model is ready to be trained.

5.4 Training our Model

Having collected our training data, we can now train our model which is based
on Support Vector Machines (SVM), adapted for the regression problem [Smola
and Schölkopf 2004]. This model can distinguish between data points that behave
differently. In our case, the model learns the difference between microarchitectural
configurations based on the performance an optimising compiler can achieve on
them. In our example following fft, the results from training can be seen visually
in figure 10(c). Here we have circled the training configurations. The model learns
the areas of similar colour based on the best performance seen on the 12 microar-
chitectures we selected in the previous step. Architectural configurations that lie in
the same colour region are predicted to have similar optimising compiler behaviour.
In other words, the model predicts that the optimising compiler has little effect in
the light areas and can achieve high performance gains in the dark areas. For fft,
this can be compared to the real space of 200 microarchitectures in figure 10(d).
Having trained our model, we can predict the performance of the optimising

compiler on any new microarchitectural configuration within our space. To do this
we run O1 on the architecture and gather performance counters. The model uses
PCA to reduce the number of features to two and then makes a prediction based
on the colour of the region where it lies.

5.5 Summary

This section has described our model used to predict the performance of the opti-
mising compiler on any microarchitectural configuration within our space. We first
run O1 on 200 architectures and gather performance counters. We use PCA to
reduce these and then select a few configurations to train our model. On each of
these we perform a random search of the optimisation space and then use an SVM
to model the entire co-design space. To predict for any new microarchitecture we
simply need performance counters from one run of O1 on it.

6. MODEL EVALUATION AND COMPARISON

Having built our machine-learning model to predict the performance of the opti-
mising compiler, this section evaluates its accuracy. We also compare it with a
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previously-proposed scheme and show a real-world use of our model in being able
to predict the best configuration in the co-design space.

6.1 Methodology

Our model is evaluated using cross-validation. This technique ensures that the
programs used to test the model are not used, or seen, during the training phase.
This allows a fair evaluation and is standard practice among the machine-learning
community.
To measure the performance of our model we use the relative mean absolute error

and the coefficient of correlation. The relative mean absolute error is defined as:

rmae =
1

N

N
∑

i

∣

∣

∣

∣

predicted valuei − real valuei

real valuei

∣

∣

∣

∣

(1)

and the coefficient of correlation as

correlation =
cov(predicted value, real value)

σpredicted value · σreal value

(2)

where σpredicted value and σreal value are the standard deviations of the predicted
value and real value respectively and cov(predicted value, real value) is the co-
variance between the predicted value and the real value. These two functions are
finally defined as:

σX =
√

1
m

∑

i (Xi −X)2

cov(X,Y ) = 1
m

∑m

i (Xi −X) · (Yi − Y ).
(3)

The correlation coefficient only produces values between -1 and 1. The larger
this value is, the stronger the relationship between the two variables (ignoring the
sign). At the extreme, a correlation of 1 means that both variables are perfectly
positively correlated; one variable can be expressed as the product of the other
(linear relation). A correlation of 0 means that there is no linear relationship
between these two variables.

6.2 Training Samples Selection: K-Means vs Random

As seen in the previous section which described our model, a few microarchitectures
are selected in order to train the predictor. This selection process is performed by
using the K-Means clustering technique to pick a representative microarchitecture
for each cluster found. This procedure is now evaluated for different training sizes
and compared with a purely random selection process.
Figure 11 shows the mean error and the coefficient of correlation of the model for

various training sizes when predicting for EDD. These results are averaged across all
the benchmarks and obtained using cross-validation where the microarchitectures
used for training are left out of the testing set. This figure clearly shows that
selecting the training points with the K-Means algorithm is better than using a
purely random selection. For instance with 20 training samples, our K-Means
approach achieves an error rate of just 3.2% and a correlation of 0.984 whereas the
random selection achieves only 3.7% and 0.979 respectively. This also shows that
a low error can be achieved using only a fraction of the design space.
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Fig. 12. The prediction errors of the model broken down by program when predicting the EDD

value achievable by the optimising compiler using only 20 training microarchitectures. The average
error is just 3.2% and the average correlation 0.98.

It might at first seem surprising to see that the coefficient of correlation is high
even when using very few training samples. Looking back at figure 6 it can be
seen that the performance of the best flag settings is strongly correlated with the
performance of the baseline optimisation O1. This is due to the fact that the mi-
croarchitectural space has a much higher variance than the compiler optimisation
space. Furthermore, it is important to keep in mind that these numbers are aver-
aged across all programs. Hence, programs that show very little variation in their
optimisation space will tend to be easier to predict, independently of the number
of training points.
In the following sections, the training budget is fixed to 20 training samples

because this represents a good trade-off between accuracy and number of samples.
As the next section shows, this leads to a very good correlation and relatively low
error for most of the programs.

6.3 Prediction Accuracy Per Program

The prediction error and coefficient of correlation for each benchmark in MiBench
is shown in figure 12 for 20 training samples. As stated earlier, these 20 samples
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Fig. 13. Predicting the performance of the optimising compiler across the microarchitectural space
for the whole of MiBench. Also shown are the predictions made by Vaswani’s model. Note that

our model is highly accurate and overlaps significantly with Oopt.

correspond to 20 microarchitectures on which the best performance achievable was
estimated using 1000 random optimisations. The average error and correlation of
the whole suite is also shown.
As can be seen, our model achieves a very low error rate of 5% or under for the

majority of the benchmarks. In fact, for some benchmarks (such as susan e), the
error is as low as 0.6%. The coefficient of correlation is also very good for all the
benchmarks, the lowest achieving a correlation of 0.88.
This shows that our model is accurate and correctly predicts the performance

of the optimising compiler. In the next section we conduct a comparison with a
state-of-the-art technique for co-design space exploration.

6.4 Comparison

We wish to compare the accuracy of our model with the only other technique (to
the best of our knowledge) that has considered the joint microarchitecture and
compiler optimisation space. We have built the model proposed by Vaswani et al.
[2007] using an Artificial Neural Network. Their model does not directly predict
the performance of an optimising compiler but instead predicts the performance of
a set of compiler flags for each microarchitecture. In addition, their model does
not attempt to predict energy consumption or the ED and EDD values achievable,
therefore this comparison could be considered unfair. However, a comparison serves
as an indication of how our approach performs against an existing machine-learning
technique. To evaluate this model we used it to predict our sample compiler space of
1000 optimisations for each architecture. We then picked the best as their predicted
value. We trained their model with exactly the same data as ours.

Figure 13 shows the EDD value achieved by the baseline compiler on each mi-
croarchitectural configuration averaged over the whole of MiBench (labelled O1).
It also shows the EDD value achieved by the optimising compiler on each configu-
ration (Oopt). A third line shows the prediction made by the model proposed by
Vaswani et al. (Vaswani model) and a final line shows our prediction (SVM model).
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Table IV. Parameters and EDD value of the best configuration found using the SVM model.

(a) Microarchitectural parameters

Configuration Icache DCache BTB

size assoc. block size assoc. block size assoc.

Best EDD 32K 64 16 64K 32 32 256 4

(b) Best value predicted and achieved

Predicted EDD Real EDD

SVM model Vaswani model

Best EDD 0.550 0.762 0.549

It is immediately obvious that our predictions follow the curve of the optimising
compiler with great fidelity. More specifically, our model accurately predicts the
peaks and troughs in EDD as well as the stable areas. This shows the ability of
our model to predict the design points that behave significantly differently from the
baseline. The Vaswani model, however, fails to accurately predict the performance
of the optimising compiler. In particular, it predicts peaks in EDD where there are
none and follows the O1 line closely. This predictor, therefore, is inappropriate for
finding the performance of the optimising compiler.

6.5 Predicting the Best Architectural/Optimising Compiler Configuration

Having built and evaluated our machine-learning model, this section considers
its real-world use in allowing designers to determine the optimising compiler/-
architectural configuration that achieves the best EDD value in our space. To
do this we used our model to predict on 200 microarchitectures, chosen by uni-
form random sampling. Our model predicted that the optimising compiler would
be able to achieve the minimum EDD value in the co-design space of 0.550 on the
configuration shown in table IV.
To verify the prediction accuracy, we used iterative compilation on this architec-

ture with 1000 randomly-selected optimisation settings. We found that the best
EDD value achievable is 0.549. This is just 0.2% away from our prediction, showing
that our model is very accurate. Had we used the Vaswani model, it would have
predicted an EDD value of 0.762 for this configuration, which is an error of 39%.
In addition to this, we wanted to verify that this prediction is actually the best

EDD value in the sample co-design space. To do this, we used iterative compilation
with 1000 optimisation settings on each of the 200 architectures we predicted for
and found that this configuration does actually achieve the best EDD value in the
sample space.
This best microarchitectural configuration found by our model achieves a per-

formance increase of 19% and energy savings of 16% compared to the baseline. It
produces the smallest EDD value because it is well balanced. The instruction and
data caches have high associativity to avoid conflicts. The instruction cache has
the same size as the baseline configuration (table I) and the data cache is double

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.



22 · C. Dubach et al.

0 20 40 60 80 100 120 140

0.
55

0.
65

0.
75

0.
85

Number of microarchitecture explored

E
D

D

Fig. 14. Best EDD achieved as a function of the number of architectures explored when using

an iterative search of the microarchitecture space. On average, 140 microarchitectures need to be
explored to match the performance of our model.

the size of the baseline to improve performance without significant increase in the
energy consumed.

6.6 Search Cost

We are now interested in evaluating the benefits of our approach over a simple
approach which searches iteratively through the space. If we were to pick randomly
a microarchitecture from our space, search its optimisation space for the minimum
EDD and repeat this process iteratively until we found an EDD value as good as the
one found by our model, we would need to explore nearly 140 microarchitectures as
shown in figure 14. With our model, this EDD value is in fact achieved by exploring
only 20 microarchitectures as seen previously. This means that our technique needs
to explore seven times fewer architectures than an iterative approach. As the space
becomes larger and more complex, our technique will even show greater speedup
over iterative approaches since only a fraction of the space needs to be explored.

7. RELATED WORK

7.1 Design Space Exploration Using Predictive Modelling

Several different types of machine-learning model have been proposed to predict
the design space of a microprocessor. The first type are models predicting the
performance of just a single program. Techniques include the use of linear regres-
sors [Joseph et al. 2006a], artificial neural networks [İpek et al. 2005;2006], radial
basis functions [Joseph et al. 2006b] and spline functions [Lee and Brooks 2006;
2007]. All have similar accuracy [Lee et al. 2007]. The second type of model
makes use of prior-knowledge, learning across programs. Linear regression [Dubach
et al. 2007b], artificial neural networks [Khan et al. 2007] and program-features
based predictors [Hoste et al. 2006] have been proposed. However, since none of
these models consider the compiler optimisation space, sub-optimal microarchitec-
tural designs could be chosen.
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7.2 Compilation Optimisation Space Exploration

Searching the compiler optimisation space has been extensively explored in the
literature. Feedback-directed optimisation [Triantafyllis et al. 2003; Almagor et al.
2004; Kulkarni et al. 2004; Cooper et al. 2005; Haneda et al. 2005; Agakov et al.
2006; Pan and Eigenmann 2006] uses different algorithms to search the optimisation
space. Agakov et al. [2006] built a model offline that is used to guide search.
Haneda et al. [2005] make use of statistical inference to select good optimisations.
Cooper et al. [2004; 2005] explore the optimisation space using hill climbing and
genetic algorithms. Other researchers have used analytical [Zhao et al. 2005] or
empirical [Vuduc et al. 2004;Cavazos et al. 2006;2007;Dubach et al. 2007a] models
to explore the optimisation space. In fact, these techniques are orthogonal to our
approach and can be used to reduce training costs.

7.3 Architecture/Compiler Co-Design Framework

The integration of compiler and architecture development is not new and has been
the focus of prior research over the last 10 years. Frameworks such as Build-
abong [Fischer et al. 2001], Trimaran [Trimaran 2000] or Pico [Abraham and Rau
2000] allow automatic exploration of both compiler and architecture spaces. The
compiler and the simulator live side by side and are often tightly coupled within
these frameworks, allowing great flexibility in terms of space exploration. The
LISATek [Leupers et al. 2005] is a commerical tool based on the LISA language. It
can generate a compiler and a simulator automatically, in addition to generating
the HDL code ready for synthesis. These tools can be used and have been used
to explore the co-design space [Fischer et al. 2002]. However, this work relies on
search algorithms and has not considered the inclusion of predictive models.

7.4 Co-Design Space Exploration

Co-design space predictors [Vaswani et al. 2007] use one model to predict the com-
piler optimisation and architecture spaces. This model takes as an input the mi-
croarchitectural configuration and the desired optimisation flags and produces a
prediction. However, as we have shown in section 6.4, this model fails to capture
interactions between compiler optimisations and microarchitecture and cannot be
used to accurately predict the performance of an optimising compiler.

Analytic models [Silvano1 et al. 2007] have also been proposed as an efficient way
to explore the architecture/compiler co-design space. Unfortunately this approach
requires a large amount of knowledge about the microarchitecture it attempts to
explore and, furthermore, these models need to be built by hand. In contrast, our
technique focuses on building such a predictor automatically.
Desmet et al. [Desmet et al. 2009] conducted an exploration of the microarchi-

tectural and compiler optimization co-design space but did not propose any kind
of prediction mechanism. Finally, this present paper is an extension to the work
published in Cases [Dubach et al. 2008] in 2008. It presents additional results for
the EDD metric, extends the analysis section by showing which optimisation are
good, evaluates the training process and its impact on accuracy, shows the accuracy
of our model in terms of correlation and compares the cost of using iterative search
to find the best configuration in our sampled space with our technique.
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8. CONCLUSION

This paper has addressed the co-design space problem by automatically predicting
the performance of an optimising compiler on any microarchitectural configuration
from our space, without needing to tune the compiler first. We have explored the
microarchitectural, compiler and co-design spaces, showing that the optimal com-
piler for one architecture is not the best for all. We then built a machine-learning
model to predict the performance of an optimising compiler on any architecture.
Our model achieves an error rate of just 3.2% when predicting EDD. We used this
predictor to find the best optimizing compiler/architectural configuration for EDD
in our design space and shown that our model could predict its EDD value with just
a 0.2% error. This best configuration found achieves a 19% performance increase
and 16% energy savings, leading to an EDD value of 0.55.
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İpek, E., de Supinski, B. R., Schulz, M., and McKee, S. A. 2005. An approach to performance
prediction for parallel applications. In Euro-Par.
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