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Abstract—The early-stage design of a new microprocessor
involves the evaluation of a wide range of benchmarks across a
large number of architectural configurations. Several methods
are used to cut down on the required simulation time. Typically,
however, existing approaches fail to capture true program
behaviour accurately and require a non-negligible number of
training simulations to be run.

We address these problems by developing a machine learning
model that predicts the mean of any given metric, e.g. cycles
or energy, across a range of programs, for any microarchi-
tectural configuration. It works by combining only the most
representative programs from the benchmark suite based on
their behaviour in the design space under consideration. We use
our model to predict the mean performance, energy, energy-
delay (ED) and energy-delay-squared (EDD) of the SPEC CPU
2000 and MiBench benchmark suites within our design space.
We achieve the same level of accuracy as two state-of-the-
art prediction techniques but require five times fewer training
simulations. Furthermore, our technique is scalable and we
show that, asymptotically, it requires an order of magnitude
fewer simulations than these existing approaches.

I. INTRODUCTION

During early-stage design of new processors, architects

evaluate a large number of architectural configurations across

a range of benchmarks, searching for designs that meet the

constraints of the project and can be put forward for further,

detailed evaluation. At this stage in the design they look

for configurations that perform well on average across a

number of programs, rather than looking at the individual

performance of each benchmark.

Cycle-accurate simulators play a crucial role in this pro-

cess. However, detailed modelling of the microarchitecture

and execution of large benchmark suites with realistic work-

loads means that simulation is slow. Any technique that can

accurately reduce the required simulation time is beneficial.

Researchers have tackled this by exploiting similarities be-

tween programs [1], using microarchitecturally-independent

features to cluster benchmarks and select only a few repre-

sentative programs for simulation. However, as we show in

this paper, although benchmarks are similar when consider-

ing their program features, they may behave quite differently

in terms of execution time or energy across a microarchitec-

tural design space. As we shall see, clustering of programs

needs to be performed using their actual behaviour in the

design space, rather than using independent metrics.

Recently, machine learning has also been proposed to

further reduce simulation time [2], [3], [4], [5], [6]. These

techniques model the entire design space by training a predic-

tive model using several simulation runs from the program.

However, existing techniques can only be used to predict

the program with which they have been trained. Subsequent

work has considered training on one set of benchmarks

to predict another [7], [8]. However, these schemes either

require a large amount of off-line training or need to be

retrained when encountering a new program.

This paper presents a novel approach to reducing simula-

tion time that seeks to address these issues. We use machine

learning to build a predictor for the mean of any metric for

a suite of programs, rather than just one benchmark at a

time. The training requirements of our model are reduced

to a minimum by automatically identifying representative

programs; those whose behaviour in the design space can

accurately represent the whole benchmark suite. We capture

the behaviour using only a few simulations in the microarchi-

tectural design space. This is fundamentally different from

previous work [1] which focused on characterising programs

independently of the space. By considering program be-

haviour in the design space, we can efficiently and accurately

predict the average behaviour of a whole suite of programs.

In comparison with two state-of-the-art techniques [2], [9],

our predictor achieves the same level of accuracy, but re-

quires five times fewer training simulations. Asymptotically,

for a large number of programs, our approach needs an order

of magnitude fewer simulations than these schemes.

The rest of this paper is structured as follows. Section II

motivates the need to consider program behaviour on the

metric of interest when selecting representative benchmarks.

Section III then gives an overview of our model. Section IV

describes our experimental setup and evaluates the optimum

parameters for our model. Section V compares our predictor

with state-of-the-art approaches. Finally section VI discusses

related work and section VII concludes.

II. MOTIVATION

Before describing our technique, we wish to show why

previous approaches fail under certain circumstances and are

therefore not suitable for microarchitecture design space ex-

ploration. These previous techniques characterise programs

using microarchitecturally-independent features. We consider

the features developed by Eeckhout et al. [1], which were

used to perform benchmark subsetting and predict the per-

formance of different systems and architectures [9]. We have

used these techniques for microarchitecture design space

exploration, as described in section V-A.
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Fig. 1. Using microarchitecturally-independent features to characterise programs for design space exploration works well in (a) because they contain
information about the parameters that are varied. However, there is no information that relates to the instruction cache and L2 cache sizes, so when they
are varied in (b), (c) and (d) the prediction accuracy gets progressively worse.

Figure 1 shows the results of using these

microarchitecturally-independent features for performance

prediction for our design space described in section IV. The

results are shown for the energy-delay (ED) metric averaged

across the whole of SPEC CPU 2000. In the first case,

figure 1(a), we vary all microarchitectural parameters but fix

the size of the instruction cache and L2 cache to be 64KB

and 2MB respectively. Figures 1(b) and 1(c) then show the

same space where one of the cache sizes is varied but the

other remains fixed. Finally, figure 1(d) shows the whole

space where all parameters are varied. We show the real

space and the predictions made by the model. The model’s

prediction error is also shown in the centre of each figure.

As can be seen in figure 1(a), this approach has good

accuracy when the instruction and L2 cache sizes are fixed.

The predictions from this scheme accurately track the real

ED space. However, as figures 1(b) and 1(c) show, as the

cache sizes are allowed to vary, the error rate of the technique

increases from 4% to 7% or 16%. If both sizes can be altered,

the error rate rises to 18%, meaning that it is very difficult

to distinguish good configurations from bad.

The reason that this technique fails when the cache sizes

are allowed to vary is because the microarchitecturally-

independent features do not capture any information about

the instruction or L2 cache usage. As seen in figure 1, when

these two parameters are not included in the design space

(figure 1(a)), this approach works well. However, when they

are allowed to vary (figures 1(b), 1(c), 1(d)), the model

becomes inaccurate because it has no knowledge about

how program behaviour changes due to these parameters.

Furthermore, if we were to add extra features, there would

still be architectural parameters whose effects could not be

captured. In other words, it is nearly impossible to find a

finite set of features that would work across every possible

design space. This claim is fundamental to our paper. Our

approach performs better than existing techniques because

we characterise programs directly in the design space we

are considering.

In this paper we propose a different solution. Instead of

characterising programs, we directly consider their behaviour

in the microarchitecture design space. This ensures that

similarities between programs are captured no matter which

parameters we are altering. In addition, we focus on pre-

dicting the average behaviour of the whole benchmark suite

rather than individual performance of each program. This

ensures that the number of simulations can be reduced to a

minimum, allowing the designer to identify interesting design

points quickly during early-stage design space exploration.

The next section describes how we build this model which

we then evaluate in section V.

III. PREDICTIVE MODELS FOR EARLY-STAGE DESIGN

This section presents our predictive model that directly

predicts the mean of any metric (e.g. cycles or energy) within

a design space for a whole suite of programs. It differs

from other, recently proposed schemes [2], [3], [4], [5], [7],

[8] that only model the design space of one program at

a time. In addition, it reduces its training requirements by

choosing only the most representative benchmarks based on

their behaviour for the metric to predict. The fundamental

premise of our approach is that a small sample of the design

space can be used to capture the behaviour of each program.

A. Overview

Our predictor is built in five different stages, as shown in

figure 2. We first simulate R randomly selected configura-

tions for each benchmark within the suite (typically R=32).
This is shown in figure 2(a). From these we can trivially

calculate the mean for the metric of interest. The mean can be



(a) Mean calculated from R configurations (b) Selection of K most representative pro-
grams using a greedy algorithm

(c) Linear combination of K programs to
approximate the mean, estimating weights β

(d) Predictors estimate the rest of the space (e) Predicting the mean using the weights β.

Fig. 2. Overview of our predictor. We first run R randomly-selected simulations for each program and calculate the mean (a). Then we select K programs
to represent the whole suite, reducing our training requirements (b). We find a linear combination of these K programs to the mean (c). We then simulate
T configurations and build artificial neural networks (ANN) (d). Using the linear combination we predict the mean for any point in the design space (e).

the arithmetic, geometric, harmonic, or any other statistical

property, such as standard deviation.

We then select K representative programs from the suite,

typically K=5, using a greedy algorithm (figure 2(b)). A
weighted sum of their execution times can be used to

approximate the mean of the whole suite. Since we know

the real mean for the R configurations, we can construct a

linear function that approximates the execution time of the N

programs as a combination of K, where K<N (figure 2(c)).
Next, as shown in figure 2(d) we build a predictor based

on an artificial neural network (ANN) for each of the K

remaining programs using T randomly-selected training sim-

ulations, typically T=512. Finally, we use these predictors to
predict the metric of interest for all remaining configurations,

combining them using the mapping to give the mean of any

configuration in the design space, as shown on figure 2(e).

The following sections describe this process in more detail.

B. Computing The Mean

The first step consists of selecting a small number of

configurations from the design space, R, using uniform

random sampling. We then simulate all programs on these

configurations. This allows us to compute the mean for each

of the R configurations (figure 2(a)). Our model can be used

to predict any type of mean required by the user. In this paper

we focus on the geometric mean, defined as µg = N

√

∏N

i xi,

where N is the number of benchmarks in the suite and xi

is the metric for benchmark i.

C. Choosing K Relevant Programs

We assume that we can predict a whole suite of bench-

marks using only K representative programs. We use the R

configurations we have already simulated to choose these

programs, so choosing K does not imply more simulations.

Input: The set of N programs from the benchmark suite

K: the number of programs to select

Output: P: the set of K most representative programs

P = {all N programs};
for i← N to K do
foreach program, p, from remaining set P do
Remove p from P ;
Estimate error using R training simulations;

Add p back into P ;
Remove p that produces the min. error from P .

Fig. 3. The greedy algorithm that selects the K most representative
programs from the whole benchmark suite.

We wish to retain only the K programs that best represent

the space we want to predict (figure 2(b)). To do this we

use a greedy algorithm, shown in figure 3. This algorithm

chooses benchmarks based on the behaviour of each program

in the design space we are considering. It assumes that if

we know the optimal set of K+1 programs we can remove

the benchmark that leads to the smallest prediction error to

obtain the optimal set of K programs.

The actual choice of K depends on the number of programs

in the benchmark suite and the prediction error that the user

requires. It is evaluated in section IV-E.

D. Mapping K Programs To The Mean

In predicting the mean, we must account for the programs

not retained within K. We do this by learning a linear

mapping between the K representative programs and the

mean for the R configurations for which we have an exact

value (section III-B). This is shown in figure 2(c).

Given R values of the performance metric for each of the

K programs, we want to build a linear estimator µ̂ of µ
which uses K rather than all N (K < N) values to estimate



TABLE I

MICROARCHITECTURAL DESIGN PARAMETERS WITH THE RANGE, STEPS

AND THE NUMBER OF DIFFERENT VALUES THEY CAN TAKE.

Parameter Value Range Num Baseline

Width 2, 4, 6, 8 4 4

ROB size 32 → 160 : 8+ 17 96

IQ size 8 → 80 : 8+ 10 32

LSQ size 8 → 80 : 8+ 10 48

RF sizes 40 → 160 : 8+ 16 96

RF rd ports 2 → 16 : 2+ 8 8

RF wr ports 1 → 8 : 1+ 8 4

Gshare size 1K → 32K : 2∗ 6 16K

BTB size 1K, 2K, 4K 3 4K

Branches 8, 16, 24, 32 4 16

IL1 size 8K → 128K : 2∗ 5 32K

DL1 size 8K →128K : 2∗ 5 32K

L2 size 256K → 4M : 2∗ 5 2M

Total 63bn

the mean. Since the geometric mean is in product form, we

use a simple change of variables to allow linear modelling

i.e. ln(µ̂N) =
∑K

i βi · ln(xi), where βi is the weight for

benchmark i and xi is the metric for benchmark i.
If all the information is available to the model (K=N),
all the weights (βi) have a value of 1 and the estimation is

perfect i.e. µ̂ = µ. When the number of programs, K, used to
estimate the weights βi is smaller than N, then the weights

βi, are updated to account for the removed programs.

E. Artificial Neural Networks

The final step in building our predictor enables us to

predict any point in the microarchitectural design space. To

do this we create a predictor for each of the K representative

programs found in section III-C. We then combine them

using the mapping described in section III-D.

The predictors are shown in figure 2(d) and are based on a

state-of-the-art microarchitecture performance predictor [2].

The model is a multi-layer perceptron (i.e. artificial neural

network) with one hidden layer of 10 neurons. It is trained

with back-propagation. The activation function of the neu-

rons in the input and hidden layers is a sigmoid function

whereas the linear function is used for the output.

These predictors allow us to predict the entire design

space of each of the K representative programs using only

T randomly-selected training simulations from each. The

predictions can then be combined using the weighted sum

to estimate the mean for the whole suite of programs, as

shown in figure 2(e).

IV. EXPERIMENTAL SETUP

This section describes our microarchitectural design space,

simulation environment and the metric we used to evaluate

our predictor throughout this paper.

A. Benchmarks And Simulator

We used the entire SPEC CPU 2000 benchmark suitecom-

piled with the highest optimisation level. To represent each

program accurately we used SimPoint [10] using an interval

size of 10 million instructions and a maximum of 30 clusters

per program. We ran our experiments using the reference

input set, warming the cache and branch predictor for 10

TABLE II

MICROARCHITECTURAL DESIGN PARAMETERS THAT WERE NOT

EXPLICITLY VARIED, EITHER REMAINING CONSTANT OR VARYING

ACCORDING TO THE WIDTH OF THE MACHINE.

(a) Constant

Parameter Configuration

BTB assoc. 4-way
L1 Icache 32B block size, 4-way
L1 Dcache 32B block size, 4-way
L2 Ucache 64B block size, 8-way
FU latencies IntALU 1 cycle, IntMul 3 cycles,

FPALU 2 cycles, FPMul/Div 4/12 cycles

(b) Related to width

Parameter Number

Machine width 2 4 6 8

IntALUs 2 4 5 6
IntMuls 1 2 2 3
FPALUs 1 2 3 4
FPMulDiv 1 1 2 2

million instructions before performing detailed simulation. In

section V-E we also include the MiBench [11] benchmark

suite. These programs are compiled with the highest opti-

misation level and run to completion with the small input

set. Here we used all programs except ghostscript which

wouldn’t compile and run correctly.

Our cycle-accurate simulator is based on Wattch [12], an

extension to SimpleScalar [13]. We used Cacti [14] to model

the energy and access latencies of the microarchitectural

components accurately to make our simulations as realistic

as possible.

We used cycles as a metric for program performance

and the energy (in nJ) gained from Cacti and Wattch.

We also evaluated the energy-delay (ED) and energy-delay-

squared (EDD) products, which allowed us to explore the

trade-offs between energy consumption and performance.

B. Microarchitecture Design Space

Our microarchitectural design space contains 63 billion

different configurations, created by varying 13 different pa-

rameters within the simulator. These are shown in table I.

They are similar to those other researchers have investi-

gated [2], [4], allowing meaningful comparisons with previ-

ous work. The left-hand column describes the parameter and

the second column gives the range of values the parameter

can take. Also shown is a step size between the minimum and

maximum values. The third column enumerates the number

of different possible values. In the right-hand column is the

baseline configuration, discussed in section IV-C.

Although our design space is 63 billion points in total,

some of them do not make architectural sense. For example,

the reorder buffer should not be smaller than the issue queue

or load/store queue. We removed these configurations and

thus reduced the total design space to 18 billion points.

Some parameters within the processor core remained con-

stant in all simulations and these are described in table II(a).

The functional units varied with the width of the pipeline are

shown in table II(b). The predictive model that we develop

in this paper is independent of the microarchitectural design



 0

 5

 10

 15

 20

 25

 30

 35

 40

 1  5  10  15  20  25

rm
a

e
 %

K

EDD
ED

Energy
Cycles

(a) Greedy algorithm

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1  5  10  15  20  25

rm
a

e
 %

K

EDD
ED

Energy
Cycles

(b) Random selection

Fig. 4. Error and its standard deviation (in the shaded areas) as a function of K, the number of representative programs needed to build the linear model.
Our greedy algorithm performs better than random selection in terms of error for small values of K, and has a much lower standard deviation overall.

space under consideration. Therefore, we could easily add

additional parameters (e.g. core frequency) without any loss

of accuracy in our approach.

C. Choice Of A Baseline

In order to give each program within the benchmark

suite equal importance in the calculation of the mean, we

normalise to a baseline configuration. However the choice

of baseline does not affect the accuracy of our predictor.

We chose a baseline configuration similar to the Intel Core

microarchitecture, parameters for which are shown in table

I. It is a balanced microarchitectural configuration, lying

comfortably within the top 10% of this space for cycles,

ED and EDD, and within the top 20% for energy.

D. Evaluation Methodology

The relative mean absolute error (rmae) defined as
1

N

∑N

i

∣

∣

∣

predicted valuei−real valuei

real valuei

∣

∣

∣
is used to evaluate our

models. It tells us how much error there is between the

prediction and the actual value.

All predictors are trained using randomly selected config-

urations from our design space and validated on a further

randomly selected 2500. Since the selection of the training

simulations was performed randomly, each experiment was

repeated 20 times, using different random simulations each

time. The results presented are thus an average and whenever

possible the standard deviation is shown alongside.

E. Evaluating Optimum Model Parameters

Ideally we would like to examine the the impact of the

parameters present in our model on prediction accuracy.

However, due to space constraints this can only be shown

for K. As in our prior work [7], we have found that R=32
and T=512 gives robust results for predicting all SPEC CPU
2000 benchmarks in this space.

Varying K Representative Programs: Having randomly

selected 32 configurations, R, for each program and learned

a linear mapping to the mean, we then need to select K

representative programs. This is done by using our greedy

algorithm (figure 4(a)). We also compare against a straight-

forward random approach (figure 4(b)), for varying values

of K. We built ANNs for each of the K programs using 512

randomly selected configurations for each benchmark (T) and

verified as described in section IV-D. These graphs show

that the greedy algorithm has a lower standard deviation

than using a random selection for K and that there is not

a significant decrease in error with our scheme after K=5.

V. COMPARISON WITH STATE-OF-THE-ART

In this section, we conduct a comparison of our technique

against two state-of-the-art approaches. We show that our

scheme achieves a lower error than the other techniques and

that as the number of benchmarks rises, we require, asymp-

totically, an order of magnitude fewer training simulations

to achieve the same error.

A. Features-Based Predictor

The first prediction technique we chose to compare with

selectively reduces the number of training programs in a

benchmark suite. Eeckhout et al. [1] describe a method to

select the most representative subset of benchmarks using

microarchitecturally-independent program features, unlike

our scheme that uses the actual execution time or energy

consumption of different configurations. This approach has

recently been applied to performance prediction across dif-

ferent computing systems using offline training [9]. We

adapted and extended their technique to our problem of

predicting the mean performance. We extracted the program

features using the authors’ own tool and selected the most

representative subset of benchmarks from the whole suite.

We then constructed artificial neural networks (using T=512)
for each of these programs, combining the predictions to

get the mean using weights obtained from clustering. While

this new approach is different from the scheme the authors

proposed, it is based on their original idea of characterising

programs using architecture-independent features.

B. Single-Program Predictors

The second state-of-the-art technique consists of simply

constructing a single-program predictor for each benchmark.

We chose to use the scheme proposed by İpek et al. [2],

although we could have used any other related approach [3],

[4], [5], [15]. Since this technique predicts the space of each

individual program, we simply average the prediction of the

individual models to compare with our scheme.
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Fig. 5. Error as a function of the number of simulations to train both state-of-the-art schemes and our technique. Our approach achieves the same or
better error as the state-of-the-art schemes with half the number of training simulations or fewer.

C. Training Costs

In order to simplify the comparison between different

models, we define a training budget in terms of the number of

simulations allowed for training. While existing approaches

have provided an error estimation mechanism [2], we decided

not to use it to simplify the comparison. Note that this error

estimation mechanism is not specific to the single-program

predictor technique we compare against and could be applied

equally to our technique or to the features-based approach,

since they are both built on top of single-program predictors.

In our model, all programs require 32 (R) simulations to

select K representative programs and learn a linear mapping.

The chosen K programs receive the remaining budget. In the

features-based model, one simulation is required to extract

features, then the remaining simulations are assigned to the

chosen benchmarks. For the single-program predictor, the

entire training budget is shared equally between all programs.

For our approach, for the 26 SPEC CPU 2000 benchmarks,

the cost for our predictor, as discussed in section III-E,

when we pick K=5 representative programs, is 26·32+5·
(512−32) = 3232 simulations. For the features-based ap-
proach, only one simulation is needed per benchmark to

extract program features. The rest of the budget is then

distributed evenly across the chosen benchmarks. Following

our example, with a budget of 3232 simulations, 6 programs

are kept (3232/512 ∼= 6). For the single-program predictor,
each benchmark receives exactly the same proportion of the

simulation budget. So for 3232 training simulations, each

single-program predictor is trained with 124 simulations.
Note that the selection of the training programs for

each technique is independent of the number of SimPoints

required for each benchmark. On average, programs with

many SimPoints and those with few are equally likely to

be selected. This was verified in our experiments. Therefore,

the total simulation time for each technique is proportional

to the total number of simulations.

D. Predicting The Whole SPEC Suite

This section shows how our technique compares to the

state-of-the-art schemes when predicting the whole of the

SPEC CPU 2000 benchmark suite across the configuration

space. Figure 5 shows the error for each metric as we vary

the total number of training simulations. As can be seen,

our predictor achieves the same error as the features-based

approach and the single-program predictor using many fewer

simulations. For example, when predicting ED we achieve an

error of 6% using 3232 simulations, whereas the two state-

of-the-art approaches require 10,000.

Furthermore, for any simulation budget, our predictor

always achieves a lower error than the other schemes. As

already seen, given 3232 simulations (shown in figure 5

with a vertical bar) our predictor achieves an error of 6%

for ED, whereas the two others approaches have an error

of 18%; three times higher. The same conclusion can be

drawn for the other metrics. It is interesting to note that

the error rate of the other schemes are different from those

previously reported [2], [4]. This is explained by the fact

that our space is different and, more fundamentally, because

the simulation budget is shared across all programs (each

receiving a fraction of it).
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Fig. 6. Total simulations needed to train each model to reach a fixed error when different benchmark suites are considered. The lines represent the trend
and the labels at the top of each bar for our scheme represent the savings compared to the best of the other approaches. As the number of programs in
the benchmark suite increases, all schemes require a greater number of training simulations. However, our approach needs an order of magnitude fewer
additional simulations than the other approaches as the benchmark suite size increases. Moving from 26 to 60 programs, we require fewer than 1000 new
simulations whereas both other schemes require a further 10,000.

E. Larger Benchmark Suites

We now consider how the number of training simulations

varies as we predict different benchmark suites, keeping a

fixed error rate. We set the error rates at those achieved

when we set K=5 for our model, as described in section V-
C. That is 3232 simulations which corresponds to an error

of 3% for cycles, 4% for energy, 6% for ED and 8% for

EDD. It is straightforward to fix the budget and pick other

error rates. We chose to predict for SPEC CPU 2000 Integer

(12 programs), SPEC CPU 2000 (26 programs in total) and

SPEC CPU 2000 combined with MiBench (60 programs in

total). Figure 6 shows the results using our approach and the

state-of-the-art predictors.

As can be seen, for small benchmark suites, such as

SPECint, all three predictors require a similar number of

training simulations to achieve the fixed error rate, although

ours always requires fewer than the other two approaches.

However, for larger benchmark suites, the benefits of our

scheme become clear. When predicting cycles for the whole

of SPEC, the single-program predictor and features-based

approach need 9750 and 11,776 respectively, whereas our

scheme requires just 3712, 2.6 times fewer. When predicting

for combined SPEC and MiBench, we require 4800 sim-

ulations compared with 22,500 and 24,064, which is 4.7

times fewer. As the curves in these graphs demonstrate,

when moving from 26 to 60 programs, both other schemes

require a further 10,000 new simulations whereas our pre-

dictor requires fewer than 1000. This is asymptotically an

order of magnitude fewer simulations than the state-of-the-

art approaches as the benchmark suite size increases.

VI. RELATED WORK

This paper has proposed a scheme to predict the mean

of a suite of programs for a given metric. Recently there

has been significant interest in predicting the performance

of a single program across a microarchitectural design space.

Schemes include linear regressors [3], artificial neural net-

works [2], [16], radial basis functions [15], [17] and spline

functions [4], [5]. These models obtain similar accuracy to

each other [6]. However, they require a significant number

of training simulations when predicting a whole benchmark

suite, since a new model must be built for every program.

Other work has focused on clustering benchmarks based

on program features [1], [18], then using this offline knowl-

edge to predict the best architecture for a new program [9].

We compare with this approach in this paper and find that

we can achieve the same error rate but with five times fewer

training simulations. Recently, researchers have proposed

schemes that use reactions [8] or a signature [7] to charac-

terise a new program based on previously-seen benchmarks.

However, the offline training can result in a significant

simulation cost and these schemes still only predict for a

single program, rather than for the whole benchmark suite.



A common and widely accepted method of reducing

simulation time is to use profile-based sampling such as

SimPoint [10]. This picks only a small number of instruc-

tions from each program to simulate by grouping them

into clusters that represent the entire program using a k-

means clustering algorithm. As the number of instructions

contained in the clusters is significantly fewer than the total

number, simulation time can be reduced by several orders of

magnitude. We used SimPoint to reduce the simulation time

for our experiments. Statistical sampling techniques, such as

SMARTS [19], also make savings by executing only a small

fraction of the program using detailed simulation.

Statistical simulation [20], [21], [22], [23], [24] is similar

to sampling since only a portion of the program is executed.

However, instructions are executed only symbolically within

a modified simulator using a statistical model. A similar

idea consists in extracting micro-benchmarks from the real

program and simulating these in order to reduce simulation

time [25]. Whilst all these techniques offer reduction in

simulation time, they require extraction of program char-

acteristics. Since these characteristics depend on the mi-

croarchitecture, it makes it difficult to adapt to any major

microarchitectural changes. In fact, new program features

might need to be extracted, which again assumes prior

knowledge of the architecture design space.

Finally, analytic models have been proposed as a way

to reduce simulation cost whilst maintaining good accu-

racy [26], [27]. However these approaches require an in-

depth knowledge of the architecture and need to be built

by hand. Furthermore, when any major change is made to

the microarchitecture, these models need to be adapted and

tuned again [28]. On the other hand, our technique focuses

on building architectural models automatically without any

prior knowledge about the microarchitecture. As such it can

easily adapt to future microarchitecture designs.

VII. CONCLUSIONS

This paper has proposed a novel approach to design

space exploration by predicting the mean of a suite of

programs. We have shown that we can reduce the number

of simulations required by our model by training only on

the most representative programs from the benchmark suite.

We pick these using a greedy algorithm based on program

behaviour for the metric we wish to predict. Using only 5

representative programs from SPEC CPU 2000, we are able

to accurately model the average behaviour of the full suite.

Furthermore, we have compared our technique with two

state-of-the-art predictors and shown that we can achieve the

same error rate with five times fewer training simulations on

the whole of the SPEC CPU 2000 and MiBench suites.
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