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Abstract
Hardware accelerators offer high performance and energy efficiency
for specific tasks compared to general-purpose processors. However,
current hardware accelerator designs focus primarily on perfor-
mance, overlooking security. This poses significant security risks
due to potential memory safety violations that can affect the entire
hardware system. Existing methods either rely on Input-Output
Memory Management Units (IOMMUs) for memory isolation be-
tween memory pages, leading to vulnerabilities in intra-page mem-
ory accesses, or modify an accelerator architecture for specialized
memory protection, which requires significant effort and cannot
scale across multiple diverse applications.

In this paper, we propose a general method for fine-grained mem-
ory protection in heterogeneous systems without modifying accel-
erator architectures. We extend the Capability Hardware Enhanced
RISC Instructions (CHERI) from CPUs to an adaptive hardware
interface named CapChecker. The CapChecker imports capabilities
from the CPU and guards memory accesses at the pointer level
from CHERI-unaware accelerators as if they were CHERI-aware
natively. Over a set of benchmarks on hardware accelerators in a
heterogeneous system, our approach achieves fine-grained mem-
ory protection, with a 1.4% performance overhead compared to
CHERI-unaware accelerators on average.

CCS Concepts
• Security and privacy→ Hardware-based security protocols;
• Hardware→ Integrated circuits.
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1 Introduction
Hardware accelerators exploit the unique characteristics of specific
workloads and allow a task to be executed with better performance
or energy efficiency compared to general-purpose processors, such
as CPUs. For example, Neural Processing Units (NPUs) are amenable
to matrix operations and machine learning workloads [21, 33]; and
other custom accelerators are tailored to domain-specific appli-
cations, such as Monte Carlo simulations [54, 70] and quantum
simulations [10, 71]. Today’s hardware accelerators are widely used
in both cloud servers, such as F1 instances on Amazon AWS [2]
and Brainwave on Microsoft Azure [3], and embedded systems,
such as matrix accelerators in TinyML systems [36, 57] and router
accelerators in networking systems [61].

A major concern regarding computing systems with hardware
accelerators is security. While systems make increasing use of ac-
celerators for high performance and energy efficiency, the design
of existing accelerators often overlooks memory safety. Since accel-
erators are outside the view of contemporary operating systems,
one could gain control of an accelerator, potentially attacking the
system. Reported vulnerabilities include attacks by an accelera-
tor task targeting both CPU tasks [42–45] and other accelerator
tasks [67]. Existing software solutions often require complex imple-
mentation [30, 31, 38, 40, 64], while hardware solutions provide a
simpler ‘always-on’ mechanism to ensure memory safety [20, 78].

Existing hardware solutions for system-level memory protec-
tion still face vulnerabilities due to coarse granularity and protec-
tion heterogeneity. First, traditional heterogeneous systems rely on
Input-Output Memory Management Units (IOMMUs) for memory
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(a) Adding accelerators to CHERI
CPUs leads to memory vulnera-
bilities.

CHERI 
CPU

Accel

interconnect

DRAM

request
control

memory access

Pointer 
Capabilities

DMA
IOMMU

DMA

(b) Traditional IOMMUs provide
coarse-grained compartmental-
ization between pages.
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(c) Mismatches in protection
mechanisms between devices
face system vulnerabilities.

CHERI 
CPU

Accel

interconnect

DRAM

request
control

memory access

Pointer 
Capabilities

DMA
CapChecker

DMA

capability interconnect via MMIO

(d) We propose CapChecker for
pointer-level compartmentaliza-
tion.

Figure 1: Our work adapts existing CHERI-unaware accelera-
tors into a CHERI-aware system without modifying them.

protection, as illustrated in Figure 1(b). IOMMUs provide mem-
ory isolation between memory pages, independent of the software
objects being computed on accelerators. IOMMUs also lead to sig-
nificant overhead in area and performance, often unaffordable for
embedded systems and leading to a system without protection, as
illustrated in Figure 1(a). Second, there has been interest in adding
hardware memory protection to accelerators, such as NPUs [20], as
illustrated in Figure 1(c). They tailor the memory protection scheme
to a specific accelerator architecture, such as scratchpad memory
and Network-on-Chip (NoC) interconnects. However, the mismatch
between memory protection schemes on the CPU and accelerator
could lead to memory vulnerabilities. For example, adding a new
scheme may destroy the integrity of the existing scheme if they
share memory.

In order to overcome these challenges, a cohesive memory safety
scheme on heterogeneous systems is needed. We make the first
step towards this with two restrictions. First, we focus on tradi-
tional hardware accelerators that do not have dynamic memory
management. Advanced general-purpose accelerators today, such
as GPUs, have complex memory management [24–26] and are out
of the scope of this work. Second, our hardware memory protection
focuses on spatial memory safety. For example, a task should not be
able to access any data computed by another independent and con-
current task, regardless of whether either is running on a CPU or
accelerator. For temporal safety, we rely on trusted software drivers
to manage the accelerator memory, so errors such as use-after-free
cannot be exploited by the application.

A potential hardware solution to improve system-level mem-
ory safety is Capability Hardware Enhanced RISC Instructions
(CHERI) [78]. CHERI replaces pointers with the capability, a hard-
ware-enforced pointer type with bounds and permissions. Capabili-
ties restrict that a pointer can only access the resources it needs and

use that access in a deliberate way, leading to fine-grained memory
protection. Existing work on CHERI focuses on memory protec-
tion in CPUs and requires significant architectural modifications
in accelerators to construct a CHERI-aware heterogeneous system.
We seek an adaptive method between CHERI CPUs and existing
hardware accelerators with minimal architectural modification, and
this protection method should be general, accommodating diverse
accelerator architectures.

In this paper, we propose an adaptive method that compartmen-
talizes accelerator tasks using CHERI without architectural mod-
ification of accelerators, forming a CHERI-aware heterogeneous
system. Such a CHERI-aware system contains a component named
CAPability Checker (CapChecker) that holds a hardware repository
of capabilities from the CHERI CPU and guards memory accesses
from the accelerator. The CapChecker provides protection through
the memory interface of accelerators as if they used CHERI ca-
pabilities natively, as illustrated in Figure 1(d). The integration of
CapChecker restricts the memory behaviors of arbitrary CHERI-
unaware black-box accelerators whenworkingwith a CHERI-aware
CPU. Our main contributions are as follows.

• A threat model that describes memory vulnerabilities in
existing heterogeneous accelerators and a formalization of
memory protection design for heterogeneous systems;

• An efficient prototype systemwith a lightweight CapChecker
and a software driver to provide fine-grained compartmen-
talization, down to the pointer level; and

• Over an accelerator benchmark set, our proposed system
achieves pointer-level memory protection, and our evalua-
tion shows that the CapChecker leads to small performance
overheads depending on the accelerator architecture.

The rest of the paper is organized as follows. Section 2 provides
a motivating example of potential memory vulnerabilities in ex-
isting heterogeneous systems. Section 3 provides background on
CHERI capabilities and existing I/O protection methods. Section 4
describes our threat model and problem formalization. Section 5
demonstrates our hardware system prototype. Section 6 evaluates
the effectiveness of our work in security and scalability. Section 7
reviews related work in the field.

2 Motivating Example
Here, we present a motivating example of potential memory vulner-
abilities in existing heterogeneous systems. For simplicity, we take
video decoders as an example, which have been widely studied for
hardware acceleration [66, 80], but the security challenges are sim-
ilar to those of other accelerators. In Figure 2, a video application
calls a decoder function running on the accelerator. The hardware
accelerator is programmable and may run user-supplied code, such
as customized decoding algorithms. The red arrow illustrates a
potential memory attack that involves unauthorized memory ac-
cesses and capability forging. An attacker runs an application that
launches a malicious task ‘eavesdropper’ on the accelerator, exploit-
ing the following two memory weaknesses.

1) Memory Protection Granularity. The eavesdropper function may
access an unauthorized memory region to steal data. For example,
the eavesdropper may steal a screen-sharing session from a confi-
dential video call. In server-class systems, existing works rely on
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Figure 2: An accelerator taskmay access unauthorized data or
even overwrite capabilities for CPU tasks. The latter makes
existing CPU capabilities forgeable. Our CapChecker solu-
tion blocks such attacks and improves memory safety.

efficient IOMMUs and improve the management of translations due
to the overhead of mapping and unmapping pages [11, 46, 49, 50, 56].
Still, the memory protection granularity remains at the memory
page level and faces vulnerabilities in unauthorized access between
buffers in the same memory page. For embedded systems, this leads
to a more significant security challenge due to the absence of IOM-
MUs, where the whole memory, including the OS, is reachable by
the attacker.

2) Hardware ProtectionHeterogeneity. Existing protection onCHERI-
aware CPUs no longer holds with a CHERI-unaware accelerator in
the same system. One of the essential requirements for CHERI is
that pointer capabilities must be unforgeable, where the user cannot
increase the protections of an object. CHERI-unaware accelerators
in a CHERI-aware system must not be allowed to forge pointers.
If the capabilities of pointers are reachable by the eavesdropper
function, it may alter the permissions or bounds of a pointer used
by a CPU task, destroying the existing CHERI system. Existing
CHERI hardware systems keep CHERI-unaware accelerators en-
tirely outside the capability model. For example, the Arm Morello
system [22] prevents accelerators from writing valid capabilities.

In order to address these two problems, our protection goals
are: 1) achieving fine-grained compartmentalization of accelerator
tasks; and 2) matching the protection scheme on the CPU and
the accelerator. Our design goals are: 1) the approach must be
adaptive to diverse accelerators; and 2) no modification of existing
accelerator architectures is required. In the rest of the paper, we will
show how our approach extends CHERI beyond CPUs and achieves
pointer-level compartmentalization among accelerator tasks.

3 Background
3.1 CHERI Capabilities
Capabilities are defined as unforgeable, delegatable tokens of au-
thority [18, 62]. CHERI is an embodiment of the capability model
for memory pointers, enforcing the principle of least privilege and
the principle of intentional use. Software is built from individual ob-
jects (variables, data structures, pieces of memory, code functions)

object type/reserved object boundspermissions

pointer address

63

tag
144 27 0

Figure 3: 128-bit CHERI capability format for 64-bit ad-
dresses [75]; this specific layout proposed by draft RISC-V
standard [7].

Table 1: Comparison with traditional hardware protection
methods for controlling memory accesses from devices,
which motivates us to extend CHERI capabilities from CPUs
to hardware accelerators.
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Spatial enforcement ✗ ✓ ✓ ✓
– granularity (bytes) - 1 4096 1
Common object representation ✗ ✗ ✗ ✓
Unforgeability ✗ ✗ ✗ ✓
Scalability ✓ ✗ ✓ semi
Address translation ✗ ✗ ✓ optional
Suitable for microcontrollers ✓ ✓ ✗ ✓
Suitable for application processors ✓ ✗ ✓ ✓

and CHERI capabilities allow a pointer to carry metadata about
the object to which it refers. Integer addresses are replaced with
a pointer type that contains metadata describing the memory re-
gion’s bounds and permissible actions. The CHERI model imposes
constraints on how the pointer may be dereferenced and manip-
ulated, and it protects its integrity. Unlike conventional memory
pointers, which offer unfettered access to memory, operations are
restricted to enforce a model in which rights to memory can never
be increased, only maintained or reduced.

A CHERI capability can be thought of as a ‘fat pointer’ that,
in addition to pointing to a location in memory, is checked every
time it is dereferenced to access memory. CHERI augments the
CPU ISA to ensure that capabilities are always derived from valid
manipulations of other capabilities. Corrupted capabilities cannot
be dereferenced, such that the rights granted by capabilities are
non-increasing. A CHERI capability contains the type of its object,
the permissions determining how the pointer can be used, address
bounds, and a tag bit indicating if the capability is valid [78]. On
a 64-bit system, this leads to a 128-bit data structure plus the out-
of-band tag bit, as illustrated in Figure 3, with bounds compressed
using a scheme similar to floating point [77].

CHERI capabilities have achieved fine-grained memory protec-
tion for CPUs and verified their security both in software and
hardware [8, 59]. The tag bit in Figure 3 is essential for validating
the capabilities and is only preserved inside the CHERI world, i.e.,
the CPU side, to ensure the ‘unforgeability’ of CHERI systems. In
this work, we extend the CHERI capability model to hardware ac-
celerators so that existing hardware accelerators can be adapted to
existing CHERI CPU systems, forming a CHERI-aware heteroge-
neous system. Our work focuses on the extension, and the memory
protection granularity depends on the CHERI capabilities them-
selves.
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3.2 Hardware Protection in I/O Memory
Existing Input/Output (I/O) memory protection for heterogeneous
systems is limited. Table 1 compares traditional hardware protec-
tion methods with our approach in memory safety and scalability.
First, a vanilla system with no protection has the simplest archi-
tecture with high performance. Microcontrollers can have a (Phys-
ical) Memory Protection Unit (MPU or PMP) which checks CPU
memory requests in parallel against regions with different policies
and permissions. The natural extension to devices is the RISC-V
IOPMP [23]. However, the necessary associative lookup is very
expensive in both area and power, and so IOPMP implementations
may be limited to single-digit or teen numbers of regions [53, 76].

A more advanced approach is using IOMMUs, which have been
widely used in application processors. IOMMUs [11] provide ad-
dress translation that enables virtualization and protects physical
memory pages. Compared to IOPMPs, IOMMUs cost more area and
latency because of their complex hardware architectures and the
need to fetch and cache translations from main memory. On the
security side, the memory protection provided by an IOMMU is
more coarse-grained, depending on the page sizes.

Our CHERI approach provides both unforgeable capabilities and
fine-grained memory protection. Existing CHERI work supports
capabilities with MMUs. Our work can be applied to general het-
erogeneous systems, ranging from microcontrollers to application
accelerators. CHERI’s philosophy on the CPU is to deconflate pro-
tection from translation [78], leaving translation where necessary
to an MMU. No longer depending so heavily on the MMU helps
to reduce dynamic MMU costs such as TLB shootdowns. Similarly,
we deconflate protection from translation for accelerators. Where
address translation is still required, such as for address remapping
or defragmentation, some minimal IOMMU may still be required.
By taking the IOMMU out of the protection path, it can potentially
be substantially simplified – for example, replacing page-based
translation and IOTLB caching with a (quasi-)static remapping.

4 Threat Model and Problem Formalization
4.1 Threat Model
We now present a threat model to describe the security problems of
existing heterogeneous systems. A heterogeneous system typically
contains three hardware components: a CPU, a hardware accelera-
tor, and memory. Modern accelerators that natively support CHERI
do not yet exist, and require significant engineering effort to build
from scratch as baselines. As the first attempt at extending CHERI
beyond CPUs, we rely on following assumptions to simplify our
security analysis:

(1) the CPU used in the system is already protected by the
CHERI capability protection model [75];

(2) the accelerator does not perform dynamic memory utiliza-
tion, such as memory allocation/deallocation – these must
be handled by a CPU task; and

(3) the OS kernel, driver and hardware components are all trust-
worthy.

Assumption 2 excludes the analysis of modern accelerators that
support dynamic memory management, such as GPUs and TPUs.
Even with assumption 2, the proposed systems are still realistic

and representative of today’s non-GPU accelerator systems. For
example, Cerebras [4] has a spatial accelerator architecture that
contains a large number of accelerator cores connected by reconfig-
urable switches. The cores are highly programmable to accelerate
computation-intensive tasks by exploiting large-scale data paral-
lelism, such as LLM training and inference. However, these cores do
not support dynamic memory management and rely on the CPU to
instantiate pointers for data access. The Cerebras example can be
represented by the backprop benchmark in Section 6 as part of its
training workload, but the security problem remains the same. This
memory vulnerability is also observed in other variants of spatial
accelerators, such as AMDXilinx Versal devices [6] and Tenstorrent
accelerators [5].

We make assumption 3 regarding the drivers due to two reasons.
First, we assume our CapChecker driver implementation is correct
and bug-free. We rely on this assumption to save verification effort
on our prototype. Since our work does not modify accelerators,
we consider existing malicious software drivers to be out of scope.
Still, a secure system should ensure that the driver cannot use
accelerators to do anything it could not already do.

The proposed threat model considers two actors in common
use cases: general users who write unverified code or orchestrate
third-party malicious code and run it on accelerators; and attackers
who intentionally write accelerator code with unauthorized mem-
ory accesses to observe or modify other concurrent tasks in the
system, such as the example shown in Figure 2. This means that
the application code cannot be trusted, and each task running on a
CPU or an accelerator could exhibit arbitrary memory behavior.

Although CHERI provides capability checks for pointers used by
CPUs, the pointers used by accelerators remain vulnerable. While
our work tries to address this weakness using fine-grained com-
partmentalization, we do not consider side-channel attacks and
physical attacks, because they are implementation-specific rather
than architecture-specific.

4.2 Problem Formalization
We now show how to translate the proposed threat model into a
general system protection problem. We present the first problem
formalization for designing a CHERI heterogeneous system. In the
formalization, we focus on pointers because both memory accesses
and control flow accesses are passed using pointers.

For a general heterogeneous system, tasks are mapped to vari-
ous computing targets. For simplicity, here we describe the design
problem for a system that contains a CPU P and an accelerator A,
but our formalization is general and can scale to any number of
computing targets. Let 𝐸 be the set of pointers accessed by a set
of concurrent computing tasks. Each pointer is represented as a
three-tuple (𝑏, 𝑐, 𝑡) ∈ 𝐸. 𝑏 ⊆ N denotes the allocated address space
based on the source. 𝑐 ⊆ N denotes the reachable address space
restricted by the capabilities of the pointer. 𝑡 represents the task
that accesses the pointer, where in this case 𝑡 ∈ {P, A} × N. For
example, (A, 1) and (A, 2) denote two independent tasks running
on an accelerator.

We now show thememoryweaknesses caused by capability gran-
ularity and heterogeneity. The following always holds for existing
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heterogeneous systems with various approximations on 𝑐 .

∀(𝑏, 𝑐, 𝑡) ∈ 𝐸. 𝑏 ⊆ 𝑐 (1)

First, the IOMMU-based protection approximates 𝑐 to memory
pages, independent of accelerator objects 𝑏 or 𝑡 ; and the accelerator-
specific approach [20] approximates 𝑐 to the memory region reach-
able by 𝑡 . Our CHERI approach pushes 𝑐 close to 𝑏, leading to
pointer-level protection. In addition, CHERI also provides restric-
tions beyond 𝑐 , such as permissions.

Second, the accelerator-specific approach [20] is tailored to a
specific architecture, leading to a customized capability mapping.
Thismapping is different from general capabilities for CPUs, leading
to a heterogeneous capability system 𝐶 (𝑡) : {P, A} → {𝑐p, 𝑐a}. The
CPU follows a capability mapping 𝑐p, and the accelerator follows a
capability mapping 𝑐a. The shared memory can be accessed through
different protection methods, where the mismatch between the
capability policies may lead to memory vulnerabilities. For example,
the accelerator may forge the capability for a CPU task, enabling
the CPU task to access unauthorized memory. We provide a unified
capability system, i.e. 𝑐p = 𝑐a, to improve memory safety.

5 System Design Methodology
In order to achieve a unified capability system, we face two design
choices: extending an existing CPU protection model to accelera-
tors or extending existing accelerator protection models to CPUs.
First, existing CPU protections provide complete functional support
for diverse operations, including complex control flows, and can be
simplified to accommodate diverse accelerator behaviors. However,
the simplified protections must remain general and applicable to a
wide range of accelerators. Second, existing accelerator protections,
such as sNPU [20], are tailored to a specific hardware architecture.
Their extension to support complex CPU instructions and other
accelerator architectures faces significant engineering and verifi-
cation challenges. Hence, we choose to extend CPU protection to
accelerators, taking CHERI as the CPU protection scheme due to
its fine-grained memory protection.

In this section, we first describe our capability model for het-
erogeneous systems to handle these threats. We then introduce
our hardware system prototype that safely adapts CHERI-unaware
accelerators. We also describe our trusted software driver imple-
mentation for the proposed system.

5.1 CHERI Capability Model
We extend the existing CHERI capability model to accelerators,
treating each accelerator task as holding capabilities to its objects.
Figure 4 illustrates a capability tree created by applications running
on a CHERI-aware system. The bar under each object indicates the
accessible memory region specified by its capability. The accessible
memory region of a leaf capability is a subset of the accessible
memory region of its parent capability. The capability root is created
when the system is booted and is tightly controlled by the OS.
Existing CHERI CPU systems create the capabilities connected
with black edges, where a CPU task (variously a process, thread, or
function) can instantiate another CPU task or allocate a data buffer.

The accelerator objects are illustrated in green boxes. In the
proposed system, an accelerator task, i.e. the dedicated use of an

CPU Task 1 CPU Task 2

Accelerator
Task 1

Accelerator
Task 2

Data Buffer 3Data Buffer 1

Data Buffer 2

The OS holds the capability root

CPU
Task 3 Data Buffer 4

Our extension to accelerators

reachable address space

Figure 4: An example of capability tree for the proposed
system. A pointer must be created by a CPU task, even if the
allocated buffer is only accessed by an accelerator task.

accelerator functional unit for a length of time, is instantiated by
a CPU task. Under assumption 2 in our threat model, the data
buffers used by this accelerator task are also allocated by the CPU
task. The memory accesses are authorized because the address
ranges of these data buffers are subsets of the accessible memory
region in the accelerator capability. We present them in green edges,
including Accelerator Task 1 computing with Buffer 1 and Buffer
2 and Accelerator Task 2 computing with Buffer 3. The proposed
protection model preserves the existing CHERI model and provides
a flexible extension for arbitrary accelerators.

5.2 Proposed Hardware System
We now show our hardware system for the proposed protection
model. We first demonstrate our system prototype implemented
on a Field Programmable Gate Array (FPGA) platform. We then
describe our adaptive CapChecker design to enable hardware capa-
bility checks for accelerators and its potential design exploration
for different accelerator types.

5.2.1 Prototype Hardware System. There are two possible approa-
ches to make a heterogeneous system CHERI-aware. First, each
device in the system is ‘cherified’ independently, where its hard-
ware architecture needs to be modified to support CHERI natively.
However, this is not scalable in terms of the significant engineer-
ing effort required for accelerator modification and the variety
of accelerator architectures, as well as potential performance and
area impacts. Second, a hardware protection component can be
placed between a CHERI CPU and a CHERI-unaware accelerator,
interposing memory requests from the accelerator and applying
capability checks to capability-unaware accesses. However, the
memory safety of accelerators is restricted by the visibility of their
behaviors throughout the memory interface. We choose the second
approach as the first step towards CHERI-aware heterogeneous
systems. This enables us to investigate CHERI over a wide range of
accelerators with less engineering effort.

Since our work focuses onmemory safety, we keep our prototype
system simple but realistic, excluding security-independent design
choices. Our prototype hardware system is illustrated in Figure 2.
The left of the figure is an open-source CHERI-extended softcore
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CPU named Flute [14, 15], and the right of the figure is a hardware
accelerator. The accelerator is connected to the interconnect as a
slave with direct memory access (DMA) to the main memory for
high performance. The system can also scale up to a large number
of accelerators, which does not affect our protection model. Our
hardware prototype is implemented on an FPGA but can also be
synthesized into ASIC devices for better performance; however,
this is security-independent under assumption 3.

In the system, the CPU sends system control to the accelerator as
a memory master. All the interconnects in the prototyped system,
annotated as edges, are implemented using the Advanced eXtensible
Interface (AXI) [27], but our approach could be extended to other
interfaces, such as Peripheral Component Interconnect Express
(PCIe) [55] or Compute Express Link (CXL) [68]. The tail and head
of an edge represent the master and slave ports, respectively. All
the hardware interfaces are trusted and hardened in digital circuits
and do not affect our security analysis.

The tag bit shown in Figure 3 is a vital component of the protec-
tion model that indicates whether a capability is valid. It is typically
stored in a shadow section of memory that is off-limits to normal
memory access (or, for example, in ECC bits [22]). When modifying
capabilities in memory, either the agent modifying the capability
must enforce the capability model, or writes to memory locations
that contain a capability must also clear the tag. Since black-box
hardware accelerators are CHERI-unaware, accelerator DMA does
not carry capabilities.

In order to ensure memory safety through DMA, a CapChecker
is placed between the accelerator functional units and the memory
controller. The CapChecker communicates with the CHERI-aware
CPU through its MMIOs via a separate capability interconnect, as
shown at the top of Figure 2. Our proposed system protects the tag
as follows. First, tags always stay in CPU-owned memory under
assumption 2. The accelerator tasks cannot create new capabilities,
because there is no dynamic memory management in accelera-
tors. Second, all memory accesses from the accelerators must be
guarded by the CapChecker. In addition to checking the request is
permitted, it enforces that writes from accelerators will clear the
tag, preventing mutation of valid capabilities into forged ones.

The CapChecker could be a single component that serializes
the requests from all the accelerators, as illustrated in Figure 2.
This approach provides a simplified control path but cannot scale
well with a large number of accelerators or a high clock frequency.

Alternatively, each accelerator could be connected to the memory
controller through an exclusive CapChecker. This potentially in-
creases the memory bandwidth but also leads to a more complex
control path and a larger area. In our prototype platform, the AXI
interconnect has limited bandwidth, allowing only one memory
access in each clock cycle. The distribution of CapCheckers to each
accelerator only increases the area and does not bring performance
improvement. Instead, we use a single CapChecker in the system
as an implementation.

5.2.2 CHERI Capability Checker. The CapChecker is CHERI-aware
and provides run-time bound checks of memory requests from ac-
celerators and blocks unauthorized accesses defined by the pointer
capability. A key benefit of using the proposed CapChecker is its
adaptability to arbitrary accelerator architectures. When initializing
an accelerator task, the capabilities are sent by the CPU through
the capability MMIO interconnect. The capabilities are preserved
inside the CapChecker and cannot be accessed by the accelerator,
making them unforgeable. Only the memory requests granted by
the CapChecker are considered safe and forwarded to the mem-
ory subsystem, illustrated in the bottom right of Figure 2. This
proposed architecture wraps existing CHERI-unaware accelerators
inside the CHERI world with restricted behaviors while preserving
the integrity of the CHERI model.

The proposed CapChecker design is illustrated in Figure 5. In the
figure, two accelerator functional units send DMA requests to the
CapChecker. The hardware architecture of a CapChecker involves
three main components. First, the CapChecker contains a capability
table to store all the pointer capabilities used by accelerators at run
time. Given an accelerator task ID and buffer ID, the CapChecker
fetches the indexed capability from the table. The CHERI capability
is compressed in a 128-bit format for efficient memory size [77],
and a capability decoder is used to recover the address bounds and
permissions for memory checks.

Second, the CapChecker must keep track of the buffer identity
when a memory request is received. To achieve the principle of
intentional use, i.e. prevent unintentional access of one buffer with
a pointer intended for another, this requires the memory requests to
carry additional metadata to specify which object is being referred
to. For example, a simple matrix multiplication accelerator may
be performing 𝐶 := 𝐴 × 𝐵 where the matrices 𝐴, 𝐵,𝐶 are objects.
Each object could naturally be represented by a contiguous region
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// Wait until a requested accelerator 
// functional unit becomes available
while (all_device_busy(accel.task_type));
return get_device(accel.task_type);

Trusted CapChecker driver for task allocation and deallocation

// For the ith buffer:
_cap int *d = malloc_dma(size);
inst.add_ptr(d, accel.offsets[i]);
capchecker.add_ptr(inst.id, d);
return d;
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while (device_not_finish(inst) &&
!exception_found(inst));
if (exception_found(inst))
report_exception();
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capchecker.remove_ptr(d);
inst.remove_ptr(d, accel.offsets[i]);
free_dma(d);
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Figure 6: Software driver implementation of the CapChecker for allocating and evicting capabilities for accelerator accesses.

of memory with a defined base and length. The security model
applied to an accelerator depends on how much of its object model
is exposed to the host, i.e. the provenance of a transaction.

If each object is mapped to an independent hardware interface,
such as Accel FU 0, the specific capability can be directly identified
based on the hardware interface that sends the current memory
request. For example, the matrix multiplier accelerator may expose
𝐴/𝐵/𝐶 as three separate memory ports in hardware. In this case,
we are able to disambiguate the object to which the access refers.
Even if these are subsequently multiplexed into a single port, we
can maintain an object identifier as part of the metadata. This leads
to an implementation in the block named Fine, which provides
memory protection at the object level. Even if an accelerator task
receives an untrusted pointer, it cannot be dereferenced to access
outside the bounds of memory allocated to the capability. This leads
to fine-grained compartmentalization between objects.

Finally, the capability fetched from the CapChecker capability
table is used to check if the requested access from the accelerator
is legal. If the requested address is legal, where the capability is
tagged and has permissions for the requested access, the memory
request is granted and passed to the memory controller; otherwise,
an exception is raised by the CapChecker. If an exception is cap-
tured, the CapChecker sets a global flag to inform the CPU that
an exception has been caught and updates the exception bit in the
capability table so that the illegal memory access can be traced in
software.

5.2.3 Limitations. We now discuss two limitations of the CapChe-
cker. A key limitation is that the CapChecker has to adapt the exist-
ing accelerator interface since the accelerator architecture cannot
be modified. In the worst case, an accelerator may have no prove-
nance information, such as Accel FU 1 which shares all the memory

accesses in a single memory interface. This makes disambiguat-
ing memory accesses challenging. For example, an out-of-bounds
read from 𝐴 generates an address that appears to be a correct read
from 𝐵. In practice, we can retrofit provenance into the control
information, such as addresses fed into the accelerator, as shown
in the block named Coarse. For example, we restrict the address
space for accelerators to 56 bits, illustrated at the bottom left of the
figure. The top 8 bits of the address are reserved for identifying
which object is being accessed. The bit width must be statically
determined at the design phase of the SoC based on the accelerator
workloads. These bits are only managed by the trusted driver of the
CapChecker and cannot be accessed by user applications, leading
to improved memory safety.

Still, this limits the scope of defenses against powerful attackers
who can arbitrarily manipulate addresses inside the accelerator.
For example, a matrix multiplication may overflow from one buffer
into an adjacent buffer it has legitimate rights to access. A potential
safeguard might add guard regions to reduce such risks; however,
it still cannot prevent all attacks. For example, an accelerator which
calculates array indexes based on unsanitized input data may be
tricked into generating arbitrary addresses. In the worst case, the
Coarse mode still provides compartmentalization between accel-
erator tasks because the task ID is identified by the source on the
interconnect. In this work, we focus on the memory protection
provided by Fine, treating Coarse as the worst-case scenario. We
will explain our detailed security analysis in Section 6.2

Second, the number of entries in the capability table of the Cap-
Checker depends on the accelerator workloads. If the capability
table is too small, we either cannot access all the needed objects, or
it requires the CPU driver to manage entries on the fly, with the
potential for deadlock. Thanks to the restricted behaviors of accel-
erators, the minimal size of the capability table can be statically
determined based on the accelerator application. For example, our
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illustrative matrix multiplication accelerator requires three point-
ers. In our prototype, we set the CapChecker to have 256 entries,
and it is sufficient for the evaluated benchmarks. Alternatively, a
CapChecker could be built as a cache backing a larger in-memory
table, similar to page table caching in IOMMUs/IOTLBs, but with
each entry holding a capability. Since this is a microarchitectural
optimization and does not affect the protection model, we consider
the design of such a cache out of scope. We will compare the scala-
bility of the CapChecker and IOMMUs in Section 6.4 with respect
to the number of required entries.

5.3 Software Drivers
We now describe our trusted software driver for configuring the
CapChecker, as depicted in Figure 6. The control of CapChecker is
implicit in the user code but is orchestrated by the interface with
accelerator drivers. The top left of the figure shows the user inter-
face when running an accelerator task: allocation, execution, and
deallocation. The execution of an accelerator task does not involve
CapChecker but only interfaces with the control registers of the
accelerators. Specifically, the CHERI CPU configures the accelera-
tor functional block by setting its member variables mapping onto
MMIO control registers. Since the control of each accelerator task
is configured from the CPU, the existing CHERI capabilities on the
CPU ensure pointer-level memory safety. If the driver alone holds
capabilities to the control registers, other CPU tasks will be unable
to interfere with the accelerator configuration. Or such capabilities
could be delegated to the current user of the accelerator so that
they can directly configure the hardware.

We now describe the allocation and deallocation processes. The
data structure passed to the driver via system calls contains a set
of objects, a pointer to the accelerator task, a list of address offsets
for the control registers, and buffer sizes to be allocated for com-
putation. The allocation process of an accelerator task is shown
in 1○, which involves two main steps. First, a given accelerator
task may require specific accelerator functional units to compute.
For example, there may be several matrix multiplication functional
units available with different features. The driver traverses these
suitable hardware units and searches for ones available to be al-
located. If all suitable functional units are busy, the driver stalls
until one becomes available. Second, the driver allocates buffers
for the given task based on the list of buffer sizes. In our system,
the CPU and the accelerator share the main memory, so the buffer
can be allocated using malloc(). In other systems, the allocator
may target accelerator-specific memory, such as HBM. The accel-
erator’s starting address of the allocated buffer is calculated (e.g.
adding an object ID in the Coarse scheme) and loaded to the corre-
sponding control register on the accelerator for DMA, illustrated
as inst.add_ptr(), In addition, its capabilities must be book-kept
by the CapChecker to grant such DMA requests.

The allocation of capabilities to the CapChecker is illustrated in
3○. The CapChecker contains control logic to verify the validity of
a capability based on the capability tag. Given a valid capability,
the CapChecker searches for an available entry in the capability
table in an associative manner. If no available entry is found, the
CapChecker stalls the allocation until an allocated capability by

Table 2: Data buffer sizes of benchmarks in the CapChecker.
In all the benchmarks, the accelerator has eight instances
and the CapChecker has 256 entries.

Benchmarks Buffer
count

Size in bytes

Min Max

aes 8 128 128
backprop 56 12 10432
bfs_bulk 40 40 16384
bfs_queue 40 40 16384
fft_strided 48 4096 4096
fft_transpose 16 2048 2048
gemm_blocked 24 16384 16384
gemm_ncubed 24 16384 16384
kmp 32 4 64824
md_grid 56 256 2560

Benchmarks Buffer
count

Size in bytes

Min Max

md_knn 56 1024 16384
nw 48 512 66564
sort_merge 16 8192 8192
sort_radix 32 16 8192
spmv_crs 40 1976 6664
spmv_ellpack 32 1976 19760
stencil2d 24 36 32768
stencil3d 24 8 65536
viterbi 40 256 16384
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Figure 7: Accelerator speedup on the proposed system. We
evaluating the CapChecker’s adaptability on MachSuite [58]
because it includes diverse accelerator behaviors for various
applications.

another accelerator task is evicted from the table, leaving an avail-
able slot. After the allocation, the user can initialize the data in the
application on the CHERI CPU and start the accelerator task by
calling the accelerator driver.

The deallocation of an accelerator task is shown in 2○. Once the
accelerator has completed successfully or triggered an exception
error, the driver deallocates both the task and its buffers. If an
exception is caught, all the buffer data is cleared, and the exception
is reported back to the application at the end of the deallocation.

The deallocation of the buffer involves two steps. First, the capa-
bilities kept in the CapChecker are evicted from the capability table
so that new accelerator tasks can be allocated. Second, the control
registers are cleared to avoid potential accesses from the subsequent
accelerator task mapped onto the same functional unit. The buffers
are deallocated using standard free(). Finally, the functional unit
is released and is available for other accelerator tasks.

We have implemented this management flow in our bare metal
testbed to be clear about the security properties. This is similar to
how it would work in an embedded OS. A full application OS such as
Linux or CheriBSD would require much more software engineering
work, but the principles would be similar. The driver would live in
the OS and arbitrate between multiple users of the accelerator (and
hence the CapChecker), and be in charge of managing any address
translation, depending on how that is configured in a given system.
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Table 3: Evaluation of our work and related work on the
memory safety weakness list provided CommonWeakness
Enumeration [51]. PG/TA/OB = protection granularity at
Page/Task/Object respectively, and Object is the finest graine.
NA = out of scope. Coarse and Fine are two implementations
of the CapChecker in Fig. 5.

ID Memory Safety Weaknesses Name N
o
M
et
ho

d

IO
PM

P

IO
M
M
U

sN
PU

[2
0]

C
oa
rs
e

Fi
ne

a○

119, 120, 122, 123, 124, 125, 126, 127, 129, 131, 466, 680,
786, 787, 788, 805, 806 (buffer overreads or overwrites) ✗ TA PG TA TA OB

761 Free of Pointer not at Start of Buffer ✗ ✗ ✗ ✗ TA OB
822 Untrusted Pointer Dereference ✗ ✗ ✗ ✗ TA OB
823 Untrusted Pointer Offset ✗ TA PG TA TA OB

b○
416 Use After Free/Dangling Pointer

✗ ✓ ✓ ✓ ✓ ✓587 Assignment of a Fixed Address to a Pointer
824 Access of Uninitialized Pointer

c○

244 Heap Inspection

✓ ✓ ✓ ✓ ✓ ✓

415 Double Free
590 Free of Memory not on the Heap
690 Unchecked Returned NULL Pointer Dereference
763 Release of Invalid Pointer or Reference

d○
121 Stack-based Buffer Overflow

NA NA NA NA NA NA562 Return of Stack Variable Address
789 Stack Exhaustion

e○ 134 Use of Externally-Controlled Format String NA NA NA NA NA NA
762 Mismatched Memory Management Routines NA NA NA NA NA NA

f○

188 Reliance on Data/Memory Layout

✗ ✗ ✗ ✗ ✗ ✗
198 Use of Incorrect Byte Ordering
401 Memory Leak
825 Expired Pointer Dereference/Dangling Pointer

6 Experiments
Finding standard accelerator benchmarks for security analysis is a
perennial problem because accelerator security is still overlooked.
Here we take a standard accelerator benchmark set named Mach-
Suite [58] built for performance analysis and evaluate the overhead
of the CapChecker in performance, area, and power. The CPU we
used for evaluation is an open-source RISC-V CPU core named Flute,
which has previously been extended with CHERI instructions [15],
and the accelerators are generated from an automated tool named
AMD Xilinx Vitis high-level synthesis (HLS) [79]. The Vitis HLS
tool automatically translates the high-level software specifications
of a program into a custom hardware accelerator. We use the HLS
tool to prototype diverse hardware behaviors of accelerators from
the source provided by HLS, where each benchmark has its own
accelerator architecture and hardware behavior. The hardware op-
timizations of accelerators are determined by the automated HLS
tool, while our work focuses on the general CapChecker and does
not change accelerator architectures.

In our experiments, we obtained the performance in clock cycles
from hardware simulations of bare-metal execution using Verila-
tor [65]. The maximum frequency, area, and power results were
obtained from the FPGA vendor post Place & Route reports, Xil-
inx Vivado [1]. The FPGA we used for prototyping is the Virtex
Ultrascale+ device on the VCU118 board, and the Xilinx software
version is 2019.1.

6.1 Benchmark Selection
Table 2 shows a complete list of benchmarks in MachSuite [58],
and their speedups achieved on the proposed system are illustrated
in Figure 7. We set all the accelerator architectures to have eight
instances, where each instance could be used by an independent
user for acceleration. The MachSuite benchmarks present various
accelerator architectures depending on the application and the al-
gorithm used for acceleration. Significant differences in the number
of buffers allocated and their sizes across benchmarks can be seen
in Table 2. This enables us to investigate the adaptability of the
CapChecker over a wide range of diverse accelerators.

These benchmarks also show significant differences in perfor-
mance speedup due to different architectural features, leading to
different performance bottlenecks. Overall, most benchmarks show
better performance by offloading their tasks to accelerators. Specif-
ically, benchmarks such as backprop and viterbi achieve more
than 2000× speedup. This is because these benchmarks contain
computation-intensive tasks that are sequentially executed on the
CPU but are significantly parallelized on accelerators. The bench-
marks including md_knn, stencil2d, bfs_bulk and bfs_queue
also show worse performance when mapped to the testbed hetero-
geneous system, and this is because the tasks are memory-bounded.
The memory bandwidth of the evaluation system is limited, leading
to significant memory contention on the accelerator. The memory
bottleneck could be improved by caching in accelerators which re-
quires microarchitectural modifications of the accelerators. This is
out of the scope of our work, as we focus on the memory safety and
the overhead of the CapChecker on existing accelerators without
modifying their architectures. Instead, we treat these accelerators
as black-box hardware components in the system.

6.2 Security Analysis
Table 3 shows our security analysis of the proposed system with
CapChecker over the Common Weakness Enumeration (CWE) list
on memory weaknesses. The CWE test suite targets CPU systems
with a rich programming environment and cannot be directly ap-
plied to accelerators, as accelerators have diverse architectures
for specific classes of applications. Instead, we analyze how each
weakness would apply in the accelerator context, making the two
following assumptions. We define heap objects as buffers supplied
as parameters to an accelerator instance, allocated by the software
driver to the CapChecker; and we define stack objects as variables
allocated inside an accelerator instance, never exposed to the CPU
and perhaps implemented entirely in internal registers. While we
refer to objects, CHERI on the CPU is able to derive capabilities to
sub-objects, e.g. shrunk to individual struct members, and if passed
from the CPU the CapChecker can protect those equally well.

We compare the CapChecker with four related works, three of
which are listed in Table 1. We take sNPU [20] as a case of a spe-
cialized accelerator protection model for security comparison. The
CapChecker has two protection methods, as illustrated in Figure 5
depending on the accelerator architecture, both evaluated in Table 3.
These methods may provide certain memory protection.

We divide all the memory weakness issues into six groups based
on how they are treated in the proposed systems and related work.
For the memory weaknesses listed in group a○, both the related
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Figure 8: Overhead on overall performance, power and circuit area encountered by adding the CapChecker to the system.
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Figure 9: Overhead analysis of systems with mixed accelerators. In each experiment 8 accelerators are randomly selected from
the numbered accelerator tasks in Figure 8. The overheads are similar to the geometric mean.

work and CapChecker provide memory protection but at different
granularities. Here we compare the worst case of our work with the
best case of related work. For example, buffer underflow (124) and
buffer under-read (127) are only protected at page granularity if
buffers are aligned to pages in IOMMUs. Otherwise, IOMMUs fail to
protect intra-page buffer underflow. Free of pointer not at the start
of the buffer (761) is a special case because it requires updating the
data structure to synchronize all the uses of the target pointer. Our
CHERI capability model enables us to analyze the parent capability
off-the-shelf and mirror that in the CapChecker with minimal effort.
Such protection requires specialized software implementation on
an IOMMU, such as a shadow table to keep track of allocations
on pages to ensure correctness. This additional implementation
requires significant engineering effort and may introduce other
memory vulnerabilities.

The other special cases in group a○ are untrusted pointer deref-
erence (822) and untrusted pointer offset (823). Both require forge-
ability of capabilities. Although CHERI capabilities provide un-
forgeable pointer protection on the CPU, the accelerator remains
CHERI-unaware and could dereference a pointer based on an input
value. In the CapChecker, the worst case depends on the hardware
interface. The main difference between Fine and Coarse is whether
object IDs can be hardened in hardware interfaces. Fine provides the
finest-grainedmemory protection among all methods. In Coarse, the
object IDs reserved in upper address bits may potentially be forged
from buffer overflows. The worst case of Coarse is that unautho-
rized accesses happen between pointers in the same task, leading
to the same granularity as the sNPU.

The memory weaknesses listed in group b○ are protected by both
CapChecker and related work. All these methods provide pointer
capabilities to avoid unauthorized memory accesses introduced by
both temporal and spatial memory safety. The memory issues listed
in group c○ are temporal safety issues more related to software
management, depending on the implementation of drivers. We rely
on our drivers to ensure correct memory allocation and deallocation
at the same granularity provided by the hardware. These drivers
only interface with user applications through pre-defined system
calls and cannot be exploited by attackers to bypass any checks
under assumption 3. With our assumption of trustworthy drivers
and the absence of design bugs, IOPMPs, IOMMUs, sNPU, and
CapChecker can all ensure the same temporal memory safety. Slow
IOMMU revocation may lead to temporal vulnerabilities [48] but is
out of scope.

Group d○ contains memory issues related to stack memory. Ac-
celerators often have specialized memory architectures for efficient
computation. Based on our previous definition of the stack, the
stack weaknesses are not applicable as we assume the accelerator
cannot allocate memory by itself. Group e○ is also not applicable.
134 targets format strings, which are usually not computed on hard-
ware accelerators. 762 is also out of the scope because it depends
on the OS implementation.

Finally, group f○ contains memory weaknesses that neither the
related work nor CapChecker protects. Memory layout (188) and
byte ordering (198) focus on data type or format, while we focus
on memory access behaviors. Memory leak (401) requires memory
lifetime analysis, which is out of the scope of all compared methods.
Dangling pointer (825), distinct from use-after-free, where an object
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Figure 10:Wall clock time breakdown of different accelerator architectures over a set of applications. The performance overhead
by adding the CapChecker is smaller than adding CHERI to the CPU for most benchmarks.

has gone out of scope and been replaced by another, depends on
the accelerator driver implementation rather than the CapChecker
to prevent the accelerator from using any expired object.

For the given benchmarks, all the accelerators work with capabil-
ities because all the memory accesses for the given test data are cor-
rect. No correct memory access should be blocked by the CapChe-
cker, so they all run under normal conditions. We observed memory
issues such as buffer overflows in most accelerator benchmarks
with particular test data, including sort_radix and backprop. For
example, a user-defined loop bound may be larger than the size of
an array accessed by the loop. The accelerator benchmark set does
not contain standard test datasets for coverage analysis, but our
observation on particular test data agrees with Table 3.

6.3 Overhead Analysis
In our overhead analysis, we compare our implementation, CHERI
CPU systems with CHERI accelerators (ccpu+caccel), with four
baselines: CHERI-unaware CPU-only systems (cpu), CHERI CPU-
only systems (ccpu), CHERI-unaware CPU systems with CHERI-
unaware accelerators (cpu+accel), and CHERI CPU systems with
CHERI-unaware accelerators (ccpu+accel). We do not compare our
approach with the methods in Table 1 because they all expose
memory vulnerabilities described in Section 4.

Detailed performance breakdown is illustrated in Figure 10. Over-
all, the CapChecker shows smaller performance overhead compared
to CHERI on the CPU. The overhead also varies across applications
and architectures, remaining small even when the accelerator has
limited performance. For example, Figure 10(c) and Figure 10(i)
show that the accelerator achieves worse performance than the
CPU due to the limited memory bandwidth; however, the overhead
of CapChecker remains less than 2%. Figure 10(a) shows the Cap-
Checker has more overhead than the CHERI overhead on the CPU
due to the absence of the accelerator cache, but it remains small at
around 2%. In Figure 10(g), the benchmark gemm_blocked shows

better performance of ccpu compared to cpu, because the CHERI
CPU ISA has a 128-bit capability copying instruction that provides
more efficient memory copying compared to the 64-bit copying
instruction on the standard RISC-V CPU, leading to lower latency.

Overall, the CapChecker shows small performance overheads.
Figure 8 plots the overhead encountered by adding the CapChecker
on performance, area, and power for all the benchmarks. Overall,
the performance overhead is within 5% for most benchmarks. The
benchmark md_knn shows large performance overhead in percent-
age because the benchmark has a small absolute latency (ccpu+accel
has 3863 cycles, and ccpu+caccel has 5020 cycles). Other benchmarks
have latencies of more than a million cycles, making such an over-
head affordable. The area overhead of the CapChecker is around
15% for all benchmarks but may vary depending on the total area
of the original hardware. In our experiments, the CapChecker has
256 entries for all the benchmarks and takes a constant area. The
power overhead is relatively small and varies among benchmarks,
depending on the FPGA synthesis tool we used to map our designs.

Apart from systems accelerating the same application, modern
hardware systems may contain mixed accelerator architectures for
accelerating various tasks. In order to evaluate the overhead on
these realistic systems, Figure 9 shows the results of 20 systems
with mixed accelerator architectures. Each system contains eight
randomly selected accelerator architectures from Figure 8. The mix
of various accelerator applications and workloads leads to differ-
ent performances, but the security challenges remain the same as
Figure 8. Overall, the overhead results of individual mixed systems
are close to the geometric mean in Figure 8.

The area overhead in percentage terms depends on the total
area of the CPU and accelerators. In particular, our 256-entry Cap-
Checker prototype consists of 30k LUTs on the target FPGA. The
area of the CapChecker depends on the number of entries required
by the accelerator applications. However, this number of entries
does not scale with the accelerator area but depends instead on the
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Figure 11: The wall clock time overhead of the CapChecker
on gemm_ncubed over different degrees of parallelism.
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Figure 12: Number of entries required by the IOMMU and
the CapChecker. IOMMU page size = 4 kB.

accelerator task complexity. For example, two matrix multiplica-
tion accelerators could occupy significantly different areas due to
exploiting different degrees of parallelism and workload, but both
would require only three pointers. If area were a concern, caching
could be applied to the CapChecker to trade off area against latency
overhead, as mentioned in Section 5.2.3. On the other hand, the
CapChecker could be more lightweight than our implementation.
For example, a variant of TinyML [72] embedded systems contains
a microcontroller core and a small hardware accelerator, also called
a custom functional unit (CFU) [57]. The CFU accelerates a specific
task such as matrix multiplication as part of the machine learning
application. The simple architecture of CFUs also simplifies the
repository size of the CapChecker, allowing an implementation
costing fewer than 100 LUTs, while the total area is around 10k
LUTs.

6.4 Scalability Analysis
We now evaluate the scalability of the CapChecker by varying the
number of accelerator tasks and buffers. First, Figure 11 plots the
performance overhead and speedup of gemm_ncubed benchmark
over different numbers of parallel accelerator tasks. More paral-
lelism leads to better performance. There may be a trend that more
parallel accelerator tasks may lead to a smaller performance over-
head. This is because the limited memory bandwidth for shared
memory accesses among more accelerator tasks leads to a longer
latency on the accelerator. Still, the performance overhead of the
CapChecker remains small across different degrees of parallelism.

Second, we compare the scalability of the IOMMU and the Cap-
Checker. The hardware designs of both IOMMUs and CapCheckers
depend on the application to be accelerated, and it is challenging to
perform a fair comparison across diverse accelerator architectures.

Instead, we compare the number of entries for both methods across
various numbers and sizes of buffers in Figure 12. The page size for
an IOMMU is 4 kB. To ensure fairness, we restrict that each page
can hold at most one buffer to prevent intra-page attacks, leading
to the same memory safety granularity as the CapChecker.

The CapChecker shows better scalability as CHERI provides
pointer-level granularity. In the figure, the number of entries re-
quired by the CapChecker is smaller than the IOMMU across most
benchmarks. A key difference between these two approaches is
that the entry count of the IOMMU depends on both the number
of buffers and their sizes, while the entry count of the CapChe-
cker only depends on the number of buffers. Accelerators today
often compute data-intensive tasks, such as large language model
accelerators, which compute matrices up to tens of millions of
bytes [28, 35, 41]. While this challenge may be reduced by super-
pages [60, 81], the IOMMU entries still scale with the buffer size.

7 Related Work
7.1 Capability Systems
Capability systems usually work under three distinct trust mod-
els: central-trust, distributed-trust, and decentralized. First, central-
trust systems require a trusted authority to handle all access, deriva-
tion, transfer, and revocation processes. SeL4 [34] is a microkernel
that provides an object-oriented OS interface, and all types of ob-
jects are referenced with capabilities. Capsicum [73] is a centralized
capability system in FreeBSD OS [52] that replaces file descriptors
with capabilities. These systems rely on the OS as the trusted au-
thority, while our CHERI approach relies on the hardware. Second,
distributed-trust systems distribute the trusted authority among
multiple trusted computing elements. This approach maintains the
same semantics but offers better scalability at the cost of increased
complexity, as capability operations may overlap, necessitating the
avoidance of race conditions. Barrelfish [63] and SemperOS [29] are
distributed operating systems running on separate cores and com-
municatingwithmessage passing. In these systems, every core has a
local capability list, and they must synchronize and keep those lists
consistent when manipulating or copying capabilities. In our work,
most hardware accelerators exploit data parallelism for high perfor-
mance and do not support complex control or memory operations.
Our approach distributes CHERI capabilities across accelerators,
where these capabilities are managed by a single CPU core and
treated as read-only for accelerators. This simplifies the hardware
circuitry and reduces the synchronization overhead between de-
vices. Finally, decentralized systems enable untrusted actors to ma-
nipulate and transfer capabilities, with these manipulations being
verified cryptographically when the resource is accessed. Maca-
roons [13] uses cryptography to check the validity of a capability
when used. Specifically, a capability is called a ‘macaroon’ that
begins with an identifier and a signature, made by hashing the iden-
tifier with a secret key. They are used to protect arbitrary resources
and are distributed to actors by the resource owner. Recent work
combines CHERI and Macaroons [19], which protects the internal
controller and the network boundary, respectively. Exploring the
possibilities of decentralized CHERI capabilities in a heterogeneous
system would be one of our future works.
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7.2 CHERI Hardware Systems
CHERI capabilities [74] allow logical software components to access
virtual memory ranges. They are stored in tagged memory and reg-
isters, manipulated with native hardware instructions, and revoked
asynchronously by software using those instructions. CHERI has
been adopted by industry, including Microsoft [8, 9], Codasip [16]
and Arm [22, 59]. Existing CHERI work focuses on memory pro-
tection in CPU architectures, including MIPS, ARMv8-a, RISC-V
and x86-64 [7, 12, 22, 75, 78]. Markettos et al. [47] described how
to exploit the CHERI capabilities to defend against direct memory
accesses but only had a paper evaluation without an implementa-
tion. Our work is the first effort to enable hardware capabilities in
hardware accelerators in a working CHERI hardware system.

7.3 Memory Protection for Accelerators
Existing work on hardware memory safety for GPUs has been
actively studied, but the memory safety of traditional hardware
accelerators remains under-explored. For general accelerators, such
as GPUs, Lee et al. [39] propose an approach named GPUShield. The
GPUShield adds a bounds table for checking, indexed by the top
16 bits of a pointer. This provides memory safety on GPUs but still
has memory vulnerabilities when computing in a heterogeneous
hardware system. NVIDIA CUDA-MEMCHECK is a bounds check
tool that provides bound checks at run time [37]. Ziad et al. [69]
propose a tool named cuCatch that detectsmemory safety violations
on GPUs. These methods cannot be directly applied to traditional
hardware accelerators as they are tailored to a specific class of
GPUs. sNPU [20] proposes the integration of hardware capabilities
inside an NPU architecture for improved memory safety, while we
focus on general capability-enabled systems without modification
of accelerator architectures.

On the other hand, there have been efforts to reduce the perfor-
mance overhead of IOMMUs for particular use cases [11, 46, 49, 50,
56], while our approach exploits a general hardware architecture of
CapChecker with finer-grained memory protection. There are also
working-in-progress RISC-V extensions for IO protection, such as
CoVE-IO [17] and I/O MTT [32]. Their memory protection remains
forgeable, while our proposed capability model in Figure 4 makes
capabilities unforgeable across the heterogeneous platform.

8 Conclusion and Future Work
Existing heterogeneous accelerator systems expose memory vul-
nerabilities due to coarse granularity and capability heterogeneity
in existing memory protection methods. We present the first step
towards a unified and fine-grained capability system for hetero-
geneous systems. Our work proposes a system design method us-
ing an adaptive protection component named CapChecker and its
trusted driver. The CapChecker extends CHERI capabilities from
the CPU to the accelerator without architectural modification of the
accelerator. This leads to a CHERI-aware heterogeneous system,
preserving memory safety at the system level. We evaluate the
CapChecker over a wide range of accelerator architectures with dif-
ferent workloads and show that our method is general and scalable
with fine-grained memory protection.

Our future work will mainly involve two directions, tackling
the two limitations mentioned in Section 5. First, assumption 2 of

the threat model restricts the accelerator to not having dynamic
memory management. We plan to lift this restriction and analyze
memory safety for complex accelerator architectures such as GPUs
both theoretically and practically. Second, we will investigate the ar-
chitectural specialization of the CapChecker for better performance
and area efficiency when working with specific accelerator archi-
tectures such as NPUs and custom accelerators. This will open up a
larger optimization space in both software and hardware, including
cache sizing and IOMMU co-design.
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A Artifact Description
We open-source our software tools that automatically generate the
proposed heterogeneous systems for evaluating CapChecker. Our
artifact includes:

• A set of script to build CHERI toolchain environments;
• A script to automatically generate different design with dif-
ferent configurations; and

• A set of benchmarks evaluated by this work.
The artifact is available at https://doi.org/10.5281/zenodo.15100923

In order to evaluate the artifact, it is suggested to have a machine
with at least 16 CPU cores and 64 GB of memory to run the required
software. Additionally, a specific FPGA board, Xilinx VCU118, is
required to validate the generated bitstream.

For software dependencies, both Xilinx Vitis HLS 2023.1 and
Vivado 2019.1 are required. Xilinx Vitis HLS is used to generate the
hardware designs in Verilog for evaluation, and Vivado 2019.1 is
used to generate the bitstream for the target FPGA. We provide a
Docker script to set up all the environments.

Please refer to the README files within the artifact for installa-
tion and usage instructions.
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