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Abstract

Comprehensive application security can only be ensured if
all code that it is going to execute is protected: any unpro-
tected code, either from libraries or the application, becomes
a potential attack surface. Compilers contain extensive suites
of tools to aid in this, but require source availability that is
often infeasible. Existing static and dynamic binary rewriting
techniques that retrofit for security either lack in code cover-
age or soundness, or incur very high performance overhead.
We present a case for adopting hybrid static-dynamic
mechanisms to ensure comprehensive security for binaries,
providing sound and practical solutions. We highlight the
limitations of existing hybrid tools in their use for secu-
rity purposes, and provide insights to re-architect them. We
provide a framework, Janitizer, that enables sound and com-
prehensive code coverage for entire applications, presenting
hybrid binary implementations for two important classes of
security schemes; a memory sanitizer and a control flow in-
tegrity scheme. These achieve the coverage and correctness
of high-overhead dynamic techniques, while maintaining
performance levels of low-coverage static techniques.

CCS Concepts: « Security and privacy — Software reverse
engineering; Software and application security.
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1 Introduction

Defending against software security vulnerabilities remains
a prevalent problem despite decades of research effort [2, 4,
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6, 13, 34, 37, 47, 49, 57]. Large codebases exist in legacy and
system-level software (e.g. compilers, runtimes, browsers)
in low-level, unsafe languages, such as C/C++, which lack
type safety, bounds checking or garbage collection [52]. This
leaves them vulnerable to exploits (e.g. buffer overflows [21])
that perform memory corruption or control-flow hijacking.

Even worse, these vulnerabilities may be in software the
user relies on but does not have source-code access to. For ex-
ample, they may rely on third-party applications and shared-
object libraries [32] that are untrustworthy due to the pro-
gramming language they are written in, and unverifiable due
to their closed source. In this case, we can neither enforce safe
languages and programming practices during development,
nor perform compile-time vulnerability analysis and hard-
ening. Our only option is to retrofit the binaries themselves
with security policies. This may also be the only practical
option with large or legacy software, where recompilation
is either too time consuming or relies on obsolete tools.

Several existing techniques aim to retrofit binaries with
various security protections. These use underlying binary
analysis and rewriting frameworks [5, 9, 10, 14, 26, 35, 36,
39, 40, 50, 51, 54, 55, 60, 61] to either statically analyze and
rewrite the binary to insert security monitoring code [18, 19,
23, 41] or do so dynamically [15, 48, 59] by observing code
at run-time. Static techniques struggle with precise control-
flow recovery, and are consequently unsound or limited to a
subset of binary classes [23], whereas dynamic tools incur
prohibitively high performance overhead [48], with limited
scope for cross-block optimizations.

To obtain strong guarantees from real binaries, we need
all-encompassing, correct code coverage at the same time as
high enough performance for real-world use. We argue that
static-dynamic hybrid mechanisms are the only way forward.
For example, we can combine insights from complex static
analysis for optimization opportunities with run-time code
disambiguation for soundness. Earlier works [60] feature
hybrid mechanisms that can combine information in this
way. However, their focus on hot-code optimizations leaves
them unable to handle analysis that covers entire programs.

We re-architect hybrid frameworks to allow enforcement
of comprehensive binary-security policies, by identifying dif-
ferent categories of code we need to support, showing how
analysis and optimization we can do at static- versus dynamic-
time varies, and build an engine to disambiguate the various
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cases. We then show how our framework, Janitizer, supports
real security policies. We make the following contributions:

e We identify shortcomings in existing static, dynamic
and hybrid binary tools and solutions, in achieving
practical and comprehensive security for binaries.

e We propose a static-dynamic hybrid approach to bi-
nary security that ensures soundness and coverage for
all binary code, including statically generated position-
dependent and independent code, or code dynamically
linked, loaded or generated. To this end, we develop
Janitizer, a binary tool that employs tailored strate-
gies for different types of code, depending on their
suitability for static analysis.

e We provide hybrid binary implementations of a mem-
ory sanitizer JASan, and a control flow integrity scheme
JCFL, in Janitizer to show how it can be used, and the
challenges a hybrid mechanism can overcome.

For JASan, We show 3 performance overhead, almost iden-
tical to existing static tools [23] and yet with full coverage
only previously possible with dynamic-only techniques [40]
that incur 9.8x overhead. For JCFI, we show comparable
performance to existing static binary techniques (1.29x over-
head) while providing over 99.7% reduction in control-flow-
integrity targets, compared to 93.3% and 98.8% for existing
schemes Lockdown [44] and BinCFI [59].

2 Motivation

In order to detect, prevent or mitigate a security attack on an
application, we need to protect all the code a user application
executes. Anything unprotected, such as a shared library, or
dynamically generated or loaded code, becomes a potential
attack surface. Existing techniques that analyze and trans-
form binaries for security either lack coverage, incur very
high overhead, or are unsound, owing to the limitations of
the analysis and rewriting modes they employ.

2.1 Static: Low-Coverage or Unsound

Static binary frameworks facilitate analysis [17, 24, 28] and
rewriting [5, 9, 23, 26, 35, 39, 42, 54] of a binary without the
need to execute it first. This avoids overhead at run-time, al-
lowing complex cross-basic-block analysis and optimization.

In order to generate binaries that are both sound (do not
break working code) and complete (do not miss out parts
of the application, or fail to modify certain classes of code),
static frameworks need to perform not only accurate disas-
sembly and recovery of the application’s control-flow graph
(CFG), but also accurate reconstruction of control flow for
the rewritten or instrumented binary. This is a largely unre-
solved issue both due to the nature of binary code [38] and
limitations inherent to static techniques, such as 1) absence
of semantic/higher-level information in binaries, 2) the pres-
ence of indirect control-transfer instructions (CTIs) whose
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targets are not known statically, and 3) undecidable differen-
tiation between constants and references due to inter-mixed
data and code [30]. The result is that static techniques ei-
ther cannot guarantee both soundness and completeness, or
are limited in their scope to only small classes of binaries
compiled in very specific ways [23]. Techniques [45, 46] that
claim to work despite these limitations either rely on conven-
tions often not followed by hand-written or low-level library
code, such as specific caller/callee-saved code patterns, or
simply fail gracefully when their heuristics do not hold.
Retrowrite [23], a framework used to implement Address-
Sanitizer [47] for binaries, uses reassembleable assembly and
symbolization [56] to address the issue of indirect calls and
to distinguish constants from references. However, in order
to avoid heuristics and produce a correct binary in all cases,
it relies on relocation information being available to sym-
bolize targets, so is limited to binaries compiled as position-
independent code (PIC), and is inapplicable to C++ code con-
taining exception handling. BinCFI [59], a static control flow
integrity (CFI) scheme, similarly uses symbolization, without
being limited to PIC code, but suffers from unsoundness due
to code-data disambiguation being undecidable in theory—
without dynamic analysis—and impractical in practice [9, 43],
giving incorrect disassembly at full-application scale [23].
Finally, static frameworks are inevitably unable to analyze
dynamically generated code, further limiting their coverage.

2.2 Dynamic: Slow and Limited Analysis

Dynamic binary frameworks [10, 14, 36, 40, 55] analyze, in-
strument or transform a binary during execution. This avoids
the limitations of static frameworks, as control flow can be
accurately recovered since targets of indirect control trans-
fers are materialized at run-time. Since these tools operate
on code during execution, separation of code and data is
simple, as is handling dynamically loaded/generated code.
Still, due to analysis and transformation taking place at
run-time, dynamic-only tools incur high performance over-
head. This makes them impractical for large software as
slowdown can become prohibitively expensive. The high
overhead also limits them to relatively simple analyses and
transformations [40]. This is because dynamic tools discover
and/or present one basic block—the smallest control-flow
unit—at a time to the transformation engine to make code dis-
covery and control-flow construction simpler, avoiding the
pitfalls of static rewriting at the cost of performance [7, 58].

2.3 Existing Hybrid Tools: Not Fit for Purpose

The concept of using a static-dynamic hybrid mechanism
for binary analysis or transformation is not entirely new.
Several binary frameworks incorporate both static and dy-
namic mechanisms for analyzing or transforming a binary.
In theory, this allows sound run-time control-transfer analy-
sis coupled with complex static analysis and transformation.
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However, many frameworks either restrict usage to a sin-
gle mechanism (static or dynamic analysis) at a time [10], or
their hybrid component relies on symbolic execution [50, 51],
which is designed for finding bugs in the software during
development or testing phase rather than for instrumenting
or modifying a binary to observe run-time behavior.

Another framework, Janus [60], features a hybrid approach
for binary analysis and modification through statically guided
dynamic translation. Its static analyzer generates and en-
codes hints for the dynamic translator to guide the run-time
instrumentation or modification. Although it provides a suit-
able foundation for a hybrid security analysis mechanism,
Janus’ focus on hot-code optimization leaves out many im-
portant features that are necessary for whole-program-scale
analysis and transformation (section 3.2).

3 Janitizer

We develop Janitizer, a framework for comprehensive se-
curity analysis of entire applications, that showcases the
strengths of employing a hybrid mechanism for security,
and addresses the short-comings of existing hybrid binary
frameworks laid out in section 2.3. Our goal is to ensure
robust yet practical security for diverse classes of binary
code that an application can execute, including static code
(whether compiled as PIC or non-PIC) and dynamic code
(dynamically loaded/generated).

We propose using static analysis to handle complex cross-
block analysis and identify instrumentation and optimization
opportunities, but defer transformations to run-time, when
control-flow ambiguities are resolved and code-data sepa-
ration is clear. This ensures the soundness of the binary
code that is executed, and avoids the pitfalls of static-only
techniques—such as restrictions to certain classes of bina-
ries [23] or producing unsound binaries when disassembly
or rewriting heuristics do not hold [45, 58]. By offloading the
analysis to static time and performing it only once, rather
than each time an application runs, its run-time overhead is
also removed from application execution time. For code that
is either dynamically generated or statically undecided/un-
seen, we opt for simpler and lightweight run-time analysis.

3.1 The Need for a New Approach

We identify some key requirements needed in our hybrid
framework to achieve comprehensive practical security. First,
the framework should support detailed static analysis for
all statically available code, whether compiled as position-
independent or position-dependent, and feed the analysis
results to a dynamic tool for run-time transformation. Sec-
ond, for performant security analysis, the framework should
identify code sections (or memory locations) that do not
require processing by the dynamic modifier. For instance,
memory accesses statically proven to be safe need not be in-
strumented or rewritten, to reduce the overhead. To support
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this, the dynamic modifier should be able to differentiate
between the code that has been statically seen and analyzed
to code that appears only at run-time. Third, the dynamic
modifier should leverage the results from the static analyzer
when transforming the binary. In addition, any code left
out of the stronger static analysis stage, either because it
is dynamically loaded (e.g. via dlopen), dynamically gener-
ated, or simply not discovered at the static analysis stage,
should undergo a simpler dynamic analysis before modifica-
tion. We must ensure that all code is analyzed and modified,
prioritizing static analysis but falling back to run-time anal-
ysis when necessary. To this end, we add hybrid approaches
on top of existing hybridized execution environments: us-
ing a static component with strong analyses for code we
can analyze offline, a dynamic modifier to efficiently and
correctly transform code even in the presence of complex
control flow, combined with simpler run-time analyses for
code only discovered or generated dynamically.

3.2 Building on Janus

To this end, we reuse some of the ideas employed in Janus [60],
which, in theory, is a good starting point for whole-program
dynamic security analyzers. However, there are several limi-
tations in Janus that inhibit the use of its hybrid capabilities
to support security coverage of real analysis techniques,
such as AddressSanitizer [47], for the diverse types of code
that make up full applications. Janus, designed with a focus
on performance optimization through parallelization of hot
loops, leaves out many code sections and blocks from its
detailed static analysis, where it considers them irrelevant
or uninteresting, and ignores all other code as needing no
treatment. This is inadequate for security applications, as
comprehensive coverage of all code is imperative in such
contexts, and yet we need to distinguish statically proven
safe code, statically instrumentable code, and unseen code.
Another limitation lies in Janus’ rewrite schedule, the pri-
mary interface that allows use of static analysis results by
the dynamic modifier. It assumes the binary to be compiled
as position-dependent (i.e. non-PIC), thereby lacking the
support for utilizing results of static analyses for position-
independent code (typically used for libraries, and more
recently for the main binary executable as well). Given the
requirements earlier, we carry out an architectural overhaul
to overcome all these limitations to develop Janitizer.

Figure 1 shows the workflow of Janitizer, featuring its
static analyzer and dynamic modifier that support diverse
analyses and transformations over diverse code types. In
the following sections, we describe in detail the static and
dynamic components of Janitizer that handle different classes
of binaries to ensure comprehensive security coverage, while
keeping the performance overhead low.
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3.3 Stronger Analyses for Static Binaries

Figure 2(a) illustrates the design of Janitizer’s static analyzer,
featuring layers that support core and security-specific func-
tionalities. The core layer reuses components from Janus
where feasible, but with enhanced disassembly and control-
flow construction for the whole binary, and provides new
helper analyses to improve correctness and performance of
whole-program analysis. These a) aid disambiguation be-
tween statically seen and statically unseen code in the dy-
namic modifier and b) implement and facilitate various types
of security analysis. Any custom security techniques, such
as AddressSanitizer [47] and Control-Flow Integrity [2] fea-
tured in this paper, can then use the functionality provided
by the core and security layers. Here we describe the key
features of Janitizer’s static analyzer.

3.3.1 Control-flow recovery/analysis for all code. The
binary code belonging to each statically available module
from an application is individually presented to the static

analyzer, where it first undergoes disassembly, similar to
Janus [60]. Whereas Janus skips building basic blocks and
other control flow structures for code sections other than
.text, as it deems them uninteresting for parallelization, we
instead extend control-flow construction to all executable
code sections, including the procedure linkage table (PLT),
initialization (.init) and finalization (.fini) sections. This is
to ensure that these are available for subsequent analysis
stages that require cross-block analysis, so that for security
we analyze all code that an application may execute, and for
performance, as much as possible should be at static time.
After disassembly and control-flow recovery, the code
undergoes further static analysis, including new generic se-
curity and enhanced code analyses. These analysis stages
cover all executable code blocks, unlike in Janus, which ex-
cludes functions without loops from further analysis and
does not consider code blocks unreachable from a function’s
entry node (e.g. being the target of indirect control flow). All
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Figure 3. Format of rewrite rules.

of the shared-object-library dependencies are found using
the ldd Unix tool, and also undergo the same analysis.

Lastly, any transformations identified for a particular in-
struction or control-flow structure by the security analysis
need to be passed on to the dynamic modifier. These are
encoded as rewrite rules (format shown in figure 3) for a
corresponding instruction and the enclosing basic block, and
are recorded in separate files for each binary module pre-
sented to the static analyzer and loaded at run-time with the
module. Each rewrite rule corresponds to a handler routine
in the dynamic modifier that performs transformation. This
means that static analysis for a shared object library dynami-
cally linked by multiple binaries needs to be performed only
once. Figure 3 shows the format of a rewrite rule.

3.3.2 Enhanced static analysis. Janitizer adds several
new analysis routines to the framework that can unlock op-
portunities for rewrite-rule optimization, benefiting not only
security-related schemes but also enhancing the overall per-
formance of generic binary applications. For example, the
modification or instrumentation of binaries can affect the
status of arithmetic flags (as we show in JASan, section 4.1),
necessitating preservation. For performance, we employ live-
ness analysis to identify code locations where these flags
are not live at the point of instrumentation, to avoid saving
and restoring them. In cases where exact control flow can-
not be determined statically, such as indirect branches, we
assume that all arithmetic flags are live so need preservation.
Janitizer also leverages scalar evolution analysis (SCEV) [3]
to examine loop bounds. This aids in statically identifying
memory accesses that are either loop invariant, requiring one
check at the start of the loop, or linked to the loop iterator
so cannot go out of bounds given loop-bound information.

3.3.3 Support for generic security analysis. We add
generic analyses that can be used as building blocks for se-
curity mechanisms. Canary analysis works out which code
represents stack canaries [8], and thus must not be disturbed
by code modification, and may be reused to facilitate fur-
ther program analysis such as poisoning (section 4.1) or ran-
domization of canary location [27]. SSA-level diffuse-chain
tracing, traces the chain of dependencies between nodes, to
determine, for example, whether an instruction accesses a
memory location that was allocated at a particular dynamic
memory allocation site (malloc), or to monitor the flow of
untrusted data as seen in taint-tracking mechanisms.

3.3.4 Marking statically inspected code. For each basic
block seen by our static analyzer, there are two possibilities
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when presented to the dynamic modifier: 1) it needs trans-
formation or instrumentation based on the rewrite rules, or
2) it remains unmodified. In a scenario where comprehen-
sive coverage of all code (both static and dynamic) is not
required, as is the case for Janus [60], a basic block with no
transformation can simply be left without a rewrite rule. This
minimizes the number of rewrite rules when the common
scenario is that a block remains unmodified or unoptimized,
and allows the dynamic modifier to ignore it. This contrasts
with Janitizer, where the common case is that a block is
instrumented or modified for security. For Janus, any new
basic block that appears in the dynamic modifier without
an associated rewrite rule will be perceived exempt from
further analysis, and translated as-is. In Janitizer, a block
without a rewrite rule may instead be a new dynamically dis-
covered block that needs instrumentation.! To address this,
we introduce a mechanism, called no-op rules, that marks
statically inspected code to assist the dynamic modifier to
disambiguate between blocks that need no further analysis
(statically proven safe) and blocks not yet analyzed (because
they were never encountered statically). These rules get used
by the dynamic modifier at run-time (figure 4).

3.4 Run-time Modification, and Analysis Coverage
for Dynamically Available Code

To guarantee the soundness of instrumented binaries re-
gardless of control-flow and code-data ambiguity [23, 60],
Janitizer adopts run-time modification even for statically
seen code. We re-use the idea of statically guided dynamic
modification from Janus [60], albeit with several new mecha-
nisms to ensure that the dynamic modifier in Janitizer can 1)
utilize rewrite rules generated by the static analyzer for the
main executable and all its dependencies whether compiled
as position-independent (PIC) or non-PIC code [23] (unlike
Janus, which supports non-PIC only), 2) distinguish stati-
cally seen code from statically unseen code, and 3) employ
fallback analysis for code only seen by the dynamic modifier.

Figure 2(b) shows the layered structure of Janitizer’s dy-
namic modifier that incorporates these mechanisms for com-
prehensive security coverage. The core layer features func-
tionalities for loading and decoding the statically generated
rewrite rules for each module, building basic blocks for code
presented for execution, and performing modification and
transformation of these blocks according to the rules. The
security layer adds new mechanisms to identify and handle

I There are multiple scenarios where a basic block may not have been seen by
the static analyzer: 1) dynamically generated code, 2) shared-library depen-
dencies that cannot be determined statically using tools like ldd (accounting
for up to 40% of shared-library code [58] in real applications) because they
are loaded through dlopen, and 3) basic blocks not discovered by the static
analyzer due to incomplete control-flow recovery. If a shared object library
is loaded during execution via dlopen and happens to have an associated
file with rewrite rules, they can be processed by the corresponding handler
routine, otherwise we fall back to dynamic analysis.
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Figure 5. Janitizer’s support for (a) loading and (b) using statically generated rewrite rules from multiple modules at a time,
including main executable and shared-object dependencies whether compiled as position-independent (PIC) or non-PIC code.

the diverse types of code that it must support. We further
introduce plug-ins atop these layers to implement custom
security techniques (mirroring the static component of the
framework figure 2(a)). This is to allow additional (typically
simpler) analysis for code only seen dynamically, unlike in
Janus, which only optimizes code seen by the static analyzer.

3.4.1 Overall dynamic binary modifier. Figure 4 gives
an overview of the whole dynamic binary modifier. When a
new statically analyzed module is loaded (PIC or non-PIC), its

rewrite rules are read and written into the module’s hash ta-
ble (1), as described in section 3.4.2. When a basic block from
a module is first seen (i.e. it is targeted by a control transfer
instruction), the dispatcher fetches it (2) and consults the rel-
evant hash table. This occurs for all types of code—the main
executable (module A), a shared object library that’s been
statically analyzed (module B), a shared object library loaded
through d1_open (module C) or dynamically generated code
(D). On a miss in the hash table (3a), indicating no rewrite
rules present, the basic block undergoes dynamic analysis.
Note that the exact nature of the dynamic analysis to be
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performed depends on the custom security technique being
implemented, as described later in section 4.1.1 for JASan
and section 4.2.2 for JCFL On a hit (3b), the rewrite rules are
decoded. These rewrite rules (or the dynamic analyzer) may
determine that modifications are required (4a), in which case
the dynamic modifier makes the appropriate changes before
placing the basic block in the code cache for execution. On
the other hand, if the rewrite rule is a no-op rule, or the
dynamic analyzer decides no changes are necessary (4b), the
basic block can be placed in the code cache as-is.

3.4.2 Support for multiple PIC/non-PIC modules. Fig-
ure 5(a) shows how we handle the rewrite rules produced by
the static analyzer for multiple modules of different types.
Janitizer stores hash tables per-module and adjusts the pre-
computed addresses of the rewrite rules based on where
modules are loaded into the memory. When a new module is
encountered, (1) instructions are loaded into memory and the
dynamic modifier obtains a new hash table index (2) from its
map of modules, and a new hash table is created (3). Rewrite
rules are then loaded into this hash table, and decoded for
further processing by corresponding handler routines (4).
As these addresses were determined statically, they do not
reflect the runtime address of an instruction or basic block
for position-independent code. Therefore, for PIC binaries,
we adjust the instruction or basic block address according to
the memory address it is loaded at, before adding the rewrite
rule to the module’s hash table?.

Later, when a basic block is first seen by the binary mod-
ifier, the relevant hash table is consulted to determine the
rewrite rules necessary to apply, shown in figure 5(b). When
a newly seen basic block is dispatched for the first time (1),
its corresponding module is identified (2) so that the block’s
address can be looked-up in the correct hash table (3) to de-
termine its rewrite rule to apply appropriate modifications(4).
Alternatively, if there are no rewrite rules for this basic block,
then it is taken forward for dynamic analysis.

3.4.3 Custom security analysis for dynamic code. In
order to provide comprehensive protection for an application,
we also support dynamically generated code. JavaScript code
(just-in-time compiled within web browsers often written
in C/C++) is a common use case. As dynamic code is not
available or seen with static binaries, it can only be analyzed,
modified and instrumented dynamically. Dynamically loaded
libraries with no rewrite rules attached, and undiscovered
static code, are covered identically (section 3.3).

Since the dynamic modifier presents code one basic block
at a time (because this is when the code is first discovered to

2Since addresses in the hash tables are adjusted at load-time, even though
modules may reuse addresses, there will be no overlap between different
hash tables at run time: any run-time address will exist in at most one hash
table. Still, we keep them in separate hash tables to allow modules to be
loaded and unloaded efficiently without scanning to remove stale hints,
even if different modules are loaded at the same address at different times.
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be executed and thus unambiguously not data), in contrast to
the global overview available to static analyzer, the analysis
is likely to be implemented not only differently from the
equivalent static technique, but also with simpler analysis to
avoid the high run-time overhead of complex analysis. For
example, our dynamic JASan analyses all loads and stores
it sees, whereas the static version can find accesses that are
statically safe through between-block analysis (section 4.1).
This means custom security techniques need to provide two
different plug-in passes: one for the static analyzer, able to
do cross-block analysis, and one for the dynamic analyzer,
which can only work at the basic-block level, as a fallback.

4 Examples

To demonstrate the flexibility of Janitizer, we develop bi-
nary implementations of two complementary security tech-
niques within the framework: an address sanitizer for mem-
ory safety and a control-flow-integrity scheme.

4.1 JASan: Binary Address Sanitizer

AddressSanitizer [47] is one of the most popular memory-
safety techniques and has been integrated into the LLVM
compiler as an instrumentation pass combined with a run-
time library. It detects violations by placing poisoned red-
zones around buffer regions that should not be addressed,
with a shadow memory to keep the allocation status (poi-
soned/unpoisoned) of each byte of a process’ memory. Each
load and store is instrumented with a run-time check of the
shadow, and the memory allocation/de-allocation calls are
diverted to a special memory allocator from LLVM ASan’s
runtime library using LD_PRELOAD to poison heap objects.

4.1.1 Overview. Our version, JASan, is inspired by the san-
itizer in Retrowrite [23], in that it provides full heap-object
protection, enforces stack protections at the coarse granu-
larity of a stack frame by identifying canaries (section 3.3),
and ignores global regions due to a lack of higher-level type
information. JASan works with both PIC and non-PIC code,
unlike Retrowrite (section 2.1). Owing to its dynamic-only
fallback, JASan can also provide security guarantees for dy-
namically loaded/generated code.

JASan splits work between dynamic and static passes. The
static analyzer, after disassembly and control flow construc-
tion, identifies code locations with memory addresses that
need to be monitored, determines stack canary locations
to be poisoned/unpoisoned to protect against stack frame
overflows (figure 6 shows an example code and rewrite rule),
and precomputes cross-block register- and arithmetic-flags
liveness information to reduce the overhead of instrumenta-
tion in the dynamic analysis phase. The dynamic pass then
performs control-flow disambiguation and instruments stati-
cally analyzed code with selective saving and restoring of
registers and flags based on pre-computed liveness informa-
tion. For statically unanalyzed code, it conducts a simpler, per
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basic-block analysis, primarily to instrument every memory
load or store operation and handle poisoning/unpoisoning
of canaries. In this case, it conservatively saves and restores
both the arithmetic flags and any registers used by the in-
strumentation routines, without considering their liveness
status (which it does not compute).

We inline instrumentation routines using hand-written
meta (non-application) assembly instructions to avoid the
overhead of DynamoRIO’s® clean-calls. For statically seen
code, this also allows us fine control over the registers and
flags used, letting us utilize the precomputed liveness to save
and restore fewer registers around the instrumentation.

4.1.2 Limitation of intra-procedual liveness analysis
in special cases. Intra-procedural liveness analysis faces
limitations at the procedure boundaries where standard caller-
/callee-saved register conventions are not followed, either
due to compiler optimizations or hand-written assembly
code. We observed one such example in binaries compiled
with gcc -02 flags (such as ipa-ra*) where caller-saved
registers are not saved/restored if the callee is in the same
compilation unit and does not use those registers. In such
cases, the intra-procedural liveness analysis in the callee
incorrectly concludes that these caller-saved register are free
to use (i.e. not live), and leads to the instrumentation rou-
tines not saving or restoring them. However, this can lead to
issues where the caller later uses these clobbered registers.

Another such scenario is observed in some low-level li-
braries with hand-written assembly where callee-saved regis-
ters are not restored by the callee, and the modified values are
later used by the caller. For such cases, we use extended inter-
procedural analysis for optimizing, such as saving/restoring
those registers just once at the entry and exit of the callee
(instead of at every instrumented instruction).

4.2 JCFI: Control Flow Integrity for Binaries

Control Flow Integrity (CFI) [2, 25, 44, 53, 59] is a security
mechanism designed to protect against control-flow hijack
attacks [11, 33], by validating the targets of control-transfer
instructions against a pre-determined control-flow graph.
Forward edges [2] in JCFI are protected using hash-table
lookups. We restrict indirect calls to valid function bound-
aries. Intra-module calls are restricted to the functions de-
fined in the same module, whereas inter-module calls (through
the PLT or callbacks) are restricted to the symbols imported
by the caller’s module and/or exported by the callee’s mod-
ule®. Indirect jumps can target within the same function,

3Janus is built on DynamoRIO’s dynamic binary modification framework.
4The ipa-ra flag allows the compiler to break the calling convention by
using caller-saved registers for allocation if they are not used by any callee.
SWe take inspiration from a dynamic-only CFI scheme, Lockdown [44], to
dynamically update the list of valid targets for inter-module calls, as the
modules are loaded and unloaded, to reduce inter-module targets further.
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1  0x40275f: push  %rbx

2 0x402760: sub $0x10,%rsp

3 0x402764: mov %fs:0x28,%rax
4 0x40276d: mov %rax,0x8(%rsp)
5 0x402772: xor  %eax,%eax

6  0x402774: test %rdi,%rdi

7 0x402777: je 0x402790

(a) Lines 3 and 4 store the canary value from fs:0x28 onto the stack
at 0x8(%rsp). The static analyzer identifies the need to poison the
canary at the instruction following line 4, i.e. at 0x402772.

RuleID BB Addr | Instr Addr | Datal | Data2 | Data3 | Data4

POISON_CANARY | 0x40275f | 0x402772 0x0 0x0 - -

(b) The static analyzer encodes information about the dynamic
modifier’s handler routine, using RuleID, and the address of the
basic block and instruction for canary poisoning instrumentation
in the rewrite rule.

Figure 6. x86 Assembly code of a basic block with instruc-
tions storing canary values on the stack and associated
rewrite rule to guide the dynamic modifier to add instru-
mentation for canary poisoning.

based on jump table addresses, or entry addresses of the func-
tions within the same module (catering for tail-call optimiza-
tion). For returns, we enforce a precise shadow stack [22]:
the intended return address of the function call is pushed at
call time and verified at return®.

Our security analysis involves two steps: first, determining
a set of valid targets for each set of indirect control-transfer
instructions (CTIs), and second, identifying indirect CTIs
where checks must be added by the dynamic modifier.

4.2.1 Static analysis. To determine the set of address-
taken functions within a module that indirect calls and jumps
are allowed to target, we follow a methodology similar to
BinCFI [59] (a static CFI technique). We scan the raw binary
for code pointers, using a window of 4-bytes that slides
forward by one byte at a time. Given the inherent challenge
of statically distinguishing between code and data constants,
BinCFI heuristically deems a constant as a code pointer if
it falls at an instruction boundary within the code sections.
For JCFI, we further refine these constants based on whether
or not they match the entry address of a function (i.e. align
with a function boundary), information available and pre-
determined by Janus’ static analysis [60]”. For PIC binaries
where we have offsets with respect to the Global-offset Table

This policy is the same as enforced by Lockdown [44]; the weaker
BinCFI [59] allows returns to go to any call-preceded instruction.

7If full symbols are present in the binary, Janus uses function symbols and
associated addresses to mark the entries of the functions. In the absence of
a full symbol table, it makes use of exported symbols to identify function
boundaries, in addition to a cross-block analysis in the static analyzer to
infer function start addresses based on the targets of direct calls.
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(GOT) instead of absolute addresses, we check if offsets point
to a valid function and instruction boundary.

We further identify all the indirect calls, jumps and re-
turn instructions where forward and backward CFI verifi-
cation checks need to be inserted. Additionally, all the call
instructions—whether direct or indirect—are also marked for
instrumentation to push the return address on the shadow-
stack for verification at the return instruction.

4.2.2 Dynamic pass. During the dynamic pass, when a
module is loaded into memory, we check for associated static-
analyzer hints for adding CFI checks and a set of valid targets
for indirect CTIs. If available, these target addresses are pop-
ulated into hash tables for lookup at run-time®.

For modules without statically computed information,
JCFI performs analysis during the module loading process.
This involves a comprehensive scan of the raw binary, simi-
lar to in the static analyzer, to identify static code pointers.
If a complete symbol table is available, we filter code pointer
values based on the corresponding function addresses. In the
absence of a full symbol table for such binaries, JCFI falls
back to a weaker policy for indirect calls and jumps, relying
on exported symbols and code-section addresses, similar to
the policy followed by Lockdown [44] for stripped binaries.
For basic blocks not seen by the static analyzer, a dynamic-
analysis fallback identifies indirect CTIs in the blocks and
adding respective instrumentation for CFI checks.

4.2.3 Control-flow abnormalities in low-level libraries.
While most of the main executable binary codes adhere to
the policies described above, there are some exceptions to
that, particularly in low-level shared object libraries such as
libc and libgfortran. One such example is callbacks, where
a function address is passed to another module through a
call argument, for which the address has not been exported.
For such cases, we identify address-taken functions through
scanning of the raw binary (section 4.2.1), and add them to
the set allowed to be targeted by another module, in addition
to explicitly exported symbol addresses.

Another case is when a call instruction targets an instruc-
tion not at a detected function boundary in libgfortran. Here,
we add target addresses to an allow list, similar to Lockdown.
For BinCF], this is not an issue due to its weaker policy where
any code pointer identified through scanning of binary that
falls at an instruction boundary is allowed.

Additionally, the routine for lazy symbol resolution in
loader (Id.so) pushes the function pointer on the stack and
then uses return instructions to call the external functions
invoked by a binary. As there are just a few instances, BinCFI
handles this by modifying the loader itself, thereby replacing
these return instructions with an indirect jump. Since BinCFI
already allows jumps to target any cross-module function (a

8For PIC binaries, these addresses are adjusted by the module-load address
before storing them in hash tables, similar to rewrite-rule handling for PIC.
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weaker policy), this modification is in line with its security
policy. For JCFL we treat these as a special case and attach
a forward-CFI (indirect call) verification check, instead of a
backward-CFI check.

5 Experimental Setup

We evaluate implementations of JASan and JCFI within Jani-
tizer on an Intel Xeon 6230R system, running Ubuntu 20.04.6,
with SPEC CPU2006 [29] workloads to compare like-for-like
with previous work [23, 44, 59]. We compile these bench-
mark workloads with gcc 5.4, a compiler version used for
comparison techniques such as Retrowrite, with -O2 flags.
We run experiments for performance results a minimum of
three times, but see little variation between runs, so error
bars are not visible in graphs. We use DynamoRIO version
8.0.0 as part of our dynamic modifier in Janitizer.

We compare the performance of JASan with two state-
of-the-art binary address sanitizers, a dynamic-only Val-
grind [40] and static-only Retrowrite [23], each running on
x86-64. While Valgrind numbers were reproduced and com-
parable to overheads seen in Retrowrite’s evaluation of Val-
grind, we were not able to reproduce results for Retrowrite
itself as the resulting rewritten binaries were broken, even
when reproduced on the operating system, libraries and com-
piler specified in the original paper. Therefore, we report the
overheads for Retrowrite as published in the original paper.

For JCFI, we compare its performance and security protec-
tions against the static-only BinCFI [59] and the dynamic-
only Lockdown [44]. Since both of these comparison tech-
niques were only implemented for 32-bit x86, we run these
comparisons on x86-32 binaries and shared libraries’. The
public implementation of BinCFI is provided as a virtualized
environment, and we found the tool gave segfaults outside
this, even with exactly the same versions of compilers and
libraries. We thus evaluate it inside the virtual machine, with
reference to a baseline inside the same virtual machine.

6 Evaluation

We evaluate Janitizer based on its run-time performance,
code coverage and security properties when compared against
static and dynamic-only schemes for JASan and JCFL

6.1 JASan

Figure 7 shows the performance of two versions of JASan and
the comparison techniques. JASan-dyn is a dynamic-only
version of JASan, without any static analysis. JASan-hybrid
is a hybrid and optimized version that uses register and flag
liveness information from static analysis!°.

9We found the null-client overhead for DynamoRIO in 64-bit mode, when
it performs no analysis, to be high relative to the literature. Bruening and
Zhao [16] claim 8% and 13% for x86-32 and x86-64 on SPEC CPU2006,
whereas we saw 9% and 30%. We expect future optimizations to DynamoRIO
to better handle modern code and Janitizer will benefit accordingly.
10Retrowrite also uses intra-procedure liveness analysis.
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Figure 7. Janitizer overhead of JASan (binary ASAN) on SPEC CPU2006 [29], compared to native execution of benchmarks.
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Figure 8. Overhead breakdown of JASan.

6.1.1 Performance. JASan-hybrid incurs 2.98x overhead,
relative to native execution, across SPEC2006 benchmarks,
compared to 2.98x for Retrowrite and 9.83% for Valgrind'!.
Note that the JASan implementation covers the code of the
main executable, which was compiled as non-PIC, as well
as of shared libraries, compiled as PIC. As the applications
in JASan run under DynamoRIO, we further show JASan’s
overheads atop DynamoRIO’s translation overhead in fig-
ure 8 when compared against native execution. The figure
also shows JASan-hybrid against a baseline hybrid version
that conservatively saves/restores all the registers or flags
used by the instrumentation code. Overall, our optimized
hybrid implementation sees 27% improvement.

6.1.2 Security properties. We evaluate the security pro-
tections of JASan-hybrid in terms of four key metrics: true
positives (TP), where it correctly identifies memory safety
violations; true negatives (TN), where it correctly recognizes
the absence of violations; false positives (FP), where it incor-
rectly reports violations that are absent and false negatives
(FN), where it fails to report actual violations. We evalu-
ate this using the NIST Juliet benchmark suite [12], specif-
ically focusing on vulnerability class CWE122, which in-
cludes heap-to-heap, stack-to-heap and heap-to-stack buffer

1'We show geomean for all the benchmarks that successfully run for each
scheme, as well as only benchmarks that run for all schemes (geomean-x) .

overflows. Since some vulnerabilities may not manifest with-
out specific inputs ', we only run test cases that require
either no input or trigger a vulnerability without any spe-
cific input. Figure 10 presents the results separately for good
(well-behaving) and bad (with violations) variants of each
test case. For bad variants, FN represents the number of
test cases where either no or fewer-than-actual violations
are reported. For JASan, all FNs represent cases where it
only reports heap-to-stack buffer overflow that overwrites
stack canary values, consistent with our stack protection
policy. For heap overflows, it reports all violations correctly.
In contrast, Valgrind fails to detect heap-to-stack overflow
for 96 test cases, and reports fewer-than-actual overflows on
the heap in 24 test cases. We exclude Retrowrite from this
analysis as the generated binaries failed to run correctly.

6.2 JCFI

6.2.1 Performance. Figure 9 shows a performance com-
parison of JCFI with Lockdown and BinCFI. JCFI incurs a
1.29%x slowdown (1.37X without static analysis) compared
to 1.21x for dynamic-only Lockdown'® and 1.22x for static-
only BinCFI. Lockdown failed to run on omnetpp and dealll—
an issue also reported in the original paper. Similarly, BinCFI-
generated binaries did not run for gamess and zeusmp. In
order to have a fair comparison with BinCFI, which does
not implement a shadow stack, we further breakdown the
overhead of JCFI coming from forward CFI and backward
CFI (the latter implemented using shadow stack) in figure 11,
showing that it incurs a 1.15X overhead when only forward
CFI is applied. This makes JCFI’s performance similar to
BinCFI, slightly lower than Lockdown, but as we show next,
delivering considerably stronger security guarantees.

2The Juliet suite is primarily designed for static analysis tools like vul-
nerability analyzers or fuzzers that either detect vulnerability patterns or
generate inputs to exploit vulnerabilities.

B3Lockdown’s paper reports 1.32x overhead. When contacted, an author
suggested a bug may have resulted in missed CFI checks in the open-source
version. As Lockdown uses a custom secure loader, we were unable to
directly compare the number of checks actually performed by JCFI and
Lockdown, beyond the AIR metrics self-reported by the Lockdown tool.
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Figure 9. Overhead of JCF], Lockdown and binCFI on SPEC CPU2006, compared to native execution of benchmarks.
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variant True Negatives 624 624
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variant False Negatives 120 96

Figure 10. Security properties across 624 Juliet NIST CWE-
122 test cases. Each test case has a good variant (well-
behaving) and a bad variant (with violations).
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Figure 11. Combined contribution of forward/backward CFI
(shadow stack) towards JCFI-hybrid overheads.

6.2.2 Security-related properties. We show that JCFI
offers better protection against CFI attacks compared with
BinCFI and Lockdown, both soundness and completeness.

Soundness. A sound scheme does not generate false pos-
itives i.e. all the bugs or violations it reports are actual vi-
olations, and not correct or intended behavior. Lockdown
generates false positives for inter-module indirect calls made
through callbacks in h264ref, cactusADM and gcc. Its de-
fault strong policy allows inter-module indirect calls only if
the target is both explicitly imported by the source module
and exported by the destination modules. For callbacks that
do not follow this policy, Lockdown uses heuristics to iden-
tify potential valid targets, but these miss many cases. For
instance, in h264ref and cactusADM, function pointers of
comparison routines are passed to libc’s gsort function via
stack, which is missed by the Lockdown’s heuristics. Sim-
ilarly, it misses a code pointer in the same function due to
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Figure 12. Avg. dynamic indirect-target reduction (DAIR)
of JCFI, and Lockdown Strong (S)/Weak (W) (higher better).
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Figure 13. Average static indirect-target reduction (AIR)
metric of JCFI-hybrid and BinCFI (higher better).

its sliding 4-byte window with no fallback. In contrast, JCFI
allows inter-module transfers to exported symbols as well
as any identified address-taken functions in the destination
module. JCFI avoids these false positives by using cross-block
static analysis analysis to build a control-flow graph and iden-
tify function boundaries, something not possible with the
dynamic-only approach in Lockdown.

Completeness. The completeness of a security mecha-
nism is determined by its effectiveness to reduces the num-
ber of false negatives i.e. the potential violations of the se-
curity protection. For this purpose, we use Average Indirect
Target Reduction (AIR), a metric commonly used in the lit-
erature [44, 59] to gauge the percentage of targets removed
from the list of potential targets for a ROP attack'*.

4For example, for a binary with no CFI protections, a ROP attack can target
any of the code bytes, and hence has a 0% AIR value, whereas a CFI scheme
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To ensure a like-for-like comparison with Lockdown [44],
we report the AIR metric calculated dynamically on termina-
tion of the program, accounting only for executed indirect
call targets by that point (figure 12). We separately calculate
this statically to match BinCFI’s calculation [59] (figure 13).
In figure 12, we show two configurations for Lockdown;
the default strong policy, Lockdown (S), and a weaker policy,
Lockdown (W). Although the overall AIR metric of Lock-
down’s stronger policy is higher than JCFI', it suffers from
unsoundness. The weaker policy mitigates the issues at the
cost of a lower AIR metric. The AIR metric for backward
edges is the same for JCFI and Lockdown as they both use a
precise shadow-stack policy, but much higher than BinCFI
since the latter allows returns to target to any call-preceded
instruction. JCFI thus provides significantly better security
compared to sound versions of the two comparisons.

6.3 Code Coverage in Janitizer

Finally, to understand the need for a hybrid security frame-
work, figure 14 shows the fraction of basic blocks that are
exclusively seen by the dynamic modifier, as they were either
missed or not visible to the static analyzer. Bars can only
be seen for benchmarks with more then 0.1% of basic block
dynamically analyzed. On average, 4.4% of executed basic
blocks only appear dynamically, with the ratio as high as
92.4% for cactusADM and 18.7% for Ibm, coming from only
two basic blocks in the latter case.

7 Related Work

Development of defense and mitigation techniques against
security exploits is a very active area of research. These tech-
niques are either incorporated into hardware, kernel and
compilers, or implemented to work with binaries. Among
these, binary-based solutions that use frameworks that per-
form static binary rewriting or dynamic translation and mod-
ification receive significant interest.

Alto and Diablo [54] are link-time binary rewriting frame-
works and have been employed in developing security tech-
niques, such as instruction-set randomization [31]. However,
they rely on the presence of debug information or binaries
compiled only by specialized compilers, and are inapplicable
to code not available at link-time. Retrowrite [23] has been
used to implement memory sanitization and fuzzing tech-
niques, but its scope is limited to position-independent bina-
ries. REIL [24] is a reverse-engineering and static-analysis

aims to reduce the number of code bytes that can be be used as a potential
target hence improves the AIR value.

>Despite higher net AIR value for Lockdown (S), its AIR for indirect jumps
is lower than JCFI because Lockdown lets indirect jumps target any byte
in the same function (identified by closest symbol), whereas JCFI restricts
targets to instruction-/function boundaries via static control-flow analysis,
hence why JCFI's AIR reduces from 99.8% to 99.6% without static analysis
(hybrid compared to dynamic).
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Figure 14. Fraction of basic blocks identified and analyzed
dynamically (i.e. unseen in Janitizer’s static analyzer).

framework for ROP-gadget search. SecondWrite [5] facili-
tates the implementation of security policies, such as protec-
tion against stack overflows and control-flow hijacking [41],
through binary rewriting, but faces challenges in handling
large, complex binaries [23] and in effectively managing
control-flow intricacies and dynamic code. StackArmor [19]
uses static analysis for binary stack protection, suffering
from typical limitations of static techniques in terms of cov-
erage and protection of dynamic code.

Memcheck [48], built on top of Valgrind [40], is a widely
used dynamic instrumentation tool for memory-safety re-
lated issues. However, it incurs very high memory and per-
formance overhead [52] limiting its use to debugging rather
than in production environments. Other dynamic transla-
tion and instrumentation frameworks, such as Pin [36] and
DynamoRIO [14], have also been a popular choice to detect
security vulnerabilities and build defenses against memory
corruption and control-flow hijacking attacks [15, 20, 22].
Dr Memory [15], based on DynamoRIO, improves on mem-
ory and performance overhead compared to Memcheck, but
still with high performance overheads up to 10X. Several
CFI schemes [1, 2, 25] have been implemented using both
static and dynamic techniques. ROPDefender [22], a dynamic
tool built on Pin, enforces CFI for binaries, but has higher
overhead than static techniques.

8 Conclusion

The instrumentation of binaries for security analysis has
been well explored, but the sheer volume of tools and tech-
niques necessary for high-performance, high-coverage, cor-
rect analysis, solely the purview of static-dynamic hybrid
tools, has made watertight techniques a real challenge. With
Janitizer, these barriers have now been diminished. We have
shown how to build diverse techniques on top of Janitizer
built on top of diverse static and dynamic code analysis, and
hope that it will pave the way forward for many more.

Additional data related to this publication is available
in the repository at https://doi.org/10.17863/CAM.113967.
Janitizer is available at https://github.com/CompArchCam/
Janus/tree/security.


https://doi.org/10.17863/CAM.113967
https://github.com/CompArchCam/Janus/tree/security
https://github.com/CompArchCam/Janus/tree/security

Janitizer: Rethinking Binary Tools for Practical and Comprehensive Security

References

(1]

—
w
[

—
=}
-

(10]

[11

—

[12

—

[13

[t

(14]

(15]

(16]

(17]

2016. Return Flow Guard. https://xlab.tencent.com/en/2016/11/02/
return-flow-guard.

Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005.
Control-flow Integrity. In Proceedings of the 12th ACM Conference on
Computer and Communications Security (CCS "05).

Javed Absar. 2018. Scalar Evolution - Demystified. https://llvm.org/
devmtg/2018-04/slides/Absar-ScalarEvolution.pdf.

Sam Ainsworth and Timothy M. Jones. 2020. The Guardian Coun-
cil: Parallel Programmable Hardware Security. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS’20).  https:
//doi.org/10.1145/3373376.3378463

Kapil Anand, Matthew Smithson, Khaled Elwazeer, Aparna Kotha,
Jim Gruen, Nathan Giles, and Rajeev Barua. 2013. A Compiler-Level
Intermediate Representation Based Binary Analysis and Rewriting Sys-
tem. In Proceedings of the 8th ACM European Conference on Computer
Systems (EuroSys ’13). https://doi.org/10.1145/2465351.2465380
ARM. 2009. Building a Secure System using TrustZone Technology.
Technical Report. ARM Technical White Paper. http://infocenter.arm.
com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-
009492C_trustzone_security_whitepaper.pdf

Paul-Antoine Arras, Anastasios Andronidis, Luis Pina, Karolis Mituzas,
Qianyi Shu, Daniel Grumberg, and Cristian Cadar. 2022. SaBRe: Load-
Time Selective Binary Rewriting. Int. J. Softw. Tools Technol. Transf. 24,
2 (apr 2022), 205-223. https://doi.org/10.1007/s10009-021-00644-w
Arash Baratloo, Navjot Singh, Timothy K Tsai, et al. 2000. Transparent
Run-time Defense Against Stack-smashing Attacks.. In USENIX Annual
Technical Conference, General Track. 251-262.

Erick Bauman, Zhiqiang Lin, and Kevin W Hamlen. 2018. Superset
Disassembly: Statically Rewriting x86 Binaries Without Heuristics.. In
NDSS’18.

Andrew R. Bernat and Barton P. Miller. 2011. Anywhere, Any-time
Binary Instrumentation. In Proceedings of the 10th ACM Workshop on
Program Analysis for Software Tools (PASTE’11). https://doi.org/10.
1145/2024569.2024572

Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. 2011.
Jump-oriented programming: A New Class of Code-reuse Attack. In
Proceedings of the 6th ACM Symposium on Information, Computer and
Communications Security (ASIACCS °11).  https://doi.org/10.1145/
1966913.1966919

Tim Boland and Paul E Black. 2012. Juliet 1. 1 C/C++ and java test
suite. Computer 45, 10 (2012), 88-90.

Ferdinand Brasser, Lucas Davi, David Gens, Christopher Liebchen,
and Ahmad-Reza Sadeghi. 2017. Can’t Touch this: Software-only
Mitigation against Rowhammer Attacks Targeting Kernel Memory.
In Proceedings of the 26th USENIX Conference on Security Symposium
(SEC’17).

Derek Bruening, Timothy Garnett, and Saman Amarasinghe. 2003. An
Infrastructure for Adaptive Dynamic Optimization. In Proceedings of
the International Symposium on Code Generation and Optimization:
Feedback-Directed and Runtime Optimization (CGO "03).

Derek Bruening and Qin Zhao. 2011. Practical Memory Checking with
Dr. Memory. In Proceedings of the 9th Annual IEEE/ACM International
Symposium on Code Generation and Optimization (CGO ’11).

Derek Bruening and Qin Zhao. 2015. Building Dynamic Tools with
DynamoRIO on x86 and ARM. https://www.burningcutlery.com/derek/
docs/DynamoRIO-tutorial-2015.pdf.

David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J.
Schwartz. 2011. BAP: A Binary Analysis Platform. In Proceedings
of the 23rd International Conference on Computer Aided Verification
(CAV’11).

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

Sanchuan Chen, Zhiqiang Lin, and Yingian Zhang. 2021. SELECTIVE-

TAINT: Efficient Data Flow Tracking With Static Binary Rewriting. In
30th USENIX Security Symposium (USENIX Security 21).

Xi Chen, Asia Slowinska, Dennis Andriesse, Herbert Bos, and Cristiano
Giuffrida. 2015. StackArmor: Comprehensive Protection From Stack-
based Memory Error Vulnerabilities for Binaries. In NDSS’15. https:
//doi.org/10.1109/SP40000.2020.00009

W. Cheng, Qin Zhao, Bei Yu, and S. Hiroshige. 2006. TaintTrace:
Efficient Flow Tracing with Dynamic Binary Rewriting. In 11th IEEE
Symposium on Computers and Communications (ISCC’06). https://doi.
org/10.1109/1SCC.2006.158

Crispin Cowan, Perry Wagle, Calton Pu, Steve Beattie, and Jonathan
Walpole. 2000. Buffer Overflows: Attacks and Defenses for the Vulner-
ability of the Decade. In Proceedings DARPA Information Survivability
Conference and Exposition (DISCEX’00).

Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. 2011. ROPde-
fender: A Detection Tool to Defend against Return-oriented Program-
ming Attacks. In Proceedings of the 6th ACM Symposium on Informa-
tion, Computer and Communications Security. https://doi.org/10.1145/
1966913.1966920

Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer. 2020.
RetroWrite: Statically Instrumenting COTS Binaries for Fuzzing and
Sanitization. In 2020 IEEE Symposium on Security and Privacy (S&P’20).
https://doi.org/10.1109/SP40000.2020.00009

Thomas Dullien, Tim Kornau, and Ralf-Philipp Weinmann. 2010. A
Framework for Automated Architecture-Independent Gadget Search.
In Proceedings of the 4th USENIX Conference on Offensive Technologies
(WOOT’10).

Ulfar Erlingsson, Martin Abadi, Michael Vrable, Mihai Budiu, and
George C Necula. 2006. XFI: Software guards for system address
spaces. In Proceedings of the 7th Symposium on Operating Systems
Design and Implementation (OSDI’06).

Alan Eustace and Amitabh Srivastava. 1995. ATOM: A Flexible
Interface for Building High Performance Program Analysis Tools.
In Proceedings of the USENIX 1995 Technical Conference Proceedings
(TCON’95).

William H. Hawkins, Jason D. Hiser, and Jack W. Davidson. 2016.
Dynamic Canary Randomization for Improved Software Security. In
Proceedings of the 11th Annual Cyber and Information Security Research
Conference (CISRC ’16). https://doi.org/10.1145/2897795.2897803
Christian Heitman and Ivan Arce. 2014. BARF: a multiplatform open
source binary analysis and reverse engineering framework. In Congreso
Argentino de Ciencias de la Computacion.

John L. Henning. 2006. SPEC CPU2006 benchmark descriptions.
SIGARCH Comput. Archit. News 34, 4 (sep 2006).

R. Nigel Horspool and Nenad Marovac. 1980. An Approach to the
Problem of Detranslation of Computer Programs. Comput. §. 23, 3
(1980), 223-229.

Wei Hu, Jason Hiser, Dan Williams, Adrian Filipi, Jack W Davidson,
David Evans, John C Knight, Anh Nguyen-Tuong, and Jonathan Rowan-
hill. 2006. Secure and Practical Defense against Code-injection At-
tacks using Software Dynamic Translation. In Proceedings of the 2nd
international conference on Virtual Execution Environments (VEE’06).
https://doi.org/10.1145/1134760.1134764

Johannes Kinder. 2010. Static analysis of x86 Executables. Technical
Report. Technische Universitat Darmstadt.

S. Krahmer. 2005. x86-64 Buffer Overflow Exploits and the Borrowed
Code Chunks Exploitation technique.  http://forum.ouah.org/no-
nx.pdf

Mike Larkin. 2015. Kernel WX Improvements In OpenBSD.

Michael A Laurenzano, Mustafa M Tikir, Laura Carrington, and Allan
Snavely. 2010. PEBIL: Efficient Static Binary Instrumentation for Linux.
In 2010 IEEE International Symposium on Performance Analysis of Sys-
tems & Software (ISPASS). https://doi.org/10.1109/ISPASS.2010.5452024


https://xlab.tencent.com/en/2016/11/02/return-flow-guard
https://xlab.tencent.com/en/2016/11/02/return-flow-guard
https://llvm.org/devmtg/2018-04/slides/Absar-ScalarEvolution.pdf
https://llvm.org/devmtg/2018-04/slides/Absar-ScalarEvolution.pdf
https://doi.org/10.1145/3373376.3378463
https://doi.org/10.1145/3373376.3378463
https://doi.org/10.1145/2465351.2465380
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://doi.org/10.1007/s10009-021-00644-w
https://doi.org/10.1145/2024569.2024572
https://doi.org/10.1145/2024569.2024572
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1145/1966913.1966919
https://www.burningcutlery.com/derek/docs/DynamoRIO-tutorial-2015.pdf
https://www.burningcutlery.com/derek/docs/DynamoRIO-tutorial-2015.pdf
https://doi.org/10.1109/SP40000.2020.00009
https://doi.org/10.1109/SP40000.2020.00009
https://doi.org/10.1109/ISCC.2006.158
https://doi.org/10.1109/ISCC.2006.158
https://doi.org/10.1145/1966913.1966920
https://doi.org/10.1145/1966913.1966920
https://doi.org/10.1109/SP40000.2020.00009
https://doi.org/10.1145/2897795.2897803
https://doi.org/10.1145/1134760.1134764
http://forum.ouah.org/no-nx.pdf
http://forum.ouah.org/no-nx.pdf
https://doi.org/10.1109/ISPASS.2010.5452024

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

(36]

(37]

(38]

[39

—

(40]

(41

—

(42]

(43]

(44

=

(45]

[46]

(47]

(48]

(49]

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. 2005. Pin: building customized program analysis tools with dy-
namic instrumentation. In Proceedings of the 2005 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI’05).
https://doi.org/10.1145/1065010.1065034

Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. 2013.
Innovative Instructions and Software Model for Isolated Execution.
In Proceedings of the 2Nd International Workshop on Hardware and
Architectural Support for Security and Privacy (HASP ’13). https://doi.
org/10.1145/2487726.2488368

Xiaozhu Meng and Barton P. Miller. 2016. Binary Code is Not Easy. In
Proceedings of the 25th International Symposium on Software Testing
and Analysis (ISSTA 2016). https://doi.org/10.1145/2931037.2931047
Robert Muth, Saumya Debray, Scott Watterson, and Koen De Bosschere.
2001. Alto: A Link-time Optimizer for the Compaq Alpha. Software:
Practice and Experience 31 (2001).

Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework
for Heavyweight Dynamic Binary Instrumentation. In Proceedings
of the 28th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI’07). https://doi.org/10.1145/1250734.
1250746

Padraig O’Sullivan, Kapil Anand, Aparna Kotha, Matthew Smithson,
Rajeev Barua, and Angelos D Keromytis. 2011. Retrofitting security in
COTS software with Binary Rewriting. In IFIP International Information
Security Conference.

Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni. 2019.
BOLT: A Practical Binary Optimizer for Data Centers and Beyond. In
Proceedings of the 2019 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO’19).

Chengbin Pang, Ruotong Yu, Yaohui Chen, Eric Koskinen, Georgios
Portokalidis, Bing Mao, and Jun Xu. 2021. SoK: All You Ever wanted
to Know about x86/x64 Binary Disassembly but were Afraid to Ask.
In 2021 IEEE symposium on security and privacy (S&P’21).

Mathias Payer, Antonio Barresi, and Thomas R Gross. 2014. Lockdown:
Dynamic control-flow integrity. arXiv preprint arXiv:1407.0549 (2014).
Soumyakant Priyadarshan, Huan Nguyen, Rohit Chouhan, and R Sekar.
2023. {SAFER}: Efficient and {Error-Tolerant} Binary Instrumenta-
tion. In 32nd USENIX Security Symposium (USENIX Security 23).
Soumyakant Priyadarshan, Huan Nguyen, and R Sekar. 2023. Ac-
curate Disassembly of Complex Binaries Without Use of Compiler
Metadata. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’23). https://doi.org/10.1145/3623278.3624766
Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitry Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker.
In Proceedings of the 2012 USENIX Conference on Annual Technical
Conference (USENIX ATC’12).

Julian Seward and Nicholas Nethercote. 2005. Using Valgrind to Detect
Undefined Value Errors with Bit-Precision. In Proceedings of the Annual
Conference on USENIX Annual Technical Conference (ATEC °05).
Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra
Modadugu, and Dan Boneh. 2004. On the Effectiveness of Address-
space Randomization. In Proceedings of the 11th ACM Conference on

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Mahwish Arif, Sam Ainsworth, and Timothy M. Jones

Computer and Communications Security (CCS 04). https://doi.org/10.
1145/1030083.1030124

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, and Giovanni Vigna. 2016. SOK: (State of)
The Art of War: Offensive Techniques in Binary Analysis. In Security
and Privacy (S&P’16). https://doi.org/10.1109/SP.2016.17

Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan

Jager, Min Gyung Kang, Zhenkai Liang, James Newsome, Pongsin
Poosankam, and Prateek Saxena. 2008. BitBlaze: A New Approach to

Computer Security via Binary Analysis. In International Conference
on Information Systems Security. https://doi.org/10.1007/978-3-540-
89862-7_1

Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn
Volckaert, Per Larsen, and Michael Franz. 2019. SoK: Sanitizing for
Security. In 2019 IEEE Symposium on Security and Privacy (S&P’19).
https://doi.org/10.1109/SP.2019.00010

Victor van der Veen, Dennis Andriesse, Enes Goktag, Ben Gras, Lionel
Sambuc, Asia Slowinska, Herbert Bos, and Cristiano Giuffrida. 2015.
Practical Context-Sensitive CFI (CCS ’15). 14 pages. https://doi.org/10.
1145/2810103.2813673

Ludo Van Put, Dominique Chanet, Bruno De Bus, Bjorn De Sutter,
and Koen De Bosschere. 2005. Diablo: a Reliable, Retargetable and
Extensible Link-time Rewriting Framework. In International Sym-
posium on Signal Processing and Information Technology. https:
//doi.org/10.1109/ISSPIT.2005.1577061

Cheng Wang, Shiliang Hu, Ho-seop Kim, Sreekumar R. Nair, Mauricio
Breternitz, Zhiwei Ying, and Youfeng Wu. 2007. StarDBT: An Efficient
Multi-platform Dynamic Binary Translation System. In Advances in
Computer Systems Architecture.

Shuai Wang, Pei Wang, and Dinghao Wu. 2015. Reassembleable disas-
sembling. In 24th USENIX Security Symposium (SEC’15).

Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W.
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neu-
mann, Robert Norton, and Michael Roe. 2014. The CHERI Capability
Model: Revisiting RISC in an Age of Risk. In Proceeding of the 41st
Annual International Symposium on Computer Architecture (ISCA ’14).
https://doi.org/10.1145/2678373.2665740

Mingwei Zhang, Rui Qiao, Niranjan Hasabnis, and R Sekar. 2014. A
Platform for Secure Static Binary Instrumentation. In Proceedings of
the 10th ACM SIGPLAN/SIGOPS international conference on Virtual exe-
cution environments (VEE’14). https://doi.org/10.1145/2576195.2576208
Mingwei Zhang and R. Sekar. 2013. Control Flow Integrity for COTS
Binaries. In Proceedings of the 22nd USENIX Conference on Security
(SEC’13).

Ruoyu Zhou and Timothy M. Jones. 2019. Janus: Statically-Driven
and Profile-Guided Automatic Dynamic Binary Parallelisation. In 2019
IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (CGO’19). https://doi.org/10.1109/CG0.2019.8661196

Ruoyu Zhou, George Wort, Marton Erdés, and Timothy M. Jones.
2019. The Janus Triad: Exploiting Parallelism through Dynamic Binary
Modification. In Proceedings of the 15th ACM International Conference
on Virtual Execution Environments (VEE’19). https://doi.org/10.1145/
3313808.3313812

Received 2024-09-12; accepted 2024-11-04


https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/2487726.2488368
https://doi.org/10.1145/2487726.2488368
https://doi.org/10.1145/2931037.2931047
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/3623278.3624766
https://doi.org/10.1145/1030083.1030124
https://doi.org/10.1145/1030083.1030124
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1007/978-3-540-89862-7_1
https://doi.org/10.1007/978-3-540-89862-7_1
https://doi.org/10.1109/SP.2019.00010
https://doi.org/10.1145/2810103.2813673
https://doi.org/10.1145/2810103.2813673
https://doi.org/10.1109/ISSPIT.2005.1577061
https://doi.org/10.1109/ISSPIT.2005.1577061
https://doi.org/10.1145/2678373.2665740
https://doi.org/10.1145/2576195.2576208
https://doi.org/10.1109/CGO.2019.8661196
https://doi.org/10.1145/3313808.3313812
https://doi.org/10.1145/3313808.3313812

	Abstract
	1 Introduction
	2 Motivation
	2.1 Static: Low-Coverage or Unsound
	2.2 Dynamic: Slow and Limited Analysis
	2.3 Existing Hybrid Tools: Not Fit for Purpose

	3 Janitizer
	3.1 The Need for a New Approach
	3.2 Building on Janus
	3.3 Stronger Analyses for Static Binaries
	3.4 Run-time Modification, and Analysis Coverage for Dynamically Available Code

	4 Examples
	4.1 JASan: Binary Address Sanitizer
	4.2 JCFI: Control Flow Integrity for Binaries

	5 Experimental Setup
	6 Evaluation
	6.1 JASan
	6.2 JCFI
	6.3 Code Coverage in Janitizer

	7 Related Work
	8 Conclusion
	References

