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Abstract—Binary instrumentation and rewriting frameworks
provide a powerful way of implementing custom analysis and
transformation techniques for applications ranging from per-
formance profiling to security monitoring. However, using these
frameworks to write even simple analyses and transformations
is non-trivial. Developers often need to write framework-specific
boilerplate code and work with low-level and complex program-
ming details. This not only results in hundreds (or thousands) of
lines of code, but also leaves significant room for error.

To address this, we introduce Cinnamon, a domain-specific
language designed to write programs for binary profiling and
monitoring. Cinnamon’s abstractions allow the programmer to
focus on implementing their technique in a platform-independent
way, without worrying about complex lower-level details. Prog-
rammers can use these abstractions to perform analysis and
instrumentation at different locations and granularity levels
in the binary. The flexibility of Cinnamon also enables its
programs to be mapped to static, dynamic or hybrid analysis
and instrumentation approaches. As a proof of concept, we target
Cinnamon to three different binary frameworks by implementing
a custom Cinnamon to C/C++ compiler and integrating the
generated code within these frameworks. We further demonstrate
the ability of Cinnamon to express a range of profiling and
monitoring tools through different use-cases.

Index Terms—Domain-Specific language, Profiling, Binary ana-
lysis and instrumentation

I. INTRODUCTION

Profiling and monitoring tools that work directly with

application binaries are valuable aids for understanding and

characterizing program execution, as well as for detecting bugs

and ensuring they run safely. They are especially important

when application source code is unavailable, recompilation

is infeasible, or it uses third-party applications and external

libraries [1]. However, writing these tools from scratch is a

challenging and tedious task and generally involves a process of

disassembly or lifting the binary to a higher-level representation

that is easier to work with. Programmers then also need to write

code to recover control-flow information, such as basic blocks

and functions, which adds to the development challenge [2].

To address this, a range of tools have been developed that

can lift a binary to assembly [3], [4], LLVM’s intermediate

representation (IR) [5] or a custom IR [6]–[8]. There are also
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a number binary analysis and instrumentation frameworks [9]–

[15], that provide infrastructure support to write custom

profiling and monitoring tools. However, developing such tools

is a non-trivial task, even for simple profiling and monitoring

schemes, due to the complexity of these frameworks and

different programming interfaces. Developers not only need to

add boilerplate code to implement their algorithms within these

frameworks, but may also need to write complex low-level

code to perform even simple accesses or modifications to the

binary, such as finding the address loaded from or stored to by

a memory instruction [9]. This adds significantly to the length

and complexity of the code and increases the chance of bugs

creeping into the final tool.

On the other hand, were these tools to be more accessible

to developers then they would be able to perform sophisticated

analysis and profiling of all manner of applications. Providing

developers with a simple interface to the underlying frameworks

would avoid them having to write low-level and repetitive

code, allowing them to focus solely on the correctness of

their analysis and monitoring techniques. This would unleash

a new era of binary instrumentation, with renewed interest in

developing schemes that operate at the binary level, independent

of any particular compiler framework, which is becoming

increasingly important as more code gets dynamically generated

by a JIT and developers have a wider choice of source

languages to write in.

In order to overcome these challenges, we propose a domain-

specific language (DSL), Cinnamon, to write programs for

binary profiling and monitoring. Cinnamon raises the abstrac-

tion level for developers, providing a natural programming

model in which to write analysis and instrumentation code

more efficiently and in a framework- and platform-independent

way. The major contributions of this work include:

• the design and implementation of Cinnamon, a DSL

and compiler tool-chain for writing binary profiling and

monitoring programs;

• higher-level control-flow, data and type abstractions to

facilitate efficient implementation of different profiling

and monitoring techniques;

• a programming model and abstractions to facilitate map-

ping of Cinnamon programs to static, dynamic or hybrid

binary instrumentation frameworks;
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• a set of case studies demonstrating the applicability

and flexibility of Cinnamon to express different binary

profiling and monitoring techniques from the literature;

• an open-source implementation of Cinnamon1.

II. BACKGROUND

The ability to perform analysis and instrumentation directly

on program binaries has many powerful applications, from

profiling to security monitoring. Code-coverage profilers [14],

[16] and performance analyzers [17] help in identifying

program hotspots with the potential for optimization. Security

monitoring tools can analyze a binary to find malware signa-

tures [18], [19] or add instrumentation to monitor its execution,

so as to detect or prevent security attacks [20], [21]. These can

also be used to identify security vulnerabilities [9], [22]–[25]

that can be exploited by malicious attackers. Beyond passive

profiling and monitoring, other techniques actively transform

the binary to optimize performance through the code that is

executed [26]–[28] or its layout in memory [29].

Frameworks for binary instrumentation that facilitate these

applications can operate on the binary statically, dynamically,

or a combination of the two. Each has its pros and cons that

we now explore.

A. Static Binary Frameworks

Static binary frameworks enable binary analysis, instru-

mentation or rewriting without executing the application,

avoiding the run-time cost of performing the analysis or code

modifications [15]. Due to this, complex and time-consuming

analyses can be performed, such as those that explore all

possible execution paths through the program, and be more

complete with higher application code coverage. Recovery of

higher-level structural information also becomes more feasible.

A number of frameworks support the development of custom

binary tools using static approaches [7], [14], [15], [30],

[31] for complex control-flow, data-flow and dependency

analyses [28], [32] and for optimization and security [33]–

[35]. Related frameworks support link-time binary rewriting,

such as Diablo [36] and Alto [37].

However, static binary frameworks can suffer from diffi-

culties in recovering an accurate control-flow graph in the

presence of indirect jumps, which may hamper accurate global

analysis. They are also conservative in their analysis and may

raise false positives [38] due to the lack of precise run-time

information. Furthermore, binaries with dynamic linkage cannot

be analyzed beyond the shared-library call, a similar problem

to that faced by compilers. Finally, it is challenging to verify

that the rewrites made by these static tools are correct.

B. Dynamic Binary Frameworks

Dynamic binary analysis and transformation techniques can

be useful where execution depends on the run-time environment

or critical information is not known statically. For example,

execution may actually only proceed down a small subset of

all control-flow paths and indirect branches. Hence, dynamic

1Cinnamon is available at https://github.com/CompArchCam/Cinnamon.

schemes can limit themselves to the code paths actually seen

during execution, in contrast to static techniques. Dynamic

frameworks are also critical for analyzing programs with

interrupts and calls to shared libraries, which are not present

in the static binary, and detecting dynamically generated or

self-modifying malicious code.

Dynamic binary frameworks enable analyses and trans-

formations to be applied while the code is executing. Val-

grind [9] is a popular dynamic binary instrumentation frame-

work that has facilitated the development of a number of

profiling [39], [40] and vulnerability detection tools [41].

Valgrind disassembles the binary to a custom IR called VEX

and resynthesizes to machine code after adding instrumentation.

Pin [10], DynamoRIO [11], and StarDBT [42] use dynamic

binary translation to add analysis code or perform trans-

formations. Tools built using these frameworks carry out a

variety of functions, such as performance analysis [43], memory

debugging [22], taint checking [44], [45] and protection against

control-flow attacks [21].

Dynamic analysis can be more precise than static approaches

but lacks a global overview of the application and has lower

code coverage. Writing dynamic analysis tools is generally

a complex, tedious and error-prone process and may involve

inserting trampoline calls in the instruction stream to developer-

written analysis routines and ensuring that context is saved

and restored properly. Moreover, the high run-time overhead

of dynamic techniques hinders the development of complex

schemes and limits the usability of these techniques to relatively

simple analyses and transformations [9].

C. Static-Dynamic Hybrid Binary Frameworks

Both static and dynamic approaches have their strengths and

weaknesses. However, these approaches are complementary to

each other and can be combined to build more powerful tools

that can reduce the limitations of each approach when they are

applied separately.

BitBlaze [12] is a binary analysis platform specifically

built for security applications and features components for

static analysis, dynamic analysis and symbolic execution.

Another tool, angr [38], uses static binary analysis and dynamic

symbolic execution to perform different analyses, such as

control-flow recovery and vulnerability detection.

Dyninst [13] offers both static and dynamic binary rewriting

approaches and has been used to build tools for profiling and

performance analysis [46]. Janus [26] is a hybrid static-dynamic

binary modification framework based on DynamoRIO that

combines the power of both static and dynamic approaches to

perform complex analyses and transformations, such as binary

parallelization and vectorization.

Although these frameworks build on the strengths of static

analysis with dynamic rewriting, they also inherit their weak-

nesses too. Developers have to deal with low-level operations

when writing both the static passes that analyze the binary

and the dynamic tools that perform modification. As such,

although they are more powerful frameworks, they can be more

difficult to use. What is needed is a method of programming

https://github.com/CompArchCam/Cinnamon
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Figure 1: Overview of a program written in Cinnamon.

binary instrumentation frameworks of all flavors at a higher

level of abstraction, so as to avoid having to deal with low-

level details. The next section presents Cinnamon, our domain-

specific language and compiler to provide this abstraction to

ease the burden of writing instrumentation code.

III. THE CINNAMON LANGUAGE

We designed Cinnamon for building binary analysis and

instrumentation tools for static, dynamic, and hybrid frame-

works. Cinnamon abstracts away details of the target binary

analysis and instrumentation framework and processor ISA,

allowing programmers to focus on the analysis that they wish

to perform, rather than the details of how to go about doing

it. Many programs written in Cinnamon are portable across

target frameworks, regardless of the type of instrumentation

performed or the architecture they target. The Cinnamon

compiler deals with the complexities of mapping the high-level

instrumentation intent, written in Cinnamon, to the specific

implementation required for binary instrumentation within a

given framework.

A. Overview

Figure 1 shows a diagrammatic overview of the core

components of a program written in Cinnamon and its mapping

to different binary frameworks.

A Cinnamon program is made up of a series of command

blocks, each of which operates on a logical control-flow

element (CFE) from the binary, such as an instruction, loop or

function. A command specifies some analysis and actions to

be instrumented at different execution points of a CFE based

on certain constraints.

A command in Cinnamon is mapped by the compiler to a

target backend instrumentation framework. For a purely static

or dynamic framework, a command is mapped in its entirety

to a static or dynamic tool for that framework respectively. If

the target framework is a hybrid design then the analysis and

instrumentation sections of a command can be split between

static and dynamic parts of this underlying framework. The

1 <global variable declarations>

2 /*-------- command 1 starts --------*/

3 inst I <constraint> {

4 <local variable declarations>

5 /* inspection or analysis code */

6 <statements>

7 /* action 1 */

8 before I {

9 <local variable declarations>

10 <statements>

11 }

12 /* action 2 */

13 after I {

14 <statements>

15 }

16 }

17 /*-------- command 1 ends --------*/

Figure 2: High-level pseudo-code of a Cinnamon program for instrumenting
instructions.

block arrows in figure 1 represent the mapping of a Cinnamon

program to three different configurations: A is static only, a

static analyzer with static instrumenter; B is hybrid, a static

analyzer with a dynamic instrumenter; and C is dynamic only, a

dynamic analyzer with a dynamic instrumenter. Compilation of

a Cinnamon program into framework-specific code that realizes

the intended profiling or monitoring technique is discussed in

more detail in section IV.

Figure 2 shows the higher-level structure of a program

in pseudo-code. This example has a single command that

operates on instructions in the binary filtered through the use

of a constraint on the command-block declaration. Inside the

command, two actions are defined, which are to be executed

before and after the instruction executes. User-defined variables

can occur at a global level or within any inner block, and do

not escape out of their defining scope. Analysis code is written

within the command but not within any action.

B. Language Specification

1) Commands: A profiling or monitoring technique is

implemented in Cinnamon using a set of commands. As

described earlier, each command specifies the type of a control-

flow element (CFE) from the under-observation binary, along

with any constraints on its selection, and contains the analysis

and instrumentation code to be run on the instances of the

selected CFE.

2) Control-Flow Abstractions: Recovery of and access to

control-flow structures, such as basic blocks and functions, is

a pre-requisite for any static or dynamic analysis on the binary

and also one of the most challenging tasks. In Cinnamon, we

abstract away the process of control-flow recovery and define

special types that represent the different control-flow elements

available, including modules, functions, loops, basic blocks

and instructions.

A module (module) type represents the highest level of the

control-flow structure of the binary and comprises of all the

functions, loops, basic blocks, and instructions present within

a single binary object. The binary executable is a module

itself, and any shared libraries that it links to are presented

as separate modules. A function (func) is a second-level CFE



that further contains any loops, basic blocks and instructions

that belong to that function. Loops (loop) contain basic blocks

and instructions, and are recognised by building the control-

flow graph of a function, performing dominance analysis,

and identifying back edges. A basic block (basicblock) is a

sequence of instructions where each instruction has only one

predecessor (apart from the first) and only one successor (apart

from the last). Finally, an instruction (inst), is the lowest-level

control-flow element, representing machine instructions from

the target framework’s intermediate representation. A command

can be written to run on any type of element and may contain

further commands that run on lower-level elements within the

scope of the enclosing command.

3) Actions: An action in Cinnamon is the code to be

instrumented at a specified location in the binary. Actions

are expressed as a sequence of C-style statements and can

contain for loops, if-then-else conditionals, function calls,

assignments, and arithmetic and logic statements as well as

I/O operations to standard input/output and files.

4) Trigger Points: We define instrumentation locations,

called trigger points, related to different CFEs, where profiling

or monitoring code can be inserted. For basic blocks, functions,

and loops, these are on entry and exit to the CFE; for

instructions they are before and after. There are two special

blocks, init and exit blocks, which correspond to the

locations where any initialisation and finalisation code (i.e.,

code to be executed before or after any instructions belonging

to an application) can be added.

5) Analysis and Inspection Code: Before instrumenting

actions for a specific CFE, a programmer may need to define

or compute some data, to be used later in the action block,

by performing some analysis. In Cinnamon, this analysis code

can be placed before an action block and can be written as

C-style statements.

6) Constraints: Programmer-specified constraints on com-

mand blocks serve as a filtering criteria to avoid running the

analysis and instrumentation code where not needed, thus

reducing overhead. Based on the target framework and validity

of the requested information for filtering, these constraints can

be evaluated either statically or dynamically. The compiler

backend can check whether the information needed to evaluate

a constraint is available and valid at the required program point

for the target framework, and throw an error if not.

7) Ordering of Commands and Actions: If multiple com-

mands are present in a program, their code will be mapped (but

not necessarily executed) in the same order in the underlying

framework. Similarly, if multiple actions are listed for a CFE at

the same trigger point (for example, before a certain instruction),

they will be instrumented in the same order they occur in the

Cinnamon program.

When writing Cinnamon programs, developers need to pay

attention to when the analysis and instrumentation of actions

is performed and when the instrumented actions are actually

executed. The analysis and instrumentation stage is when the

Cinnamon-compiler generated code goes over different CFEs,

performs computation or analysis, and instruments the code

according to the action, init and exit blocks. Only the code

outside action, init and exit blocks is actually executed at this

stage. The execution stage is when the newly updated under-

observation binary is actually run, along with the instrumented

code of action, init and exit blocks.

Different commands may communicate with each other only

through global variables or files (via I/O). In addition, if a

command produces some data that is later required by another

command during the analysis and instrumentation stage, then

these commands will need to be listed in the order of producer

then consumer.

8) Types and Opcodes: Cinnamon supports a number of

primitive and composite types, as well as defining certain

special types suitable for binary instrumentation. The primitive

types include integers, chars, and booleans, whereas composite

types include dictionary or map structures and static and

dynamic arrays (or vectors). A special addr type can be used

to hold the pointer-sized address of a memory location or the

target address of a control-transfer instruction.

A number of storage abstractions are defined that represent

whether the operand of an instruction is a memory location

(mem), a register (reg), or an immediate value (const). The

keyword IsType accesses a compiler builtin that can be used

to check the storage type of an operand against one of these

abstractions. Cinnamon also defines a list of special keywords

that represent instruction opcodes, such as Call, Load, and

Branch. The present list of primitive and composite types and

opcodes is not fixed and can be easily extended for a new

architecture (and ISA).

9) Attributes of Control-Flow Elements: In order to perform

profiling and monitoring, a programmer may need to acquire

different attributes of a CFE, such as the target address of

a call instruction, operand address of a memory instruction,

or identifier (ID) of a loop. Accessing the values of these

attributes in the target framework is not always trivial and may

require writing complex low-level code. Cinnamon simplifies

the access to these attributes through the dot (.) operator, in

the same way as accessing fields of a struct in C.

C. Grammar

Figure 3 shows the partial grammar of Cinnamon in EBNF

form. The root of the syntax tree is the Cinnamon program,

which is composed of optional global variable declarations,

a set of command blocks, and initialisation and finalisation

blocks. We have omitted several productions rules as they can

be defined similarly as in standard programming languages,

such as C, e.g., 〈id〉 for C-style identifiers, 〈str_const〉 for string

literals, 〈init_expr〉 for initializer lists.

IV. CINNAMON IMPLEMENTATION

The workflow in figure 4 shows compilation and translation

of Cinnamon code to build a stand-alone profiling or monitoring

tool, and is composed of two stages.

The first stage involves the Cinnamon compiler, which

consists of a front-end for a Cinnamon program and a back-end



〈prog〉 |= 〈decl〉∗ (init { 〈stmt〉∗ })? 〈cmd〉∗ (exit { 〈stmt〉∗ })?

〈cmd〉 |= 〈e_type〉 〈id〉 〈cst〉? { (〈cmd〉 | 〈stmt〉 | 〈act〉)∗ }

〈cst〉 |= where (〈expr〉)

〈act〉 |= 〈trigger_point〉 〈id〉 〈cst〉? { 〈stmt〉∗ }

〈stmt〉 |= 〈expr〉; | 〈decl〉; | 〈lvalue〉 = 〈expr〉;

| if (〈expr〉) { 〈stmt〉∗ } (else { 〈stmt〉∗ })?

| for (〈decl〉?; 〈expr〉?; 〈stmt〉?) { 〈stmt〉∗ }

〈expr〉 |= 〈lvalue〉 IsType 〈op_type〉 | 〈expr〉 〈bin_op〉 〈expr〉 | 〈lvalue〉 | 〈rvalue〉

〈decl〉 |= 〈type-spec〉 〈id〉 (= 〈init_expr〉)?

〈lvalue〉 |= 〈id〉 | 〈lvalue〉[〈expr〉] | 〈lvalue〉.〈id〉

〈rvalue〉 |= 〈id〉(〈args〉?) | 〈str_const〉 | 〈bool_const〉 | 〈num〉 | 〈opcode〉 | 〈null_ptr〉

〈args〉 |= 〈expr〉 | 〈expr〉, 〈args〉

〈e_type〉 |= inst | basicblock | func | loop | module

〈opcode〉 |= Call | Mov | Load | Store | Branch | Return | Add | Sub | Mul | Div | GetPtr

〈op_type〉 |= mem | reg | const

〈trigger_point〉 |= before | after | entry | exit | iter

Figure 3: The partial grammar of Cinnamon.

or code generator for the target binary framework. The front-

end performs lexing and parsing of the code and generates

an abstract syntax tree (AST). The code generator processes

each AST node and emits C/C++ code that includes target-

framework-specific analysis passes, handler passes, which

perform instrumentation based on the constraints, and an

interface between analysis and handler passes. The front-end

of the compiler is independent of the target binary framework

and does not need to be changed if the Cinnamon compiler is

ported to a different framework.

The second stage of the workflow involves plugging the

code generated by the Cinnamon compiler into appropriate

places in the target framework through the use of template

files, containing boilerplate code, and pattern matching. The

combined code is then compiled using a standard compiler

(e.g., GCC and LLVM) to build the final tool.

A. Utility Libraries

Section III-B describes how attributes of a CFE can be

accessed in Cinnamon using a dot operator, removing the

need to write low-level, complex code to access them. To

achieve this we provide a number of get or accessor-like utility

routines that encapsulate the low-level code for each target

framework to extract the desired attributes and return the values

to the programmer. Since a CFE attribute then becomes just an

identifier in Cinnamon, it is simple for a programmer to modify

the compiler to extend the attribute list by implementing each

new accessor routine and thus create new attributes.

B. Interface between Static and Dynamic Contexts

The attributes of a control-flow element may belong to either

or both of its static and dynamic contexts. For example, the IDs

assigned to loops or functions statically, at the time of control-

flow reconstruction, are not part of their dynamic context.

However, during its execution, the instrumented code may

need to know the ID of a loop in order to associate profiling

data with it. Similarly, the analysis code may generate data

that needs to be consumed by the instrumentation code. For

such cases, any static attributes of a CFE, or data generated

by the analysis code, are passed to the instrumentation code

in a framework-dependent manner (for example, by encoding

them as arguments to call-back functions).

C. Integration with Binary Frameworks

We target Cinnamon to three different binary analysis and

instrumentation frameworks: Janus, Dyninst and Pin.

1) Integration with Janus: Janus is composed of a static

analyzer and a dynamic instrumenter. The static part includes

core libraries that construct the control-flow graph (CFG) of a

binary and provide an interface to analyse instructions, basic

blocks, functions, loops, and their attributes. Instructions or

basic blocks can be annotated with hints, called rewrite rules,

which are recorded separately and encode information about

a corresponding dynamic handler and any data to be passed

along. The dynamic part of Janus is based on DynamoRIO. It

dynamically translates the binary one basic block at a time and

allows inspection or modification of the constituent instructions

according to the rewrite rules before the block is executed for

the first time.

When targeting a Cinnamon program to Janus, the code

within a command is split between its static and dynamic parts.

The Cinnamon compiler emits code for the static analyzer that

traverses the list of CFEs based on the constraints specified by

the command and executes any analysis code. The compiler
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Figure 4: Cinnamon workflow.

adds boilerplate code for the static analyzer that encodes actions

and their trigger points in separate rewrite rules. Any data

produced by the static analyzer that is later consumed by an

action is also recorded in the rewrite rule.

The code emitted for each action is encapsulated in a separate

callback function. The Cinnamon compiler further generates

boilerplate code for the dynamic part, where instructions within

each basic block are checked for any associated rewrite rules.

If found, the rewrite rule is decoded to extract the trigger point

and the corresponding callback function for the action. The

callback function is then instrumented at the specified location

using DynamoRIO’s clean call facility. Any data produced by

the static analyzer is passed as one or more arguments to the

callback function.

2) Integration with Dyninst: Dyninst allows both static and

dynamic instrumentation of a binary. It builds the CFG of a

target binary through static analysis and offers control-flow

abstractions, such as functions, loops, and basic blocks, to the

programmer, as well as handles to different instrumentation

locations, such as the entry and exit of a loop. It uses a

trampoline-based approach to add instrumentation code, called

a snippet, to the binary.

We use Dyninst in its static analysis and rewriting mode

and implement a back-end for the Cinnamon compiler to

generate the code accordingly. Similarly to Janus, code is

emitted for each command to iterate over the list of control-

flow elements and execute analysis code. Actions are also

encapsulated similarly in callback functions and the Cinnamon

compiler emits code that uses Dyninst APIs to determine the

location of the specified instrumentation point in the binary.

The action code is instrumented as snippets and any static

analysis data can be directly passed to callback functions as

one or more arguments.

3) Integration with Pin: Pin performs dynamic binary

instrumentation using a just-in-time compilation approach,

where code is instrumented on-the-fly just before it is executed.

There are four main instrumentation modes in Pin that allow

inspection and instrumentation of a binary at different granular-

ity levels (i.e., instruction, trace, routine and image). Routine

and image modes work ahead-of-time and need symbolic

information; information about loops is not available in Pin.

Similarly to Janus and Dyninst, the Cinnamon compiler

encapsulates actions in callback functions. The code to insert

calls to these functions in Pin is enclosed inside instrumentation

callback routines that operate in one of the four instrumentation

modes based on the granularity specified by the programmer.

As such, instrumentation code can be inserted before or after

an instruction and at the entry and exit of a function or basic

block. All necessary boilerplate code and conversion of data

to be passed as arguments to callback functions is generated

by the Cinnamon compiler.

D. Summary

We have presented Cinnamon, a domain-specific language

for binary profiling and monitoring, with a compiler that

targets three instrumentation frameworks. We now describe use

cases for our language, before evaluating its usefulness as an

abstraction tool.

V. CASE STUDIES

We present a number of profiling and monitoring codes as

case studies to demonstrate the breadth of applications that

can be built with Cinnamon.

A. Profiling Tools

1) Instruction Counting: Instruction counting is a simple and

common profiling application. We demonstrate two different

ways to implement it in Cinnamon.

The code listed in figure 5a is a basic way to count the

number of load instructions in a program. The command on

lines 2–6 selects all load instructions and applies an action to

increment a global counter inst_count before each of those

instructions executes. The final value of the counter is printed

to standard output on program exit (lines 7–9).

In contrast, the code shown in figure 5b implements a

lower overhead version of instruction counting. It keeps a

local counter of load instructions for each basic block (lines

3–6) and defines an action to add the local counter to a global

counter before each block executes (line 7–9). This results in



1 uint64 inst_count = 0;

2 inst I where (I.opcode == Load) {

3 before I {

4 inst_count = inst_count + 1;

5 }

6 }

7 exit {

8 print(inst_count);

9 }

(a) Basic

1 uint64 inst_count = 0;

2 basicblock B {

3 uint64 local_inst_count = 0;

4 inst I where (I.opcode == Load) {

5 local_inst_count = local_inst_count + 1;

6 }

7 before B where (local_inst_count > 0) {

8 inst_count = inst_count + local_inst_count;

9 }

10 }

11 exit {

12 print(inst_count);

13 }

(b) Lower overhead, demonstrating nested commands

Figure 5: Two implementations of instruction counting.

action code being instrumented and executed once per basic

block instead of once per load instruction and the overhead is

thus reduced compared to the first code. The nested command

on lines 4–6 is within the scope of the basic block defined

by the outer command and contains no action code, hence the

statement on line 5 is part of the analysis phase only. Thus,

the computation of local_inst_count is complete before the

action on lines 7–9 is instrumented for basic block B.

The Cinnamon compiler encapsulates the code within action

blocks at figure 5a, line 4 and figure 5b, line 8 in callback

functions. For Janus, the compiler emits code to dynamically

insert clean calls to these functions whereas the rest of the

code is mapped to the static analyzer. Both the analysis and

instrumentation of actions is done statically for Dyninst and

dynamically for Pin.

2) Loop-Coverage Profiling: Loop-coverage profiling is an

important tool that can be used to identify hot loops, which

are potential targets for optimization, such as parallelization.

Figure 6 shows the code for a loop-coverage profiler in

Cinnamon. At the entry block of each loop, during its execution,

the loop is marked as an active or living loop (lines 10–12)

and set back to inactive at the exit block of the loop (lines

13–15). Next, at the entry to each basic block, a global counter

of executed blocks is incremented and local counter of each

active loop is also incremented (lines 23–31) to record that this

basic block has been executed. At program exit, the coverage

of each loop is calculated as a percentage of the total number

of basic blocks executed in the program (lines 31–36).

B. Monitoring Tools

1) Use-After-Free Vulnerability Monitoring: Use-after-free

vulnerabilities occur when a programmer frees memory (in a

language without garbage collection) but holds on to a pointer

1 uint64 global_bbs_exec = 0;

2 int next_global_id = 0;

3 dict<int, int> loop_bbs_exec;

4 dict<int, int> living_loop;

5 int num_loops = 0;

6
7 loop L {

8 int loop_id = next_global_id;

9 next_global_id = next_global_id + 1;

10 entry L {

11 living_loop[loop_id] = 1; // loop becomes alive

12 }

13 exit L {

14 living_loop[loop_id] = 0; // loop no longer alive

15 }

16 }

17 module M {

18 num_loops = num_loops + M.numLoops;

19 basicblock B {

20 entry B {

21 global_bbs_exec = global_bbs_exec + 1;

22 for (int i=0; i<num_loops; i=i+1) {

23 if (living_loop[i] == 1) {

24 // update loop count for all alive loops

25 loop_bbs_exec[i] = loop_bbs_exec[i] + 1;

26 }

27 }

28 }

29 }

30 }

31 exit {

32 for (int i=0; i<num_loops; i=i+1) {

33 uint64 count = (loop_bbs_exec[i] / global_bbs_exec) * 100;

34 print(count);

35 }

36 }

Figure 6: Loop-coverage profiler.

1 dict<addr,int> freed;

2 dict<addr,addr> base_table;

3 int size;

4
5 inst I where (I.opcode == Call && I.trgname == "malloc") {

6 before I {

7 size = I.arg1; // size of malloc allocation

8 }

9 after I {

10 addr base_addr = I.rtnval; // base address of allocation

11 for (addr i=base_addr; i<base_addr+size; i=i+1) {

12 base_table[i] = base_addr;

13 }

14 freed[base_addr] = 0;

15 }

16 }

17 inst I where (I.opcode == Call && I.trgname == "free") {

18 before I {

19 addr ptr_addr = I.arg1; // address to be freed

20 freed[ptr_addr] = 1;

21 }

22 }

23 inst I where (I.opcode == Load || I.opcode == Store) {

24 before I {

25 addr acc_addr = I.memaddr; // address being read/written

26 addr base_addr;

27 if (base_table[acc_addr] != NULL ) {

28 base_addr = base_table[acc_addr];

29 if (freed[base_addr] == 1) {

30 print("ERROR:␣use␣after␣free␣access");

31 }

32 }

33 }

34 }

Figure 7: Use-after-free vulnerability monitoring.



to that memory that is later reused. They can be exploited

by attackers by reallocating the memory to themselves and

leveraging the reuse to take over the program.

Figure 7 shows code written in Cinnamon that monitors and

intercepts the occurrence of use-after-free accesses [47]. The

command on lines 5–18 selects call instructions to the malloc

function. For each such instruction, it records the size, which

is the first argument of the malloc call, and the base address

of the allocation, which is the value returned by the malloc

call (line 6–15), and marks as allocated addresses in the range

<base_addr, base_addr+size>. The second command (lines

17–22) selects all call instructions to free and defines the

action to mark the input addresses as freed.

The last command (lines 23–35) selects all load and store

instructions and checks whether they represent a use-after-free

access, i.e., the address being read or written having initially

been allocated by a malloc call and later freed.
2) Control-Flow Integrity—Shadow Stack: Shadow stack is

a defense mechanism used to implement control-flow integrity

on backward edges (i.e., function returns) [48]. An attacker

can divert the execution of the program to malicious code

by changing the contents of the function stack, including the

return address, through a buffer-overflow attack.

Figure 8 shows Cinnamon code that implements the stricter

form of backward CFI, allowing a callee to return only to its

most recent caller. For each call instruction, we record the

address it should return to on a shadow stack (lines 4–10).

Next, we specify code for all return instructions that checks

the return address before each is executed and ensures that it

matches the address on top of shadow stack (lines 11–19).
3) Control-Flow Integrity—Forward Edge: Control-flow

integrity is also used to protect forward edges, i.e., function

calls and branches. Direct function calls and branches are not

an issue, since their target is part of the code memory and

hence not writeable. However, the targets of indirect calls and

branches are calculated from the contents of data memory,

which can be written to and corrupted.

Figure 9 shows our implementation of forward CFI, which

allows any valid function to be the target of a call. We first

record the start address of each function (lines 4–6) in a file.

These values are read by initialization code in a vector vtable

(lines 14–17). The command on lines 7–13 specifies an action

before each call instruction that checks whether the target

address is one of the valid function addresses (i.e., found in

the vectorvtable).

VI. DISCUSSION AND EVALUATION

Cinnamon’s value can be considered based on a number of

factors, such as whether it is expressive enough to implement

different binary profiling techniques, the length of code to write

a certain technique, its portability to different frameworks and

platforms, as well as its performance. We discuss these factors

along with any limitations.

A. Expressiveness

The abstractions for control-flow elements and instru-

mentation locations defined by Cinnamon allow flexibility to

1 dict<int,addr> sstack;

2 int top = 0;

3
4 inst I where (I.opcode == Call) {

5 before I {

6 addr fall_addr = I.nextaddr; // return address of call

7 sstack[top] = fall_addr;

8 top = top + 1;

9 }

10 }

11 inst I where (I.opcode == Return) {

12 before I {

13 if (top > 0 && sstack[top-1] == I.trgaddr) {

14 top = top - 1;

15 } else{

16 print("ERROR");

17 }

18 }

19 }

Figure 8: Shadow stack.

1 vector<addr> vtable;

2 file outfile("fAddr.txt");

3
4 func F {

5 writeToFile(outfile, F.startAddr);

6 }

7 inst I where (I.opcode == Call) {

8 before I {

9 if (!vtable.has(I.trgaddr)) {

10 print("ERROR");

11 }

12 }

13 }

14 init {

15 for(line l = outfile.getline(); l!=NULL; )

16 vtable.add(l);

17 }

Figure 9: Forward control-flow integrity.

insert code at different granularities and enable the implement-

ation of a wide range of profiling and monitoring techniques.

Instruction counting and loop-coverage profiling use cases

demonstrate the flexibility of Cinnamon to perform profiling

at both fine- and coarse-grained levels.

The field dot operator notation, such as I.opcode, facilitates

a uniform interface to access different attributes of a CFE in

both static and dynamic domains. Any new fields or attributes

related to a CFE can be supported by implementing the

corresponding accessor function.

The analysis code and actions can be represented in C-style

along with a number of supported data structures and I/O

operations. This makes the analysis and instrumentation code

very expressive and enables complex profiling and monitoring

techniques to be applied.

B. Code Length and Complexity

In order to build a custom profiling or monitoring tool

using existing binary frameworks, programmers have to write

framework-specific code for set-up or tear-down, insertion of

callbacks, and access to attributes. In Cinnamon, we shift the

burden of adding this code from the developer to Cinnamon’s

back-end. This reduces the number of lines of code that a

programmer has to write, as well as the complexity of the



TABLE I: COMPARISON OF CODE LENGTHS.

Use case Cinnamon Dyninst Janus Pin

Inst count 10 215 90 23
Loop coverage 40 229 150 -
Use-after-free 39 260 193 57
Shadow stack 20 196 136 38
Forward CFI 17 207 103 50

code, and helps the programmer to focus on implementing

their specific profiling or monitoring technique and not worry

about lower-level framework details. Any boilerplate code needs

to be written only once by the back-end developer.

Table I shows a comparison of the number of lines of code

written for the use cases from section V when implemented in

Cinnamon versus directly in Dyninst, Janus and Pin. Dyninst,

in particular, requires verbose code, but Cinnamon still needs

almost an order of magnitude less code than Janus. Note also

that writing a Cinnamon program just once allows it to be

targeted to any of these three frameworks without modification,

instead of having to develop separate versions for each tool, as

explained next. The only exception here is the loop coverage

example which could not be translated to Pin in its original form

as Pin does not have a notion of loops. However, integrating

loop detection techniques [49] in Pin could make it transparent

to the programmer.

C. Portability

Cinnamon captures the abstractions, types, and code patterns

that are specific to binary instrumentation but are independent of

the underlying framework being used. Hence, the programmer

can port or re-target their code to a different framework just

by using its respective back-end and without having to rewrite

the code.

Figure 10 shows a comparison of code in Dyninst and Janus

to access the return value of a function call, using x86 calling

conventions, and pass it to an instrumented callback function

on_call. Similarly, figure 11 shows the code to access a

store’s memory address and pass it to an instrumented callback

function on_store. In Cinnamon, the value of these parameters

can be accessed simply by using I.rtnval and I.dstaddr

notations respectively; the corresponding code is hidden behind

and enclosed in utility library routines.

Figure 12 presents a comparison of the number of in-

structions in SPEC CPU 2017 benchmarks as reported by

Cinnamon’s instruction-counting program, targeted to the

frameworks we have described. As can be seen, instruction

counts are consistent between these back-ends, despite using

exactly the same Cinnamon program. Pin, however, reports a

significantly higher count for omnetpp, exchange, bwaves and

fotoni3d as it performs dynamic instrumentation and hence

is able to discover more instructions than Janus and Dyninst

(i.e., it counts instructions within dynamically linked libraries).

Unfortunately, several benchmarks would not work correctly

with Dyninst, either when targeted by Cinnamon’s compiler,

1 /*----- callback function ----*/

2 void on_call(uint64_t rtn_val){

3 printf("return␣value:␣%ld\n", rtn_val);

4 }

5 /*- code to access return value & add instrumentation -*/

6 BPatch_Vector<BPatch_snippet*> instArgs;

7 BPatch_retExpr rtn_val;

8 instArgs.push_back(&rtn_val);

9 BPatch_funcCallExpr instrFuncExpr(*on_call, instArgs);

10 BPatchSnippetHandle *handle = app->insertSnippet(instrFuncExpr,

11 *instr, BPatch_callAfter);

(a) Dyninst

1 /*----- callback function ----*/

2 void on_call(uint64_t rtn_val){

3 printf("return␣value:␣%ld\n", rtn_val);

4 }

5 /*- code to access return value & add instrumentation -*/

6 dr_insert_clean_call(drcontext, bb, instr, (void*)on_call,

7 false, opnd_create_reg(DR_REG_RAX));

(b) Janus

Figure 10: Code to access the return value of a call instruction instr in
Dyninst and Janus.

1 /*----- callback function ----*/

2 void on_store(intptr_t dst_addr){

3 printf("dest␣addr:␣%p\n", dst_addr);

4 }

5 /*- access destination memory address & add instrumentation -*/

6 BPatch_effectiveAddressExpr dst_addr;

7 BPatch_Vector< BPatch_snippet*> instArgs;

8 instArgs.push_back(&dst_addr);

9 BPatch_funcCallExpr instrFuncExpr(*on_store, instArgs);

10 BPatchSnippetHandle *handle = app->insertSnippet(instrFuncExpr,

11 *instr, BPatch_callBefore);

(a) Dyninst

1 /*----- callback function ----*/

2 void on_store(app_pc st_instr){

3 app_pc dst_addr;

4 instr_t decoded_instr;

5 int num_dsts;

6 dr_mcontext_t mc = {sizeof(mc), DR_MC_ALL};

7 void *drcontext = dr_get_current_drcontext();

8 dr_get_mcontext(drcontext, &mc);

9
10 instr_init(drcontext,&decoded_instr);

11 if(decode(drcontext, st_instr, &decoded_instr) != NULL){

12 num_dsts = instr_num_dsts(&decoded_instr);

13 for(int i=0; i<num_dsts; i++){

14 opnd_t mem_opnd = instr_get_dst(&decoded_instr,i);

15 dst_addr = opnd_compute_address(mem_opnd, &mc);

16 }

17 }

18 printf("dest␣addr:␣%p\n", dst_addr);

19 }

20 /*- add instrumentation -*/

21 app_pc src_instr = instr_get_app_pc(instr);

22 dr_insert_clean_call(drcontext, bb, instr, (void*)on_store,

23 false, 1, OPND_CREATE_INTPTR(src_instr));

(b) Janus

Figure 11: Code to access the memory address being written by a store
instruction instr in Dyninst and Janus.

or when writing code directly for that framework due to

incomplete or imprecise control-flow recovery.



0.01

0.1

1

10

100

cpuxalan

om
netpp

perlbench

x264
xz leela

m
cf

deepsjeng

exchange

bw
aves

cactusBSSM

nam
d

parest

povray

lbm
w

rf
blender

cam
4

im
agick

nab
fotoni3d

rom
s

Lo
a

d
 i

n
st

ru
ct

io
n

s 
(b

il
li

o
n

s)

Dyninst Janus Pin

Figure 12: Number of load instructions in SPEC CPU 2017 benchmarks (test

input) as reported by Cinnamon back-ends.

D. Performance

The performance of the final under-observation binary is

dependent on the instrumentation code that is added by the

developer in their Cinnamon program and not as a result of

overheads that Cinnamon’s compiler introduces. However, we

encapsulate the action code in callback routines and use clean

calls in DynamoRIO and Pin, and function-call snippets in

Dyninst to execute them. Due to context switches, callback

routines may have a higher overhead than inserting the action

code directly into the binary using low-level instructions.

However, the underlying binary framework may still inline

the clean call (as DynamoRIO does) if the code within the

callback function is simple enough (i.e., it does not involve

calls to other functions).

To demonstrate the overheads we experienced for the tools

developed in this paper, we compared execution times of

profiling tools we wrote ourselves directly in each framework

and the tools developed with Cinnamon across SPEC CPU

2017 benchmarks. Figure 13 shows the overhead for the

instruction counting tool from figure 5b, one of the simplest

realistic tools that could be developed and therefore not reliant

on the skill of the programmer to write (either natively or

in Cinnamon). Cinnamon’s overheads are highest for Pin

(average 4.75%), then Janus (average 1.88%) and finally

Dyninst (average 0.67%), although the latter does not work

for all benchmarks, as previously described. Overheads are

negligible for many benchmarks and all under 4% for Janus

and Dyninst. Considering Pin only, with the highest overheads,

other tools are similar—use-after-free monitoring (figure 7)

has 0.52% overhead on average and 1.78% maximum, whereas

forward CFI (figure 9) has 3.06% overhead on average and

11% maximum.

E. Limitations

The control-flow abstractions provided by Cinnamon essen-

tially rely upon the support of corresponding features provided

by underlying target frameworks. For example, Pin does not

have the notion of loops thus the granularity levels at which

code can be inserted will be limited. Similarly, access to various

attributes of a CFE depend on whether the corresponding

accessor routines are implemented in utility libraries. In other
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Figure 13: Cinnamon overhead (%) for instruction counting (figure 5b) across
SPEC CPU 2017 benchmarks compared to implementation of the same profiling
tool natively in the underlying framework.

words, some dynamic attributes may not be available for purely

static techniques and vice versa. Currently, we only provide

accessor routines for the attributes, which means they cannot

be modified. This is sufficient for our purposes as Cinnamon

programs are meant for performing only passive monitoring. In

the future, Cinnamon could be extended with modifier routines

to allow more transformations.

Further, Cinnamon does not support interrupt routines, such

as those based on timers. Therefore, timer-based sampling

techniques, which may have lower runtime overhead than

sampling every instruction or basic block, cannot be im-

plemented currently. Cinnamon does not currently contain

thread-related primitives, but can instrument multi-threaded

applications if the analysis does not require synchronization.

VII. RELATED WORK

In recent years, there has been a significant interest in the

development of domain-specific languages for analysis and

optimization at source code [50], [51], compiler [52]–[55], and

binary [56]–[59] levels.

CanDL [52] is a constraint-based DSL to write compiler-

analysis code that operates over LLVM’s IR. Users provide

analysis specifications through constraints that are translated

down to an LLVM analysis pass; transformations must be

written separately in C++. CanDL can be used for both peephole

and more complex analysis algorithms with fewer lines of

code when compared to LLVM. However, the specification

for CanDL comprises of a large number of varied and non-

uniform constructs and constraints that users need to familiarize

themselves with before being able to write any analysis code.

In contrast, Alive [53] allows peephole optimizations through

specification of pattern or code sequences in the LLVM IR

that can be replaced with more optimized sequences. The ER-

ESI [60] project on reverse engineering of binaries introduces

a RISC-like intermediate representation langauge called ELIR

to facilitate binary analysis, along with a domain-specific meta

langauge [61] to write analysis routines that operate on this

representation. REIL [62] is another intermediate-representation

language developed to allow writing analysis routines in a

platform-independent manner and has been used as the base

representation in other binary-analysis frameworks [63].



MDL [59] is a DSL that facilitates collection of performance

data through dynamic binary instrumentation at function entry,

exit, and call points but is limited to collecting performance

metrics through counters and timers. In contrast, DiSL [57]

is a bytecode instrumentation language embedded in Java to

support dynamic program analysis by inserting code snippets

in the form of Java classes. Mussler et al. [58] propose

an instrumentation DSL built on top of Dyninst that uses

the static structural information to filter the instrumentation

locations in the code and reduce the measurement overhead.

The instrumentation code snippet and filters can be configured

through adapter specifications, an XML file, and user filters,

but it is not clear how these interact. Moreover, the filtering

criteria have been defined only in the context of functions.

It is not clear if and how these criteria can be extended or

customized and whether they can be applied to other code

structures, such as loops and call sites.

There has also been some work in performance-oriented

languages that focuses on specifying algorithmic skeletons

or code patterns that can be used to find their most efficient

and optimized implementations. Lift [64] specifies high-level

algorithmic expressions that can be translated down to OpenCL

implementations for different platforms. The Idiom Description

Language (IDL) [54] describes idioms or patterns in programs

so that legacy sequential codes can be optimized and targeted

to use different optimized APIs and DSLs for linear algebra

libraries, such as BLAS and stencil computation. Halide [65] is

a DSL for writing image-processing pipelines that separates the

concern of specifying computation and how the computation is

performed (i.e., through tiling, vectorization, or parallelization).

VIII. CONCLUSION AND FUTURE WORK

Building binary profiling and monitoring tools from scratch

or using existing binary frameworks can be a very tedious

and time-consuming task. Cinnamon enables a flexible and

framework-independent way of building such tools that allows

the developer to focus on implementing a specific profiling

and monitoring approach. We demonstrate, through different

use-cases, that Cinnamon can be used to express a variety of

profiling and monitoring techniques and can be ported across

frameworks without having to re-write the code.

Cinnamon allows analysis or instrumentation to be performed

on a binary without altering the original application code.

Future work will investigage how Cinnamon can be extended

to support optimization, ranging from peephole transformations

to parallelization.

REFERENCES

[1] J. Kinder, “Static analysis of x86 executables,” Ph.D. dissertation,
Technische Universität Darmstadt, 2010.

[2] X. Meng and B. P. Miller, “Binary code is not easy,” in ISSTA, 2016.

[3] S. Wang, P. Wang, and D. Wu, “Reassembleable disassembling,” in
{USENIX} Security Symposium, 2015.

[4] “Hex Rays, IDA Pro,” https://www.hex-rays.com/products/ida/.

[5] S. B. Yadavalli and A. Smith, “Raising binaries to LLVM IR with
MCTOLL,” in LCTES, 2019.

[6] A. Dinaburg and A. Ruef, “Mcsema: Static translation of x86 instructions
to llvm,” in ReCon, 2014.

[7] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A binary
analysis platform,” in Computer Aided Verification, 2011.

[8] F. Bellard, “QEMU, a fast and portable dynamic translator,” in USENIX

Annual Technical Conference, 2005.

[9] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” in PLDI, 2007.

[10] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood, “Pin: Building customized program
analysis tools with dynamic instrumentation,” in PLDI, 2005.

[11] D. Bruening, T. Garnett, and S. Amarasinghe, “An infrastructure for
adaptive dynamic optimization,” in CGO, 2003.

[12] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang,
J. Newsome, P. Poosankam, and P. Saxena, “BitBlaze: A new approach
to computer security via binary analysis,” in International Conference

on Information Systems Security, 2008.

[13] A. R. Bernat and B. P. Miller, “Anywhere, any-time binary instru-
mentation,” in PASTE, 2011.

[14] A. Eustace and A. Srivastava, “ATOM: A flexible interface for build-
ing high performance program analysis tools,” in USENIX Technical

Conference, 1995.

[15] M. A. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely, “PEBIL:
Efficient static binary instrumentation for linux,” in ISPASS, 2010.

[16] D. L. Bruening, “Efficient, transparent, and comprehensive runtime code
manipulation,” Ph.D. dissertation, Massachusetts Institute of Technology,
2004.

[17] N. Nethercote, R. Walsh, and J. Fitzhardinge, “Building workload
characterization tools with valgrind,” in IISWC, 2006.

[18] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, “Cross-
architecture bug search in binary executables,” in Security and Privacy,
2015.

[19] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha, “Towards
automatic generation of vulnerability-based signatures,” in Security and

Privacy, 2006.

[20] M. Zhang and R. Sekar, “Control flow integrity for COTS binaries,” in
USENIX Security Symposium, 2013.

[21] V. Kiriansky, D. Bruening, and S. P. Amarasinghe, “Secure execution
via program shepherding,” in USENIX Security Symposium, 2002.

[22] D. Bruening and Q. Zhao, “Practical memory checking with Dr. Memory,”
in CGO, 2011.

[23] S. Amarasinghe, “Secure execution environment via program shepherd-
ing,” in USENIX Security Symposium, 2002.

[24] M. Prasad and T.-c. Chiueh, “A binary rewriting defense against stack
based buffer overflow attacks.” in USENIX Annual Technical Conference,
2003.

[25] N. Nethercote and J. Fitzhardinge, “Bounds-checking entire programs
without recompiling,” in SPACE, 2004.
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