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Abstract—Providing reliability is becoming a challenge for
chip manufacturers, faced with simultaneously trying to improve
miniaturization, performance and energy efficiency. This leads
to very large margins on voltage and frequency, designed to
avoid errors even in the worst case, along with significant
hardware expenditure on eliminating voltage spikes and other
forms of transient error, causing considerable inefficiency in
power consumption and performance.

We flip traditional ideas about reliability and performance
around, by exploring the use of error resilience for power
and performance gains. ParaMedic is a recent architecture
that provides a solution for reliability with low overheads via
automatic hardware error recovery. It works by splitting up
checking onto many small cores in a heterogeneous multicore
system with hardware logging support. However, its design is
based on the idea that errors are exceptional. We transform
ParaMedic into ParaDox, which shows high performance in both
error-intensive and scarce-error scenarios, thus allowing correct
execution even when undervolted and overclocked. Evaluation
within error-intensive simulation environments confirms the error
resilience of ParaDox and the low associated recovery cost. We
estimate that compared to a non-resilient system with margins,
ParaDox can reduce energy-delay product by 15% through
undervolting, while completely recovering from any induced
errors.
Keywords—fault tolerance; microarchitecture; error detection;
voltage margins

I. INTRODUCTION

As microarchitectures evolve under the triple constraints of
reducing the size of processors and their power consumption
while increasing their performance, hardware errors grow
more common [14], [19]. The causes of those faults are
numerous: cosmic radiation, voltage fluctuation, defects in
the die, and many others [63], and each comes with different
effects. Although many errors may be naturally tolerated by the
system—their effects being masked and thus not propagating
to program output—a single one may result in an overall
failure that necessitates starting over. Worse, some errors might
remain unnoticed while corrupting the output or behavior of the
program (and so result in silent data corruption). The associated
cost can be particularly high [26], [47], and further improving
performance incurs the risk of additional errors.
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While conventional commodity processors do not feature
redundancy at the hardware level, manufacturers already
sacrifice performance for reliability, by using costly safeguards
to reduce error likelihoods [70], on both voltage and frequency
margins, and to mitigate voltage spikes [32], [57]. Voltage
margins are used to decrease the probability that a transistor
exhibits errors when faced with an electrical fluctuation;
undervolting can be used to claw back energy lost to these
margins [51], [65]. Conversely, CPUs can be configured to
run faster than their specification allows, a practice known as
overclocking [54], but this incurs the risk of timing errors that
voltage and frequency margins are used to prevent.

Recent advancements in fully redundant execution allow full
error detection and correction at very low cost. Ainsworth and
Jones’ ParaMedic [8], [10], which has generated industrial
IP [9], is an architecture that uses the fact that duplicate
fault-tolerance runs of an application are more amenable to
parallelization than the original computation. This allows the
execution of fault-checking code to be split up onto many
small, highly efficient cores, reducing overheads by an order
of magnitude compared to dual-core lockstep. When full fault
tolerance can be achieved at lower overheads than are already
paid by overvolting and underclocking commodity systems
for resilience [54], this raises the question of what happens
if we eliminate these margins, and instead achieve correct
execution by utilizing redundant hardware to check and repeat
incorrect computation. This perspective gives the potential for
both better error coverage and lower power consumption even
for commodity processors. Alternatively, as all such designs
are energy-limited, it gives the ability to increase performance
by overclocking, without affecting correctness.

Ainsworth and Jones’ model [10] assumed that the time taken
to handle actual errors is negligible. While this is consistent
with the low observation rate of errors at large [33], this
paper aims to use such a technique in deliberately error-
intensive scenarios by lowering guard bands. In these situations,
performance overheads from rollback can become significant.
We design a new system, ParaDox, with adaptive mechanisms
to reuse this parallelism strategy in error-intensive environments.
ParaDox, with its dynamic error adaptation and efficient
rollback, increases overheads only marginally compared with
error-free fault tolerance. We present:

• A new method to simultaneously improve performance
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and reliability compared with commodity systems, by com-
bining efficient hardware fault tolerance with aggressive,
error-seeking voltage thresholding.

• Techniques to minimize ParaMedic’s performance loss
at high error rates, by dynamically adjusting checkpoint
lengths and redesigning structures to optimize rollback,
dynamic adjustment of error rates through frequency-
voltage feedback mechanisms, and rescheduling of checker
cores to enhance power-gating potential.

• An error-injection simulator for ParaDox, including a
variety of fault models, to observe the extent to which,
under deliberately induced heightened error rates, Para-
Medic loses performance that ParaDox can regain.

• A comparison of simulated overheads for ParaDox versus
undervolting data taken from real systems, providing the
expected energy savings for such systems with the addition
of fault-tolerance hardware.

ParaDox gives an estimated power reduction of 22% through
undervolting, at a 4.5% typical slowdown, giving energy-delay-
product reductions of 15%. Alternatively, a 15% reduction
in power consumption can be achieved by restoring this
performance overhead through dynamic overclocking.

II. BACKGROUND

A. Errors in digital circuits

Microprocessors are made of circuits that may contain a variety
of vulnerabilities, usually classified into two categories. First,
hard faults cause errors that repeat over time, most often
due to a physical defect [64]. Second, soft errors are single-
event upsets, typically caused by cosmic radiation, electrical
noise [16], and voltage fluctuation [63]. In the latter case, an
electrical component (e.g., transistor or capacitor) manifests
one or more soft errors by immediately yielding an incorrect
state, which may propagate. However, the component does not
remain affected and resumes its normal behavior afterwards.

While the individual transistor soft-error rate tends to
decrease with size because of the reduced likelihood of being
hit by a cosmic ray [56], the overall contribution of radiation
towards soft-error rates increases when components shrink
because the total exposed surface does not vary much between
technology generations and any electrical fluctuation generated
by radiation has more effect on smaller components [63].
Higher temperatures combined with smaller transistors also
increase variance and the risk of soft errors [20]. Hence,
manufacturers incorporate margins in voltage and frequency
to minimize the soft-error rate [36].

Errors in general appear either in combinational logic
(e.g., register latches, functional units) or in memory. Handling
the latter case has been extensively studied because of the
early predominance of faults in this area, and error-correction
code (ECC) has been widely adopted as a practical means
of minimizing its impact. Combinational vulnerabilities, on
the other hand, are by nature dynamic, hence they cannot be
checked statically, like ECC, since the computation itself needs
to be duplicated in some way to provide resilience.

Fig. 1: Structure of a load-store-log segment.

B. ParaMedic

ParaMedic [8], [10] is an architecture that leverages highly
parallel execution checking to provide error resilience with
low performance and power overheads. The architecture uses
two different kinds of processor: out-of-order superscalar
main cores and simpler checker cores. Each main core is
assigned a large number of small, slow checker cores. The main
cores are commodity processors used in everyday computing
environments, having a medium-to-large out-of-order pipeline,
and perform the initial computation. The checker cores work
in-order at a low frequency; they are also several orders of
magnitude more power and area efficient [1], [2], [3].

The computation of a main core is divided into segments
at run-time, consisting of a series of contiguous committed
instructions. At the end of each segment, a checkpoint is
taken, which keeps track of the current architectural state of
the main core and the number of committed instructions for
the segment. Upon checkpointing, a checker core is launched
with the architectural state of the previous checkpoint and is
expected to redo all the computation of the past segment until
it reaches the same number of committed instructions. An
error is detected if there is a discrepancy between the final
architectural state of the checker and the one that has just
been recorded. Checkers do not actually have access to main
memory on the data side: their data cache is replaced by a
load-store log that records the memory operations performed
by the main core during the appropriate segment. Each time
a main core executes a load from memory, the loaded value
is kept along with its address in the load-store log. Similarly,
each store is logged along with its address and the previous
value at that address. Each time a checker performs a load,
it reads the value kept in the load-store log, and whenever it
attempts a store, the new value is compared to the one in the
log, an error being detected upon mismatch. The main and
checker cores have different paths to the cache system that do
not share any logic; the latter reads values from the load-store
log that is written to by the load-forwarding unit [8].

The log is itself divided into segments, as illustrated in
figure 1, which correspond to the run-time segments of the
main core. Since the order of the operations is kept identical
between the main and the checker cores, each segment of
the load-store log acts as a queue, which accelerates memory
operations for the checker cores compared to a normal cache.

Different checker cores check different segments of the
computation of their main core simultaneously. The underlying
fault-tolerant architecture therefore executes every instruction
twice, and duplicates loaded values at the cache, reading them



Checker core states:

C : Committing computation
W: Waiting for a previous core to finish
R : Running
F : Segment being filled
I : Idle

Fig. 2: Heterogeneous error checking in ParaMedic.

out along a different path, thus any error in the committed
instruction stream (or propagated to memory) is handled, and
cannot propagate system-wide. Any full lockup of a core is
detected via timeout. If all checkers are busy when a main core
reaches a checkpoint, the main core has to wait for a checker
to finish, introducing further slowdown in addition to the cost
of checkpointing itself. Since we may have multiple main cores
working in parallel and possibly communicating, unchecked
values are buffered in the L1 cache until checks are complete,
with dynamic mechanisms to trade off communication and
checkpoint frequency. Stores that are uncacheable must be
checked before they can proceed. The overheads of this are
managed by dynamically adjusting checkpoint lengths based
on memory-mapped-access frequency. Syscalls are considered
as standard operations that can be rolled back, unless they
update external state.

The starting architectural state, and the stores belonging to
the segment of a checker that is waiting for older checker cores
to finish, are kept in the log as long as the checker is waiting,
in case an error occurs in those older checkers. Upon error
detection, the main core stops its execution, all the stores that
happened between the beginning of the faulty segment and the
current state—which are all kept in the load-store log—are
reverted, and the main core is reset to the architectural state
kept as the starting point of the checker that discovered the
error. The five possible states of a checker core and the design
of ParaMedic are summarized in figure 2.

The correctness of the system comes from the principle of
strong induction: if all segments up to one point have been
verified independently, then the computation up to that point is
correct; the rest of the computation up to the current state is still
under verification and can be entirely reverted. ParaMedic offers
comprehensive coverage since every committed instruction is re-
executed on a different physical substrate. Yet the performance
overhead is minimal and the additional hardware complexity

is much smaller than what would be needed for triple-core
lockstep [35], thanks to the use of heterogeneity, and since all
forwarding and decoding decisions are duplicated, no ECC is
required within the main core.

III. MOTIVATION

Counterintuitively, it is actually a constraint to assume that
errors should be exceptional. Indeed, once a fault-tolerant
design has been conceived, the common case assumption
should be that errors can occur (and will be corrected). The
opposite to this hypothesis, required by non-resilient designs,
imposes penalties in terms of power consumption and clock
frequency [32], [51], [57], [65]. However, allowing errors in the
general case is not straightforward either and requires assessing
the risks and the potential benefits precisely. In particular, an
architecture designed to recover from a few sparse errors may
not be able to handle higher error rates. Hence, such a design
needs to be tested against actual errors, both to ensure its
validity for the single-fault case and then for the general one.

In this section, we explain how to leverage error resilience
to improve the performance and energy consumption of a
system through undervolting and overclocking. We motivate
the need for an experimental analysis of the behavior of a fault-
tolerant design faced with actual errors, to give quantitative
measurements of error-recovery time, and the limitations the
existing ParaMedic [8], [10] design faces.

A. Margins for error-free computation

On non-resilient systems, errors must be avoided at all
costs to guarantee correctness and to prevent escalation
to a potentially catastrophic failure. Hence, manufacturers
place margins on the voltage and clock frequency of their
products, to ensure that even a slight fluctuation in the power
input, or a single cosmic ray, does not alter any part of
the computation [70]. Numerous studies have focused on
inherent software resilience to hardware errors [43], or proposed
software mitigation techniques to reduce or remove the effect
of a fault. Previous work has designed systems that can give
an indication of voltage errors starting to appear, by using
representative regions with ECC [12], [13], or monitors to
detect some forms of timing violation and noise spikes [24],
[66], without the ability to handle metastability [15]. We
argue that allowing widespread errors to happen on a more
regular basis, only to be caught and corrected by a full
fault-tolerant architecture, deserves consideration. Instead of
reducing reliability only to catch a subset of the resulting effects,
such an architecture could improve reliability relative to a
standard-margined baseline, while mitigating and even inverting
the resulting power consumption overhead via undervolting
techniques and the removal of margins and spike mitigations.

Undervolting reduces the power consumption of the machine,
but incurs the risk of timing errors because of the reduced
energy gap between the two states of a transistor. Overclocking,
by comparison, makes a CPU run at a higher clock frequency
than its nominal one. Figure 3 shows, schematically, the
evolution of the total power consumption of a fault-tolerant chip
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Fig. 3: Error-resilient undervolting in theory.
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Fig. 4: Timing breakdown for a single error in ParaMedic.

with the voltage level. On the left, too much undervolting causes
errors to appear, and recovery requires additional energy. On
the right, with no undervolting, excess power is needed because
of the voltage margins. Minimal energy consumption is attained
between these two areas. Overclocking and undervolting could
thus be aggressively used to optimize the performance and
energy consumption of any fault-tolerant chip. However, this
requires adequate fault tolerance: if errors are to become
commonplace, detection and recovery costs must be low enough
to avoid dominating execution time. This could be problematic
because error-resilient designs are not usually tested against
actual errors, so the costs involved when facing them are at
best theoretical, and typically not mentioned.

B. Error-recovery costs

Figure 4 summarizes the timing of an occurence of an error,
then its subsequent detection and recovery in ParaMedic. The
lower band corresponds to execution of the main core and
each tile corresponds to a single instruction; the upper band
corresponds to the checker running for the considered segment.
In the figure, an error happens at the ith instruction of the
segment, which is n instructions long. After the last instruction,
the checker core is launched. The length of each tile is
longer for the checker, to represent it being slower to execute
instructions. The divergence in behavior of the checker and the
main core appears when the checker executes the ith instruction,
but there may be additional delay before it is detected as a
change in state, bounded by the segment size.

Upon detection, the main core rolls back all the memory
writes that happened since it executed instruction 1 of the
segment, then it re-runs everything from that point. The
overhead from recovery is thus comparable to the “Re-run”

part of the figure, plus the rollback cost, which is a linear
function of the “Re-run” length. This is wasted computation,
exacerbated by the assumption that errors are rare, and thus
that we can delay their checking for a long time and roll
back any subsequent computation. Under a scenario where we
deliberately increase the frequency of errors, this design point
is suboptimal and we instead need to design a system that
performs well with both a high and low frequency of errors.

IV. PARADOX

To make ParaMedic suitable for use in deliberately error-
intensive scenarios, we extend it to ParaDox. ParaDox is
a system able to deal with both high and low error rates
with good performance, and able to dynamically control
voltage and frequency to influence error rates and energy
consumption. We introduce new optimizations to improve
ParaDox’s power-gating potential, reducing its overall energy-
consumption overhead and thus improving its capability to
achieve better performance than commodity systems (given
their current voltage and frequency margins), and to reduce
the cost of rolling back checkpoints in the presence of errors.

A. High-error adaptation

ParaMedic assumes that errors are rare, and thus large amounts
of computation can be checked at once, all of which can be
rolled back if any part is found to be incorrect. This does not
directly affect correctness, as incorrect execution will always
eventually be rolled back. However, it will cause performance
loss if errors are frequent because the large amount of execution
subsequent to an error is wasted and must be reverted. Even
worse, with very high error rates this can result in livelock. Still,
with low error rates, frequent checkpointing lowers performance
by causing many copies of the register file to be taken, blocking
commit for 16 cycles [8].

ParaDox uses a dynamic approach, where we maximize
performance by increasing checkpoint length when error
frequency is low, and decreasing it when error frequency is high.
ParaMedic already uses such an approach for communication
between cores, and so we use the same technique, an additive-
increase multiplicative-decrease (AIMD) scheme, for errors.
If an error is observed in a checkpoint, we halve the target
instruction window for the following checkpoint. If no error
is observed, we increase the instruction window by 10 for
the next checkpoint, up to a limit of 5,000 instructions; the
maximum is set such that checkpointing cost is negligible, but
the worst-case recovery time is still bounded by a relatively
short stream of checked instructions, and the increment of 10
set to allow a steady increase under a phase change.

Still, the multiplicative decrease above is sometimes not rapid
enough. When applications change phase quickly, this can cause
slowdowns, where the assumed level of delay tolerance is too
high, and thus the main core is kept stalled while the checker
cores catch up. This is not just caused by high error rates;
another example is when the L1 cache’s buffering of unchecked,
but written to, cache lines, necessary for a total-order rollback
on multicore systems, is expended. Ideally, the total checkpoint



length of all of the checker cores combined should not cause
an eviction attempt of an unchecked dirty cache line, as this
eviction must wait until a check is complete. To make this
adjustment more rapid, while avoiding instability in checkpoint
length, we add a new factor in the calculation. On a checkpoint-
length reduction (either from an observed error, or from an
eviction attempt), ParaDox sets the new checkpoint length as
being the minimum of half the current target length, and the
actual observed length of the previous checkpoint, which may
be smaller as a result of an eviction attempt, a discovered error
part-way through the checkpoint, or reaching load-store-log
capacity. This can allow ParaDox to outperform ParaMedic,
in addition to its new ability to optimize performance in the
presence of errors.

B. Dynamic voltage adaptation

Adapting the checkpoint length fits it to the error rate, but
that error rate can increase if the voltage gets to a threshold
that is too low. In this situation we also want to dynamically
adjust the system, this time reducing the error rate by trading
off power consumption to increase the voltage. We would
like to use a similar AIMD mechanism to dynamically move
between safe voltage levels and possibly unsafe voltages that
have lower power consumption. We can do this by halving
the difference between the current and known safe voltage
(thus increasing supply voltage) on an error, and otherwise
increasing the difference by lowering voltage.

However, there are two issues here. The first is that by
halving the difference between current and safe voltages on
each error, we will spend a significant amount of time using
more power than is strictly necessary for safe operation. Instead
we use a multiplicative factor of .875 [68] to balance the fast
return-to-safe operation with the need to optimize a highly
performance-critical variable. Still, we want to spend as much
time at low voltages as possible; as ParaDox can recover from
errors, we should typically operate below the point of first
error. We record the highest voltage at which an error was
seen so far, and use this to adapt the voltage decrease factor,
which slows down by a factor of 8 below this tide mark. This
causes ParaDox to spend more time in error-seeking regions
before an error is observed. This tide-mark error point is reset
every 100 errors, to allow ParaDox to become error-seeking
again, in case the application or system has changed to a more
voltage- or error-tolerant phase.

The second issue is that, while sudden significant voltage
increases on an error will allow us to quickly move to an
error-free guard band, sudden shifts may instead add voltage
spikes into the system, which may cause further errors that
will need to be rolled back. Instead, another way we can
temporarily return to correct execution at the current voltage
is by dropping frequency. To smooth out the voltage response
while maintaining fast reaction to errors, and optimizing for
performance, we instead use the AIMD-set voltage as a target,
which a controller can dynamically move towards based on
the timing limits of the regulator circuit. While the current

Fig. 5: ParaDox doesn’t allocate checker cores round-robin.
Instead, it allocates the lowest-indexed free checker core and
log to execute and store the next checkpoint, allowing us to
power gate the logs and cores of higher indices. Key: F =
filling, R = running, P = power gated.

voltage is lower than the target, we scale clock frequency to
compensate. This is based on the formula:

fcurrent = ftarget ×
vcurrent − vthreshold

vtarget − vthreshold

where f is frequency and v is voltage, and we assume that
attainable frequency is proportional to supply voltage minus
threshold voltage [21].

There are other reasons for dynamically adjusting the level
of sub-margin voltage we are willing to accept. Different
workloads use different parts of the hardware, each of which
will start to hit timing limitations, and thus exhibit errors, at
different voltages. ParaDox allows the best performance to be
dynamically tuned for any workload. For example, workloads
not using the floating-point unit need not preserve timing for
the FPU path. We assume that individual main cores have their
own voltage islands, so each can change independently. Each
group of checker cores will have a separate, common island,
to allow them to run a significantly lower clock frequency than
the main core, and without undervolting.

C. Aggressive checker gating

To avoid significant slowdown to a main core, the parallel
checker cores collectively must go further than just matching
the average instructions-per-cycle (IPC) of the core they
are checking. Instead, the minimum IPC of the checker
cores must match the maximum of the main core, otherwise
certain instruction combinations will cause slowdown in some
scenarios, reducing overall performance. For example, the
divide unit of a checker core may be considerably lower
performance than its other units, as a proportion of the main
core’s execution units. Long checkpoints, enabled by buffering
many loads and stores per checkpoint in the load-store log,
help to mitigate this by aggregating many instructions together.
As slowdown is only incurred when all checker cores are busy,
the aggregate effect on instruction throughput of a few slow
instructions will be minimal, and can be hidden by those that
are comparatively faster. Still, programs often sit in tight loops
that perform the same computation repeatedly, meaning any
workload that the checker cores suffer at will consistently
lower performance. Checker cores must provide good enough
performance even for the worst case.



However, this offers an opportunity since it implies that
for the majority of the time, some checker-core resource will
be underutilized. This means we should actively try to avoid
powering checker cores when they are not needed. To optimize
this, we schedule checking to favor using fewer checker cores
if they are not all needed, rather than the round-robin strategy
of ParaMedic. Instead, the next checker core (and thus log
segment) to be scheduled is chosen as the free core with the
lowest ID. This ID is then stored at the end of the log segment
previously filled, to allow us continuity, and likewise at the
front of the new log segment, to allow us to roll back stores
in the event of an error. An example is shown in figure 5. To
avoid uneven ageing, ID 0 is chosen at random at boot time.

This means that, under situations where fewer checker cores
can keep up with the main core, we can entirely power gate
unscheduled checker cores, rather than leaving them and their
load-store-log segments powered and holding state.

D. Line-granularity rollback

As ParaMedic is optimized for high performance in low-error
environments, rolling back to a consistent state is a slow
operation, performed by walking load-store-log segments in
reverse to undo each store in turn. This uses similar state to
the detection mechanism, in that for detection we need all
words that have been loaded and stored, and for correction
those stored words also store the old versions they wrote over.

However, under an assumption of temporal and spatial
locality, this rollback is inefficient. While we could roll back to
any uncommitted checkpoint we currently have stored, within
a checkpoint we need only roll back to the earliest version of
a write to a given location; all other writes will be overwritten
in the rollback process. This means we need only store the
first version of the write in each checkpoint in order to roll
back to all consistent states possible to return to.

We can identify whether a cache line has been written
to within a given log segment using existing state within
ParaMedic. Each line in the L1 cache features a timestamp to
prevent eviction of uncommitted data, which we can reuse to
work out whether we need to store an old version of a cache
line. If this timestamp is less than our own currently executing
timestamp on the main core, we take a copy of the cache line,
insert it at the top of our SRAM load-store-log segment, then
set the timestamp in the cache as our own. Otherwise, we do
not need to store the old version in the cache, and instead store
only the newly written word in the detection segment.

Since this timestamp is stored per cache line to reduce
overheads, we must also store our rollback data in cache-
line format. Still, this simplifies metadata management by
allowing us to copy all ECC from the cache line itself rather
than recalculate any for the data word or address. Under the
assumption that programs show temporal or spatial locality,
this scheme is likely to use less space in the log than recording
individual words multiple times. The cache line’s physical
address is stored in the log, to allow rollback without translation,
whereas as with ParaMedic [10], loads and stores to be checked
are stored with the virtual address to avoid translation on

(a) A write modifies a cache line that has not yet been written in this
timestamp, so the old line is placed in the log for potential rollback.

(b) A subsequent write to the same line in the same checkpoint region
has matching timestamps, so no copy of the cache data need be taken.

Fig. 6: ParaDox splits out rollback data at the cache-line
granularity into load-store-log segments, optimizing rollback
by storing only the oldest data copies within a checkpoint.

checker-core execution, with the original translation on the
main core implemented redundantly.

This setup is shown in figure 6. Detection logs are stored on
one side of the log; rollback cache lines are stored on the other.
The current index for each is stored with the log, and once
these two indices meet, or will meet following the commit of
the next load or store, a new checkpoint is created and the
current one issued to the relevant checker core.

E. Coverage

ParaDox is primarily designed to cover errors in undervolted
or overclocked main cores through redundant execution on
other hardware. This re-execution can cover any error inside
the main core, as the execution is fully repeated, provided
the same error does not also occur on checker cores. Further,
assuming the checker cores are not undervolted or overclocked,
the compute units of the system will be strictly more reliable
than a non-redundant system with voltage margins, as even
though the main core will exhibit errors, it is likely to be correct
with high probability, therefore any errors on the checker cores
(from, for example, cosmic rays) will be caught with high
probability by not matching the main core execution, and will
be rolled back and fixed. We could go further, and deliberately
increase error rates on the checker cores through undervolting.
As main and checker cores are microarchitecturally distinct,
critical paths are unlikely to be in the same places, and thus
errors caused by not meeting timing constraints are unlikely to
result in common-mode errors across both main and checker
cores. However, as the checker cores are already low energy,
this is likely to result in significantly smaller savings than
undervolting main cores, and its error properties are more
complex to quantify, so we use traditional voltage margins on
checker cores, leaving only errors caused by mechanisms such
as cosmic rays.

ParaDox’s redundancy only covers the compute elements of
the chip since reliable systems usually cover memory using
ECC bits [62], where we assume SECDED protection. ECC
has been shown to be effective in protecting caches in the face



Main Cores

Core 3-Wide, out-of-order, 3.2 GHz
Pipeline 40-Entry ROB, 32-entry IQ, 16-entry LQ,

16-entry SQ, 128 Int / 128 FP registers, 3 Int
ALUs, 2 FP ALUs, 1 Mult/Div ALU

Tournament 2048-Entry local, 8192-entry global, 2048-
Branch Pred. Entry chooser, 2048-entry BTB, 16-entry

RAS
Reg. Checkpoint 16 cycles latency

Memory

L1 ICache 32 KiB, 2-way, 1-cycle hit lat, 6 MSHRs
L1 DCache 32 KiB, 4-way, 2-cycle hit lat, 6 MSHRs
L2 Cache 1 MiB shared, 16-way, 12-cycle hit lat, 16

MSHRs, mostly incl, stride prefetcher
Memory DDR3-1600 11-11-11-28 800 MHz

Checker Cores

Cores 16× In-order, 4 stage pipeline, 1 GHz
Log Size 6 KiB per core, 5,000 inst. max length
Cache 8 KiB L0 ICache per core, 32 KiB shared L1

TABLE I: Core and memory experimental setup.

of voltage reduction [13], though in practice cache memories
may be designed to meet all voltage and clock combinations at
which ParaDox is used, with only compute logic undervolted.

V. EXPERIMENTAL SETUP

To evaluate ParaDox’s error resilience and performance under
high-error scenarios, we model a high-performance system
using the gem5 simulator [17] with the ARMv8 64-bit
instruction set, and configuration given in table I. This is similar
to systems validated in previous work [31] and the X-Gene
3 processor that has previously been used for undervolting
experiments [51]. For overall performance metrics, we evaluate
over SPEC CPU2006 [34], fast forwarding for 1 billion cycles
then running for 1 billion cycles. For design-space exploration,
we evaluate over compute-bound bitcount [30] and memory-
bound stream [44] workloads used in previous work [8], [10];
these are intended to show the worst-case and best-case for
the overheads caused by overly large checkpoints, respectively;
the longer SPEC workloads would fit somewhere between
these two extremes. We extend the multicore timestamp-based
implementation of ParaMedic [10] to provide the adaptation,
cache-line and power-gating techniques, along with a new
fault-injection mechanism to test its performance under error-
intensive scenarios. All baselines are relative to an unmodified,
fault-intolerant system.

We do not test here on multicore workloads, because ParaDox
does not directly change ParaMedic’s behavior with respect to
inter-thread communication. Still, the major cost of multicore
ParaMedic, which is in buffering unchecked stores in the
L1 cache [10], for single-threaded as well as multi-threaded
workloads, is modeled, and improved upon, in the following
evaluation.

A. Error-injection framework
We now present the error framework we use for analyzing
the effect of faults on the performance of ParaDox. Figure 7

Error injection
An error is injected...

- in the architectural state
- in the load-store log

depending on...
- the commit or load-store 
  log entry number
- the kind of instructionof a checker core

Error detection

An error can be detected...
- at store comparison
- during the final architectural state check
- because of an exception or an invalid checker core behavior

or remain undetected

Error recovery

If detected, the error is recovered with cost:
memory rollback + re-run 

Fig. 7: Summary of error testing

summarizes the key steps. The gem5 simulator enables fine-
grained error injection that can target specific functionalities;
various frameworks for error injection have been implemented
on top of gem5 [55]. However, these are not compatible with
ParaMedic’s simulator because of the unique interplay between
the main core and its checkers, whose microarchitectures
differ. As a consequence, we have developed an in-house error-
injection framework1 for ParaDox and ParaMedic.

In ParaDox, an error detected by a checker core can either
indicate an error in the checker itself or in the main core. For
the limited purpose of our hardware simulation, we choose to
restrict error injection to the checker cores only. This simplifies
error recovery without changing the results, as error detection
is symmetrical; the mechanism is unable to distinguish which
component caused the error, only that one is incorrect. Injecting
into architectural state likely overestimates error frequency by
a constant factor, but given the modeled error rate [65] is
exponential, this cannot impact results significantly.

For the purpose of linking the error rate with the global slow-
down of the system, we only simulate independent errors (as for
cosmic rays). This is not entirely accurate since errors caused by
undervolting may result in repeating patterns from not meeting
timing constraints. However, since ParaDox changes frequency
and voltage under such circumstances, duplicate errors are
unlikely and thus a random injection suffices to measure
recovery times. We thus choose the geometric probability
distribution to govern the gap between two error injections.
We inject errors in three ways, to approximate the wide variety
of possible faults that can happen in hardware:

– Memory faults are represented by errors in the load-store
log. In practice, this consists of simply flipping one bit of
the data carried by a memory operation. The geometric
gap between two injections corresponds to the number of
targeted operations (either only loads or stores).

1This framework is available at https://doi.org/10.17863/CAM.61808.

https://doi.org/10.17863/CAM.61808
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Fig. 8: Performance of bitcount under increasing error proba-
bilities, relative to ParaMedic with fault-free execution.

– Combinational faults from a defect in a particular func-
tional unit provoke errors that only arise when specific
instructions are executed. To tackle this category of unre-
liability, simulation compromises the targeted functional
unit by corrupting the registers that have been modified
by the concerned instructions. An instruction that has no
effect is indistinguishable from a discarded instruction: no
error is injected if no register is touched.

– Other combinational faults of unknown origin are sim-
ulated by flipping a single bit in a register, chosen at
random among those of the targeted category (integers,
floats, flags, or miscellaneous). The gap between two error
injections on the architectural state is simply the number
of instructions being executed.

Errors due to undervolting are generated using an exponential
model following the formula from Tan et al. [65]. Its parameters
correspond to the Intel Itanium II 9560 8-core processor with a
nominal voltage of 1.1 V taken from this work, rather than the
Arm system we simulate. This choice is driven by practical
reasons, since no such study of the evolution of the error rate
with the voltage exists for Arm processors; the closest related
work would be the study by Parasyris et al. [54] of the minimal
reliable voltage, but it does not indicate the evolution of the
error rate past the first error. This setup is intended to match
the rate of errors in an undervolted setup with a variety of
different sources, rather than precisely matching the form of
errors in undervolted systems, to capture performance effects.

VI. EVALUATION

A. Performance under high error rates

Figure 8 shows the performance of ParaMedic and ParaDox,
relative to error-free execution under ParaMedic, at increasingly
probable error rates. Both are suitable at error rates that are
common in normal settings (even 10−7 gives approximately
300 errors per second, whereas a typical processor sees a
negligible rate of fewer than one per year), but when we
deliberately incur high error rates, ParaMedic quickly starts to
suffer significant overheads. When 1 in every 5,000 instructions
and memory operations incurs an error, ParaMedic slows down
by 16×, as checkpoints are too long and copies of executions
repeatedly incur errors, introducing livelock into the system.
By comparison, ParaDox, with its dynamic checkpoint lengths
that adapt to error rates, can achieve similar performance at
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Fig. 9: Comparison of the average overheads due to re-
execution and memory rollback at low and high error rates.
Error bars show range.

error rates two orders of magnitude higher. In fact, 1 in every
100 operations (an unrealistic error rate in practice) must fault
before a slowdown of 8× is reached.

B. Analysis of recovery times

Error recovery comes in two parts: memory rollback first, then
re-execution. In figure 9 we see how the average absolute
recovery times differ between ParaMedic and ParaDox at
various error rates; bitcount [30], a compute-bound workload,
and stream [44], a memory-bound workload, are shown. For
bitcount with low error rates, ParaMedic and ParaDox waste
similar amounts of execution that is later found to be incorrect.
However, at higher error rates, the average is brought down
by an order of magnitude. This is because ParaDox adjusts its
checkpoint lengths based on the observed error rate, and thus
wastes less execution time. This is less pronounced for stream,
which, due to being memory-bound, fills the load-store log
quickly, and so has smaller checkpoints in general.

By comparison, rollback times for ParaDox are typically an
order of magnitude lower regardless of error rate due to storing
a cache line once per checkpoint, rather than each word every
time it is written to, which allows for memory operations to be
completed significantly more quickly. In general, the overheads
from error recovery are dominated by wasted execution; while
the ranges of re-execution and rollback cost overlap in some
cases, wasted execution is typically between one and two orders
of magnitude more significant. This is seen more strongly in
the compute-bound bitcount, with its larger checkpoints, but
is also seen to a lesser extent in stream. This is unsurprising,
as ParaMedic and ParaDox are designed to tolerate high error-
checking latency to facilitate their form of parallelism.
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C. Dynamic voltage adaptation

Figure 10 presents both error detection only [8] and
ParaMedic [10] against the error-seeking voltage adaption
scheme of ParaDox, with dynamic voltage scaling (DVS).
Despite recovery overheads of up to 10 microseconds (figure 9),
ParaDox rarely increases performance loss significantly. The
main additional overheads, causing increasing slowdown from
left to right, are 1) Register checkpointing and lack of checker
compute (bar 1 in figure 10), plus correct handling of multicore
data propagation (bar 2), plus rollback under frequent errors
(bar 3).

Some workloads suffer from overhead as a result of het-
erogeneous error detection [8] alone. Gobmk, povray, h264ref,
omnetpp and xalancbmk suffer from frequent misses in the
checker cores’ private instruction caches, which could be
alleviated at the expense of more SRAM per checker core.
Others, such as milc and cactusADM, suffer some overhead
as a result of the checkpointing process, despite not being
instruction- or checker-core-bound, which could be partially
alleviated with a larger SRAM log. Other workloads (in
particular bwaves, sjeng and astar) only suffer significant
overheads once ParaMedic and ParaDox’s rollback buffering
techniques come into play, due to a combination of conflict
misses affecting the amount of state that can be buffered in
the L1, and lack of storage space in the partitioned load-store
logs for old cache-line data. While some workloads (bwaves,
mcf and GemsFDTD) overcome the induced errors and have
higher performance than ParaMedic, due to the locality from

line-granularity rollback (section IV-D) designed primarily to
reduce rollback cost and the new checkpointing strategies, other
workloads suffer either relatively minor performance loss from
the rollback, or larger performance loss due to filling the logs
earlier from a lack of locality.

Figure 11 shows how voltage is scaled over time, both with
ParaDox’s default dynamic decrease, where voltage drop is
slowed when below the recent highest-voltage error, and a static
technique, which uses a constant voltage-drop rate. There are
a number of observations we can take from this data. First,
voltage increases, and thus rollback rates, are not constant over
time. From between 5 and 13 ms, voltage decreases over time
are more frequent than in other regions, as checkpoints are
more frequent. This is because the checkpoints are smaller
as the load-store log reaches capacity. Still, this behavior is
desirable: when checkpoint sizes are already small, we can
afford to be aggressive with voltage reduction, as less work
must be rolled back on the discovery of an error. Second, the
dynamic decrease mechanism produces far fewer errors than a
constant decrease, despite achieving a lower average voltage
and being equally responsive on the discovery of errors. Finally,
both averages are significantly lower than the highest voltage
observed error. ParaDox can perform well within voltages
where errors are relatively frequent, and dynamically adjusts
itself to act within these voltages.

D. Aggressive power gating

ParaDox schedules checker cores to favor those with lower IDs
(section IV-C), and allows higher ID cores, along with their
logs and instruction caches, to be power gated when not in
use. We see in figure 12 that while gobmk, sjeng and h264ref
make use of all 16 checker cores in times of peak demand,
typical usage is much lower; no workload uses more than eight
checker cores aggregated across the entire execution. Even
though the area overheads of this are still less than a third of
the rest of the core [8], even relative to a small main core such
as the Cortex A57, this suggests that this could be reduced
by half through sharing checker cores between multiple main
cores, without affecting performance.
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Fig. 12: Proportion of time each of the 16 checker cores is executing, with aggressive checker gating enabled.
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Fig. 13: Power consumption, slowdown and energy delay product on an undervolted system with reliability restored via ParaDox.

E. Power reduction

In figure 13, we take the raw power consumption data for an
Arm-based XGene-3 system from Papadimitriou et al. [51],
compared with the power consumption of sixteen checker
cores, based on public data for small RISC-V rocket cores [4]
adjusted [5], [6] to the same 16 nm process as the XGene-3,
and with per-workload power gating based on figure 12. The
additional power expense of the checker cores is never more
than 5% in addition to the underclocked core, and we thus see
a 22% reduction in power consumption on average. This 5%
figure is from a relatively coarse-grained analysis; alternatives
such as McPAT [42] would be more fine-grained, but lack the
level of accuracy needed to evaluate the differences between
the two very heterogeneous types of core used here. Still, the
overall figure is dominated by the savings from undervolting,
and so changes in the power consumption of the checker cores
would affect the overall saving by only a small factor. With a
larger out-of-order main core, this overhead would be reduced
further, as superscalar power consumption scales superlinearly

with performance, unlike the thread-parallel checker cores.
Still, as ParaDox also introduces performance overhead, we

see that the energy-delay product is not always a positive gain.
Astar suffers from conflict misses in buffered L1 data-cache
writes, causing significant slowdown. The technique could be
turned off in such a scenario, and voltage margins restored,
past thresholds on compute performance on the checker cores.
Alternatively, conflict misses in the cache, or the performance
impact of ParaDox more generally would need to be improved
to have a significant impact on EDP; the power consumption
of the checker cores is already minor by comparison. Still, the
overall EDP improvement is 15%. By contrast, the EDP of
ParaMedic, which does not undervolt, would be 1.08× our
baseline, or 1.27× larger than ParaDox.

This figure bears some limitations and does not show
the whole potential. First, the values from Papadimitriou et
al. [51] are based on error-free undervolting, whereas we
see in figure 11 that ParaDox correctly executes at voltages
significantly below the point of first error. Second, the analysis
assumes a fixed clock frequency for execution, and thus an



element of both slowdown and power reduction. In reality,
this is a single point in a complex space; ParaDox could be
used by scaling clock frequency as well as voltage. In this
scenario, we could instead aim for the original performance
level by increasing clock frequency to overcome the slowdown
of ParaDox, while still reducing voltage margins to lower
than their original level. If we assume power consumption
is proportional to V 2 f , and f to V −Vt [21], a 4.5% clock
frequency increase to mitigate the slowdown could be achieved
with around 0.019 V (at a base of .872 V and threshold
.45 V [25]), increasing power consumption by 9% relative
to the slower case, but reducing it by 15% relative to the
voltage-margined baseline. Alternatively, we could target the
original power consumption and instead increase performance
above the original level, by reducing voltage less and increasing
clock frequency further above the safe specified level. Under
this scenario, we could increase voltage by 0.06 V from the
undervolted 3.2G Hz value, increasing clock frequency by 13%
to around 3.6 GHz under the same assumptions. Both this, and
the ability to redistribute thermal and power budgets elsewhere
in the system, allows ParaDox to have impact on both power
consumption and performance, depending on the properties
necessary for a given system. Finally, it does not take into
account any of the further potential benefits from relaxing
voltage spike mitigations [32], [57] by using ParaDox.

F. Summary

ParaDox improves on ParaMedic’s ability to deal with high-
error scenarios, allowing it to typically achieve the same level of
performance at two orders of magnitude higher error rates. By
dynamically adjusting its voltage based on observed error rates
from applications, ParaDox can deliberately encourage errors
to minimize voltage and power consumption, while recovering
from any errors and with negligible additional performance
impact compared with fault-tolerant error-free execution. We
estimate that ParaDox can reduce power consumption by 22%,
thus giving energy-delay-product reductions of 15% once
its inherent slowdowns are taken into account. In addition,
this power consumption can be traded off for restored or
improved performance relative to a default-margin baseline, by
dynamically scaling frequency and voltage.

VII. RELATED WORK

A. Reduced margins

Undervolting can give significant reductions in energy consump-
tion, and conversely, performance improvements. Tovletoglou et
al. [67] measure that cutting voltage margins without providing
further resilience results in a 20.2% power reduction, whereas
Papadimitriou et. al [51], [53] measure savings of 25.2% for
an XGene-2 server and 22.3% for an X-Gene 3, and up to
20% energy savings for Intel cores [52]. Leng et al. [41]
discover similar levels of savings on GPUs, and Salami et
al [60] measure much larger guard bands on FPGAs.

DIVA [11] is an example that, like ParaDox, utilises
heterogeneity between checker and main core, with DIVA
extracting instruction-level parallelism via a superscalar checker,

rather than thread-level parallelism with ParaDox’s many-core
architecture. EVAL [61] uses a DIVA-like setup to allow
aggressive undervolting, like ParaDox. Still, unlike DIVA,
ParaDox does not require ECC on architectural state, and
thus avoids affecting the critical paths of modern superscalars.
Razor [18], [24] is an architecture that augments critical-path
flip-flops with shadow latches that are guaranteed against delay
errors: this can protect against some forms of delay-based soft
error, though with vulnerabilities to metastability [15] and with
a high inner-complexity cost. Tan et al. [65] experimentally
measure the dependency of soft error rates with undervolting,
with a software approach to provide fault tolerance for linear
algebra and matrix applications.

Other fault models come from designs that aim at preventing
errors altogether. Jiao et al. [36] focus on timing errors,
predicting them in order to adapt the timing margins before any
actual error happens. Similarly Lefurgy et al. [40] implement
an adaptive voltage and frequency scaling mechanism that
dynamically measures and adapts timing margins on an IBM
POWER7 server, with Zu et al. [70] going further by dynami-
cally colocating workloads based on error characteristics. Bacha
and Teodorescu use On-Chip ECC as an early indicator of
voltage errors [12], [13]. Chang et al. [23] design mechanisms
to trade off supply voltage margins for increased latency on
DRAM chips. Krimer et al. [38] split SIMD lanes to reduce the
probability of common-mode errors under timing violations.
Parasyris et al. [54] investigate near-threshold voltages [37] and
the probability of appearance of the first error as undervolting is
applied. Chandramoorthy et al. [22] design SRAM mitigations
for low-voltage error-tolerant accelerators, rather than the errors
in general-purpose compute that are targeted by ParaDox, which
require more comprehensive protection. Bertran et al. [16] give
a technique for mapping voltage-spike stress marks.

B. Error resilience

Handling faults that only appear at the hardware level is an
old problem, starting with the error-prone vacuum-tubes that
were used in early computers. Error-resilience mechanisms
exist in various forms [27]: some rely on built-in self-
test [45], others on dynamic verification of invariants like in
Argus [46], but most hinge on some form of redundancy. Static
information redundancy, as used for ECC [48], does not protect
against combinational-logic faults that can arise at any point
during processor runtime. Those require a repetition of the
program execution itself, using a combination of space or time
redundancy—the former consists in duplicating the components
whereas the latter re-executes on the same hardware.

Various design points of the microarchitectural landscape
have been explored to provide such fault tolerance. Most
solutions can be characterized by their position on the trade-
off between coverage, additional hardware complexity and
performance and power overhead. Coverage by itself is a
complex problem, because of the variety of possible errors that
may hit the hardware. Aggarwal et al. [7] propose a design
for compartmentalising the faulty components: this idea allows
both Romanescu and Sorin [58] and Gupta et al. [29] to offer



architectures in which the valid components that are part of
faulty pipelines can be reused to form alternative functioning
pipelines. To mitigate complexity, various microarchitecture
designs repurpose components that already exist to provide
error resilience. StageWeb [28], which refines StageNet [29],
illustrates this point by leveraging the redundancy present in
chip multiprocessors to recreate a functioning pipeline out of
several ones broken at different points, providing tolerance to
hard faults and graceful performance degradation. Reliability-
Aware Scheduling [50] shows that scheduling to heterogeneous
systems based on the type of operation can reduce error
rates. Still, since we wish to eliminate errors completely,
ParaDox must run on multiple types of heterogeneous core
simultaneously.

The line between spatial and temporal redundancy becomes
blurred with multicore error resilience. AR-SMT [59] explores
the idea of checking the workload of one core, the “leading
thread”, by another (or possibly the same) core, the “trailing
thread”, which benefits from the cache warm-up and branch
prediction of the leading thread. This design is difficult to
implement on hardware however, according to Mukherjee et
al. [49], which prompts LaFrieda et al. [39] to design Dynamic
Core Coupling, in which the leading and trailing threads are
dynamically paired at run-time: this allows the same hardware
parts to act as main and checker cores, and it provides the
flexibility to perform on-demand TMR in case a hard fault
is suspected, by assigning more than one trailing thread to a
leader thread. ParaMedic [10] builds on top of its core error-
detection scheme [8] which provides the same guarantees at
a lower cost via architectural heterogeneity and parallelism.
A similar form of slice-based parallelism, used here for fault
tolerant executions, has previously been suggested by Zilles
and Sohi [69] to verify value-predicted applications.

VIII. CONCLUSION

ParaDox adapts low-cost fault-tolerance hardware to work in
error-seeking environments, by dynamically adjusting voltage
below margins to lower energy consumption while preventing
the propagation of errors, by re-checking this unreliable
computation on multiple parallel checker cores. Despite being
based on a delay-tolerant reliability mechanism [10] where
errors are assumed to be exceptional, we have shown that we
can adapt this delay tolerance and design new mechanisms
to efficiently deal with high error frequencies: ParaDox gives
typical energy-delay-product reductions of 15%.

This work has further interesting implications for the pro-
cessor industry. By using hardware fault tolerance to improve
performance and energy efficiency, we are likely to see a
convergence of high-reliability and commodity hardware. This
is likely to significantly lower the cost of high-reliability
systems, driving their uptake to new markets. ParaDox has
the potential to improve reliability, energy-efficiency and
performance across the board.
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