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Abstract

Functional programming languages contain a number of
runtime and language features, such as garbage collection,
indirect memory accesses, linked data structures and im-
mutability, that interact with a processor’s memory system.
These conspire to cause a variety of unintuitive memory-
performance effects. For example, it is slower to traverse
through linked lists and arrays of data that have been sorted
than to traverse the same data accessed in the order it was
allocated. We seek to understand these issues and mitigate
them in a manner consistent with functional languages, tak-
ing advantage of the features themselves where possible. For
example, immutability and garbage collection force linked
lists to be allocated roughly sequentially in memory, even
when the data pointed to within each node is not. We add
language primitives for software-prefetching to the OCaml
language to exploit this, and observe significant performance
improvements a variety of micro- and macro-benchmarks,
resulting in speedups of up to 2x on the out-of-order super-
scalar Intel Haswell and Xeon Phi Knights Landing systems,
and up to 3% on the in-order Arm Cortex-A53.

CCS Concepts: - Software and its engineering — Func-
tional languages; Language features; » Computer systems
organization — Superscalar architectures.
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1 Introduction

High-level, functional programming languages are becoming
increasingly popular as ways to write terse, bug-resistant
code, even in high performance settings [23, 54]. The mem-
ory access patterns of these codes differ from those in more
traditional languages, such as C, due to core language fea-
tures, such as immutability [41] and garbage collection [7,
37]. This tends to result in code that is very linked-list heavy,
features significant reuse of existing, immutable objects, and
large numbers of pointer-based memory accesses [11].

Studies exist on how more traditional programming lan-
guages affect the memory system and techniques to im-
prove performance [3, 33, 56]. However, due to the very
different memory-access patterns observed in functional lan-
guages [41], little is known about their resulting performance
and memory-access times. The extent to which such code is
memory bound has not been evaluated, and techniques to
mitigate any issues functional programming causes within
the memory system focus on theoretical analysis [41, 49].

We find that similar code patterns in functional program-
ming languages can result in wildly different performance
from the memory system. For example, computing over lists
or arrays of sorted data is typically highly memory bound
compared to running the same code over unsorted allocation-
order data. Therefore, even when writing code in high-level
languages, for good performance it is necessary to under-
stand and consider the detail of the memory-access pattern.
We address this by providing techniques to mitigate per-
formance deficits in badly performing cases via software
prefetching, which has been employed successfully in other
languages [3, 18]. This improves functional-language per-
formance, because although memory accesses are irregular,
they are often predictable, and so these non-blocking loads
can be used to bring data into the cache before it is required.

We add software-prefetching primitives to the OCaml lan-
guage and standard library [1], and evaluate these on list
and array code from the OCaml standard library, sorting
algorithms, and a new benchmark suite covering diverse
memory-bound behaviour, showing speedups of up to 3x.
We also analyse the utility of hardware prefetchers for func-
tional languages, and discover the surprising result that they
are more useful for linked-list workloads than the array
workloads that are more typical in imperative languages,
as no other part of the system can effectively speculate on
their structure, making hardware prefetchers essential for
efficient high-level language implementations.
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2 Background

This paper makes observations and develops techniques
based on microarchitectural behaviour of programs in func-
tional languages. The relevant features are summarised here.

2.1 Functional Programming Languages

The features and implementations of functional languages
have important implications on the memory system. When
we give examples, we use OCaml, but the concepts also apply
to languages such as Haskell, Standard ML and Lisp.

Linked Lists
languages than imperative [37], and are usually directly
built into the language. This is because such languages typ-
ically feature immutable data [41], and so arrays are un-
suitable. Linked lists cause several issues from a memory
perspective [28]. The pointer after each data item results
in a significant memory overhead, and potentially allows
data to be spread across memory, resulting in poor perfor-
mance [21, 29, 47]. Linked lists also only allow sequential,
rather than random, access [48], which reduces the memory-
level parallelism available: we can only access the next ele-
ment once the current one has been loaded.

Linked lists are more common in functional

Garbage Collection High-level languages typically use
garbage collection to avoid manual memory deallocation by
the programmer, and this can impact memory layout and
thus performance. Implementations of OCaml and many
other languages use generational garbage collectors [7, 37],
which allocate data in a small, minor heap, where allocation
is simply decrementing a pointer. Once this is filled, data is
moved into a larger major heap, reordering it in memory.

Objects
where due to generics [12, 45] even primitive values such

as integers are often accessed via object indirection [46]), in

structures such as arrays and linked lists, primitive types

such as integers are allocated in-line, whereas compound ob-
jects are allocated separately, and indirected to via a pointer.

The added indirection can be a cause of poor performance [12],
depending on the details of how these are allocated.

Immutability  Functional languages often enforce im-
mutability on objects, to make programs easier to reason
about, and allow partial reuse of recursive data structures [41].
This can make memory accesses more regular. In languages
with mutable linked lists, elements can be inserted in the
middle of existing linked lists, resulting in irregular accesses
when the list is traversed. However, in languages such as
OCaml [37], while we can reuse the tails of old lists, anything
before an inserted object must be reallocated. This results in
fewer discontinuities, and thus more effective traversal.

Still, the reuse of objects allowed by immutability can be
a double-edged sword. The layout of such objects may be
suboptimal for the traversal of the data we are to use (for
example, if the data is sorted after being allocated). We shall
see that this can cause very poor memory performance.

For many languages, including OCaml (and Java [38],
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2.2 Computer Architecture

The hardware that applications run on is as important as
their programming-language features. Here we describe ar-
chitectural techniques that affect memory accesses.

Prefetching Regular memory accesses, where data is ac-
cessed with spatial locality, are good for performance on
modern systems. This is because the memory system fetches
a cache line, typically 64 bytes of data [26], at a time, and also
because the hardware prefetcher {20, 21, 27, 50, 53] can pick
up and predict such patterns from address sequences. How-
ever, when objects are scattered throughout memory, per-
formance can still be improved by software prefetching [18]:
we can insert non-blocking load instructions to access data
that the programmer predicts will soon be accessed.

Out-of-Order Superscalar Processors Modern proces-
sors can reorder memory accesses to an extent, provided they
are independent. An out-of-order superscalar processor fea-
tures a reorder buffer [32, 51], where currently active instruc-
tions reside. If these instructions don’t feature dependencies
between each other, then they can execute concurrently.This
allows form memory-level parallelism, which can help hide
high main-memory latencies. However, it is dependent on
there being enough independent loads in the reorder buffer
at once. If the reorder buffer is small, if data dependencies
prevent parallelism, or if other instructions within the re-
order buffer restrict the loads available to run simultaneously,
then performance can be limited. This is why prefetching is
also needed for the highest performance [3, 20, 21, 53].

3 Motivation

Fundamental features of functional languages can result in a
lack of spatial locality in the memory accesses of programs
written in them, causing severe performance losses. Here we
explore where these factors appear, and the extent to which
performance is reduced, before moving on to consider how
we can mitigate the problem in the next section.
3.1 Spatial Locality
Figure 1 shows graphically how the memory system can
cause sub-optimal performance for a functional language,
for two data structures: linked lists and arrays of tuples.
Boxes that are joined together indicate consecutive memory
locations, which feature spatial locality and so are likely to
perform well with respect to the memory system. Arrows
indicate pointer indirections, whose targets could be placed
anywhere in memory. However, a good allocator should
place objects that have been created at similar times close to
each other. Hence in practice we may find that the pointer
indirections have spatial locality and also perform well.
Figure 1(a) shows a linked list of tuples just after creation.
Each tuple is located close to its list node, and list nodes are
located close to one another. Traversal of the list follows a
regular pattern of pointer accesses and memory locations.
Figure 1(c) shows the same concept for an array. However,
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Figure 1. The memory structures of both linked lists and
arrays of tuple pairs, before and after sorting.

after sorting the list, shown in figure 1(b), new list nodes
are created but the tuples are unchanged, so the pointers
target memory locations seemingly at random. Traversal
of this list’s data now no longer follows a regular pattern,
and thus memory performance will be poor even with a
good allocation strategy. In the second example (figure 1(d)),
no new array is allocated, since arrays are mutable, but the
pointers to tuples again no longer follow a regular pattern.
These irregular access patterns cannot be predicted by the
memory system, causing significant bottlenecks in relation
to their allocation-ordered counterparts.
3.2 Analysis
Figure 2 shows how long adding together all of the elements
of sorted versus allocation-ordered lists and arrays takes,
using a left fold: the two-operand sum operation is applied
to both the current list or array element, and all elements
seen so far summed together. We see that, despite perform-
ing the same work, it takes over 6x the time to calculate the
sum of either lists or arrays when sorted. Surprisingly, this
is still the case when we make the workload more compute-
intensive by adding in a hash calculation per element (hash-
sum bars). While we may expect the computation to become
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Figure 2. The time taken for adding together large lists
and arrays of tuples in Ocaml, sized to fit in DRAM but not
the cache, using a left-fold operator, and varying the sum
function to either add the numbers together, or to perform a
hash of them, involving more computation.

less memory-bound, due to the extra ~0.06s of compute per-
formed, in fact this compute expands to add an additional
0.5-0.6s of time compared to the same sorted-data bench-
marks without the hash computation.

The code run is identical. The performance drop is caused
by a low instructions per cycle (IPC) metric, in turn caused
by a large proportion of the program’s loads missing in all
caches, forcing a high-latency access to RAM. When the data
is sorted, the array and linked-list accesses are still roughly
sequential, as the array is reused and the linked-list elements
reallocated for immutability. However the data pointed to
by each array or linked-list element is now accessed non-
sequentially in memory, with a large performance hit.

For simple workloads, the out-of-order hardware in the
processor can mask some of the overheads, by fetching mul-
tiple cache misses simultaneously, but when we add in extra
computation, even a simple hash function, the out-of-order
hardware’s issue queue becomes clogged with instructions,
leaving less space for many concurrent loads, and so memory-
level parallelism, and performance, go down by far more than
the extra time to perform the additional instructions.

Still, we can put the low IPC of the cores to good use. In-
stead of accepting the high cache miss rates, we can use the
opportunity to issue non-blocking loads, to anticipate the
cache misses before they occur, and reduce the performance
impact associated with reordered data. The next section in-
troduces software prefetching primitives into the OCaml
compiler to achieve this, before demonstrating how we can
apply this technique to arrays and lists of data.

4 Software Prefetching

A solution to memory-bound code that is traditionally used
in imperative languages is software prefetching [18], where
non-blocking loads for addresses that will be accessed in a
few iterations’ time are issued early. To explore the utility of
this within a functional language, we have designed primi-
tives and composite techniques for prefetching and added
them to the OCaml compiler, using prefetch intrinsics. These
have no side effects save for performance, and are lowered
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1 val prefetch 'a -> unit

2 val Array.prefetch: 'a array -> unit

3 fold_left f x a =

4 r = ref x

5 i=0 length a - 1

6 prefetch (unsafe_get a

7 (min (i+16) ((length a) - 1)));
8 Array.prefetch a (i+32);

9 r := f !r (unsafe_get a i)

10 ;

11 I'r

Code listing 1. An example of prefetching on Array.fold_left.
We prefetch the object at a given array index (line 6), and
the array index itself before we load from it (line 8).

to software-prefetch assembly instruction for compound ob-
jects, or no-ops for base types. Using a basic prefetch function,
and two further intrinsics specialised for typical memory
layouts, we design high-level constructs for linked lists and
arrays to improve the performance of memory-bound code.

4.1 Prefetch Intrinsic

We add the prefetch function as a builtin intrinsic into OCaml.
The prefetch function takes in any type. If the input is a
boxed (indirected to by pointer) object, it is used as input to
an assembly prefetch instruction. In the example given in
code listing 1 in blue (line 6), we load the pointer we will use
in 16 elements’ time, then prefetch the referenced cache line.

The intrinsic is lowered through the bytecode as a Prefetch
primitive. This is ignored by interpreters, but for the optimiz-
ing compiler, Ocamlopt, the backend generates as assembly
a prefetcht0 instruction for X86, and a prfm pldlikeep
for Aarch64. Both of these are prefetches that hint that the
data should be 1) brought into the L1 cache, and 2) it is tem-
porally local, and so should be kept in the cache rather than
immediately evicted once used. Neither of these assumptions
may apply in many common use cases, but the performance
difference between these and other versions is negligible,
and so a single intrinsic simplifies the programmer interface
without affecting speedup. On a fault both are ignored.

Our other techniques, array prefetching and offset prefetch-
ing, are similar but more specialised. Array prefetching takes
two arguments, which are lowered into a prefetch for an off-
set into an array address, and offset prefetching is lowered
into an offset from an arbitrary pointer; the former allows
more type checking at higher levels of the compiler.

4.2 Prefetching from Arrays

We first discuss looking ahead in the array and prefetching
the pointers found using the prefetch function, before giv-
ing a more complicated technique involving access to the
array representation itself. The relevant patterns to prefetch
from arrays have already been explored in detail for other
languages [3]. For functional languages, we need to consider
the additional impact the overheads introduced by pointer
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indirection on all objects [11] causes, resulting in increased
irregularity of memory access and thus prefetching potential.

Basic Prefetching The standard prefetch function on an
array works similarly to in imperative languages [3]. In the
blue line (6) in code listing 1, we first look ahead in the array
to the element we will access in 16 iterations’ time. This
value, determined experimentally, is set such that the data
will have arrived from main memory by the time we need it,
but will not yet have been evicted from the cache due to ca-
pacity misses; still, the same “look-ahead” values work across
workloads and systems, so the programmer need not tune
these directly. The “min” function should be implemented
directly for integers, rather than the default polymorphic
OCaml comparator, to avoid unnecessary computation. As
we iterate over the entire list, we also include a check to
make sure we don’t load over the end of the array: while
a prefetch over the end would not cause any issues, a true
load would fault, and we do perform a true load to access the
element pointer which we will prefetch. In this example, we
load the minimum element of the lookahead value and the
array length, as this can be lowered down into branch-free
execution in assembly, but if expressions to conditionally
call the prefetch intrinsic could also be used.

Array-specialised Prefetching Basic prefetching does
not target all data structures, and so some performance is
left on the table. To gain maximal benefit, we also need to
prefetch the array indices we will access in a few iterations’
time, staggered so that they will also be available for the
basic prefetch. For OCaml, we only have load/store access
to arrays, and cannot take the address of each element, as
addresses cannot be directly computed. Even though the
hardware prefetcher partially achieve this, as we shall later
see in figure 11, it is insufficiently aggressive for the patterns
targeted here, being tuned for dense, regular access patterns.

To solve this we extend the Array library with a further
intrinsic. Rather than taking the address of an element within
an array and passing that to our existing prefetch function,
we instead implement Array.prefetch in the compiler, which
works similarly to Array.get in OCaml, but returns unit,
and is lowered to a non-blocking prefetch in the assembly
instead of a blocking load. This means the programmer isn’t
exposed to the underlying data representation in the process.
An example is shown in red (line 8) in code listing 1.

4.3 Prefetching from Linked Lists

While in general linked-list nodes may be distributed through-
out memory [28], in OCaml they tend to be laid out almost

sequentially due to a combination of the copying garbage

collector and immutability preventing significant reordering.
This gives an opportunity to prefetch in code using linked

lists where it wouldn’t normally exist, since walking the list

is relatively cheap, whereas when code is memory bound,

fetching data pointers referenced by the list is expensive. We
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prefetch_list 1 = 1
| x::y::z::aa::ab::ac::ad::t -> prefetch(ad)
Il - >0
fold_left f accu 1 =
1

| [1 -> accu
| a::1 -> prefetch_list 1; fold_left f (f
accu a) 1

Code listing 2. Simple linked-list prefetch for List.fold_left.

(= RN N N T N U R

1 val prefetch_offset 'a -> unit

2 prefetch_prefind 1 = 1

3 | X::y::z::aa::ab::ac::ad::t ->

4 prefetch(ad); t

5 | - > []

6 prefetch_prefound m = m

7 | x::ys -> prefetch(x);ys

8 | - > [1]

9

10 fold_left f accu 1 =

11 flpf f accu 1 pfl =

12 1

13 | [1 -> accu

14 | a::1 -> prefetch_offset 1 (-256);
15 ( pfr = prefetch_prefound pfl
16 flpf f (f accu a) 1 pfr)

17 flpf f accu 1 (prefetch_prefind 1)

Code listing 3. Complex linked-list prefetch code, along
with offset prefetching, applied to List.fold_left.

can look ahead in the list to increase memory-level paral-
lelism by prefetching multiple data pointers at once.

As with arrays, there is a trade-off between performance
and implementation complexity. We first present a simple
scheme that can be inserted in-place, before presenting a com-
plex scheme that changes function arguments, then finally
presenting an offset technique that speculates assumptions
about the allocator to maximise performance benefit.

Simple List-walking Prefetching Code listing 2 gives
an example of prefetching objects within each list. On each
recursive call, in addition to the original computation, we
walk the list to prefetch several elements down the chain.

Complex List-storage Prefetching The simple scheme
for linked-list prefetching, while unobtrusive to add to code,
is wasteful. We load multiple elements of the linked list
each time because we must walk sequential elements to look
ahead, unlike with arrays, and could avoid doing this work.
Code listing 3 shows how to do this. Before executing the
function, we walk ahead in the linked list and return the tail.
Then, during execution, we need only prefetch the head of
the tail, and return the new tail for the next prefetch. This
alters function arguments, but reduces redundant list walks.
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Table 1. System setup for the three processors evaluated.

System ‘ Specifications

Haswell | Intel Core i5-4570, 3.20GHz, 4 cores, 32KB L1D,
256KiB L2, 8MiB L3, 16GiB DDR3

A53 Odroid C2, Arm Cortex-A53, 2.0GHz, 4 cores, 32KiB
L1D, 1MiB L2, 2GiB DDR3

KNL Intel Xeon Phi 7210 CPU, 1.30GHz, 64 cores, 32KiB
L1D, 1MiB L2, 196GiB DDR4

Offset Prefetching For arrays, prefetching array loca-
tions as well as objects improves performance. However,
we can’t directly apply the same strategy to linked lists as
we can’t look ahead past the next element without loading
all previous elements. Still, linked lists in OCaml typically
end up being allocated almost sequentially in memory. This
brings an opportunity to speculatively prefetch addresses
close to the one being accessed. In a language like C, where
direct access to the addresses of objects is available, it would
be possible to do this with a simple prefetch instruction.
However, since this isn’t allowed in OCaml for memory
safety reasons, we must add a new prefetching primitive that
prefetches with an offset from a given location. This function,
which takes in an object and an integer offset value, issues
a prefetch to the address at of fset words away from the
object. This is also shown in code listing 3, and while it may
seem slightly low-level for a functional language, the pro-
grammer is unable to directly access memory addresses, and
it is impossible to cause memory faults using this techniques,
since prefetches are speculative and non-faulting.

When walking through a linked list we prefetch back-
wards from the current element. This is down to the way
OCaml allocates memory, and has the potential to change
based on specifics of memory allocation and garbage-collection
style. This means offset prefetching makes more assumptions
about the runtime. Still, offset prefetching is low cost as it
requires no loads to be performed, unlike simple or complex
prefetching, and so can be achieved in two instructions: one
arithmetic offset and one prefetch instruction.

4.4 Summary

We have introduced three new primitives—object prefetch-
ing, array prefetching, and object offset prefetching, and asso-
ciated high-level techniques using them—and now consider
how these apply to speed up memory-bound workloads.

5 Experimental Setup

We add software prefetching capability to the OCaml opti-
mizing compiler, Ocamlopt [1]. This uses a two-phase gen-
erational garbage collector, with default 512kiB minor heap
and variable-sized larger major heap. The minor heap uses
bump allocation with copy collection, whereas the major
heap uses a free-list allocator and stop-the-world mark-and-
sweep collector [37]. We use the default next-fit policy in
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the major heap allocator - the most likely to cause fragmen-
tation, and least favourable to offset prefetching out of the
three options (next-fit, first-fit and best-fit). We shall see that
offset prefetching still succeeds, because the prefetches do
not always need to be correct to improve performance. Incor-
rect prefetches are innocuous to performance provided they
bring in few new cache lines, since arithmetic and prefetch in-
structions are cheap (.25 and .5 cycle throughput on Haswell,
respectively [22]), and the evaluated memory-latency bound
workloads are unhindered by additional cycles and memory
bandwidth consumed by mild inaccuracy.

We are interested in the behaviour of memory-bound
workloads, and so we execute on 100MiB of raw data (ex-
cluding overheads from data structures, such as linked-list
pointers or pair data), sized to fit in DRAM but not in the
last-level cache. On A53, this does not fit in the on-chip
DRAM in some cases, so data sizes are reduced until they
fit. In general, all data sizes that do not fit in the cache show
similar improvements from prefetching, so the overall results
are unchanged, and results apply for any reasonably-sized
dataset. This is also larger than the minor heap, and so the
data will go through some reordering before execution from
the generational garbage collector. Input data is generated
using a pseudorandom generator [42], such that it will be
significantly reordered when sorted.

We evaluate on Intel Haswell, Intel Knights Landing (KNL)
and Arm Cortex-A53 processors, all of which are shown in
table 1. Haswell is an aggressive out-of-order superscalar
core; KNL is mildly out-of-order superscalar, and A53 is in-
order superscalar. All feature hardware prefetchers, which
are enabled unless stated. We run benchmarks ten times,
taking the mean, maximum and minimum speedup.

6 Evaluation

Having developed prefetching techniques on arrays and
linked lists, in this section we apply these techniques to
code from the OCaml list and array libraries, before looking
at more complex examples including sorting algorithms and
a benchmark suite of diverse memory-bound workloads. We
then finally look at tuning information, performance in cir-
cumstances that are less memory bound, and evaluate the
utility of the hardware prefetcher for functional program-
ming languages, by customising the code input to the list
and array libraries to a variety of different setups.

6.1 Fold Left

First we look at speedup on the left fold examined in section 3;
the techniques from section 4 are shown in figure 3.

Haswell For Array.fold_left sum in figure 3(a), despite be-
ing heavily memory bound, basic prefetching adds a small
speedup (1.17x), increasing to 1.19xX when we use our array
specialisation that also fetches the sequential array element.
While this is still a notable improvement, it is limited because
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Figure 3. Performance improvement for prefetching
fold_left on both arrays and lists using each of the tech-
niques described in section 4, for the systems in table 1.
Results for all systems and benchmarks are based on tuning
results optimal for fold_left on Haswell.

the extra prefetching code is relatively large, and thus ex-
pensive to run, and also because the out-of-order hardware
can already parallelise the memory accesses to an extent.
However, the same code with some added computation (i.e.,
Array.fold_left hashsum) tells a very different story. Without
software prefetching the extra compute code significantly
increases execution time compared to Array.fold_left sum
(0.64s to 1.1s in figure 2); with prefetching the difference
between the two is negligible, with speedup of 1.75x%. Soft-
ware prefetching allows us to run more compute code in
between each cache-missing load, while still allowing us to
parallelise loads. Since the out-of-order hardware reduces in
effectiveness with more compute code, as it is able to execute
fewer loads together, prefetching shows larger benefits.
Performance improvements for the list-based left fold
are comparable to those for the array-based functions, de-
spite very different access patterns and implementation. The
performance improvement for complex prefetching, where
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the prefetched list is only walked once, relative to the sim-
ple scheme, where it is walked many times, is slight. The
irregular-object memory accesses dominate execution time,
and thus the repeated walking of the list isn’t much more
expensive than the complex technique. Offset prefetching im-
proves linked-list performance more than array prefetching
does for arrays. Although offset prefetching depends on the
allocator and is less reliable, the hardware prefetcher and out-
of-order scheduler are less capable of predicting the pattern,
and so software techniques deliver more improvement.

Arm Cortex-A53. Results for the in-order superscalar
Arm Cortex-A53 (table 1) are given in figure 3(b). We see
that the performance improvements are largely compara-
ble despite the very different systems, but with software
prefetching being more useful in more cases on the A53.

Software prefetching is useful on A53 even when the com-
putation between each recursive call is minimal. This is be-
cause there is no out-of-order execution to dynamically over-
lap memory accesses. The same offsets used on Haswell are
close to optimal, despite the very different architectures.

The data shows that the prefetching techniques developed
for out-of-order superscalar systems are widely applicable
across different architectures. Indeed, in-order systems re-
quire these techniques even more for high performance.

Intel Xeon Phi Knights Landing (KNL). The many-core
Xeon Phi Knights Landing system (also given in table 1) is
based on small, albeit out-of-order, superscalar cores. This
places each core somewhere between the A53 and Haswell
in size and performance, and this halfway house exposes a
number of interesting effects from prefetching.

The results of performing the same experiments on KNL
are shown in figure 3(c). For the cases with added hash com-
putation, we see higher performance improvements than
on both of the other systems: a memory system designed
to allow lots of memory-level parallelism combined with a
processor only able to extract small amount of it by itself
combine to create high utility for software prefetching.

However, we also see that in other cases, prefetching can
significantly reduce performance, unlike on A53 and Haswell.
This is because the system is both less memory bound than
A53, due to being mildly out-of-order, and yet more compute
bound than Haswell, due to being not out-of-order enough.
Hence the compute cost of working out prefetch addresses is
a dominant factor on such an architecture. Whereas smaller
systems are so memory bound that almost any intervention
improves performance, and larger systems are able to deal
the overheads though scheduling from a large instruction
window, the benefits and penalties are magnified on KNL.

6.2 Library Prefetching

We now look at using the best techniques (array and offset
prefetching) on further workloads. We extend the OCaml
list and array libraries to add prefetching by using OCaml’s

ISMM °20, June 16, 2020, London, UK

Data
Array mmmmm  Array (Comp) s
List mm— List (Comp)
25
2
Q
>
B 15 T
Q.
(%)
| i
0.5

iter fold_right for_all exists  map/rev_map
(a) Haswell
Q H
>
el
(9]
(9]
jo R
%)
iter fold_right for_all exists  map/rev_map
(b) A53
25
2
o
>
B 15
Q.
%)
0.5
iter fold_right for_all exists  map/rev_map

(c) KNL
Figure 4. Speedup for functions from the OCaml list and
array libraries, with prefetching. Error bars show the range
of results: high variance (e.g. map/rev_map) is caused by the
garbage collector, independent of prefetching.

dynamic type-checking feature to see if the data is a pointer
or not at run time, at the start of a library call, then use that
to direct to the appropriate prefetching function. Through
this, programmers automatically obtain prefetching benefits.
Figure 4 shows performance for each technique on func-
tions from the OCaml list library applied to sorted lists of
pairs. As previously, we add extra computation based on a
hash (displayed in the graphs as the Comp bars), to model
cases with more instructions per memory access.
Performance improvement is broadly similar to that for
fold_left. Lists typically receive a larger speedup than arrays
do, as even though the prefetching technique is more expen-
sive, the functions are more memory bound. Fold_right is
an exception here on Haswell: as the function accesses the
data pointed to by its list elements in reverse order, we must
prefetch it by storing the elements we will access, then replay
them backwards. This is expensive, reducing performance
gains on Haswell, though increasing them on KNL compared
to other functions, due to how memory bound the code is.
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6.3 Sorting Algorithms

It is not only functions that execute on sorted data that access
data in a different order from its allocation. The sorting pro-
cess itself reorders data multiple times in intermediate stages.
This makes such algorithms a good target for prefetching.
We focus on two particular sorting algorithms: the OCaml
standard library’s [1] Mergesort functions on both linked
lists and arrays, our own, fast implementation of Quicksort
on linked lists, and an implementation of Quicksort for ar-
rays from the OCaml compiler’s test suite [1].

Mergesort repeatedly combines sorted lists or arrays. We
can prefetch within the list merge function, looking ahead
in the sublists to bring in future elements. A notable feature
here is that, unlike in previous examples, we have to prefetch
from two lists or arrays at the same time. As the list we access
next in each case is data dependent, we prefetch the element
of the list we have just accessed. This means that the next
few elements of both lists are always prefetched, and that
we only have to prefetch from one list for each recursive call
of the function. Though Quicksort also operates on lists or
arrays, the complex memory accesses exist within a partition
function, which instead of reading multiple separate lists at
once, creates multiple lists from a single list.

Figure 5 shows the performance improvement from us-
ing prefetching in each case. Though the improvement is
significant for something as fundamental as sorting, it is
smaller than the speedup previously gained on some library
functions. This is for two reasons. First, only a fraction of the
time of the Quicksort and the Mergesort are spent actually
doing partitioning and merging, and thus the proportion
we are attempting to speed up is smaller than in the other
list-library functions. Second, there is limited computation
between each recursive call, and thus Haswell and KNL are
partially able to parallelise memory accesses themselves.
6.4 OCaml Memory-bound Benchmark Suite
Having seen how software prefetching performs on a variety
of kernels, we now look at its behaviour on workloads solv-
ing real-world problems. Due to a lack of publicly available
code in OCaml, we have developed a new set of benchmarks:
the OCaml memory-bound benchmark suite, described in
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Figure 6. Speedup for our OCaml memory-bound suite.

table 2. This is designed to reflect imperative and functional
use-cases, be based on existing, widely applicable code but
with timeable outcomes and with defined inputs, and repre-
sent workload classes that are memory-latency bound.

Figure 6 shows the speedups attainable through prefetch-
ing on each system. Though the same configurations are
used for all systems, every workload consistently is sped up
by the addition of software prefetching. However, the mag-
nitude to which this is the case can vary strikingly between
systems, such that workloads with the highest speedup on
one system may have the lowest on another.

In terms of list-based benchmarks, Graham-Scan [52] is
improved in performance just from its use of List.mergesort,
described in section 6.3, which accounts for a large propor-
tion of its execution time. Quickhull, by comparison, gains a
larger speedup on each workload; although it requires cus-
tom prefetching to do so (not being based directly on the list
library), almost the entire execution can be prefetched.

The CG-Adjlist [44] workload is sped up most significantly
on A53, with a very small speedup on Haswell. This is be-
cause Haswell with its out-of-order execution is able to re-
order and parallelise the simple indirect memory array ac-
cesses created by using the adjacency list representation’s
edges as indices, whereas the A53 is unable to do this. This
is magnified in SpMV-CSR, where A53 gets a very large ben-
efit (2.15x), for an indirection on a more compressed CSR
representation of a graph. KNL can only gain limited benefit
because it is less memory-bound than A53, yet the extra
software prefetching computation is expensive, unlike for
Haswell, which is superscalar enough to hide the overheads.

Hash-Create [25] features a small but positive increase in
performance in all cases. This is because adding elements to
a hash table is dominated by the cost of memory allocation,
which prefetching neither helps nor hinders, though the
ability to prefetch the memory accesses we will store to
within the hash table itself can still extract some benefit. By
comparison, the reading back of elements, which requires no
memory accesses, results in a significantly larger speedup on
Haswell and KNL than on A53, reversing the trend seen for
SpMV-CSR. This is caused by the nature of hash indexing,
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which requires a relatively large amount of computation per
memory access. On A53, this results in a simple outcome: the
program is less memory-bound as it does more computation.
By comparison, for the out-of-order Haswell and KNL, this
computation blocks up the reorder buffer, meaning the cores
are less able to use this out-of-order resource to issue multiple
memory accesses at once. On Haswell, we can regain this
parallelism through software prefetching, which is also true
on KNL, though the benefits are less pronounced due to KNL
having fewer functional units, resulting in compute-bound
behaviour not exhibited by Haswell.

6.5 Look-ahead Distances

Prefetching can be sensitive to the look-ahead distance cho-
sen: after how many future elements should we start to
prefetch? Too low a look-ahead and misses will already have
occurred before data arrives in the cache. Too high a look-
ahead, and prefetched data will be evicted before use.
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Performance improvement remains consistent regardless of
the linked list type, as the linked list data is not accessed.

For the array workloads, in figure 7 we observe an op-
timal distance of 16, which is similar to results on C-like
languages [3]. Still, values of 8, 16, 32, and 64 give positive
improvements, and so we have leeway in setting this value.

Results for the list workloads are given in figure 8. Speedup
for complex prefetching is considerably flatter: all values im-
prove performance, with an optimum at 32. By comparison,
simple prefetching gives a smaller optimal of 8, followed by
rapid performance degradation. This is because the latter
represents a different trade-off, in that for simple prefetching
on lists, a longer look-ahead distance implies more work,
as each prefetch requires walking through every linked-list
node within the look-ahead distance.

Here we show tuning for left folds on Haswell: the same
values optimised here are used throughout the paper on all
workloads and benchmarks. This is because numbers pre-
sented here are relatively consistent regardless of microar-
chitecture and benchmark, as previously observed [3].

6.6 Other Prefetching

We have considered how prefetching can be used to improve
the performance of sorted data in the OCaml list and array
libraries, along with the sorting process itself, and a variety
of more macro-scale workloads. We now consider cases that
involve only linked-list walking, and no extra data access,
along with how using the same prefetching code targeted
at sorted data affects unsorted allocation-ordered data, and
how the hardware prefetcher affects performance.

Listnth  Within the list library, nth is somewhat of an
outlier, as it doesn’t access the data items it iterates through,
it only walks through the linked list itself. This means there
is very little computation between a list node being accessed
and moving on to the next node, and computation time does
not depend on the datatype of the list elements.

While the memory-access pattern of walking the linked
list will be approximately sequential as we have argued pre-
viously, this limited computation means that the hardware
prefetcher will typically be too conservative. We can achieve
higher performance by using software prefetching, via offset
prefetching alone into the linked list itself. This is shown in
figure 9, where we achieve speedups up to 1.7X.
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Table 2. The workloads of the OCaml memory-bound benchmark suite.

Workload ‘ Source ‘ Prefetching ‘ Description
Graham Scan | [52] List Complex, Offset (via | Calculates the convex hull of a list of integer pairs, by sorting the points
sorting algorithm) then categorizing them.
Quickhull [10] List Complex, Offset Calculates the convex hull of a list of integer pairs, using a
quicksort-style divide-and-conquer approach.
CG-Adjlist [44] Array, Basic, Offset Conjugate-gradient solving for graphs in adjacency-list format.
SpMV-CSR PageRank [43], | Array, Basic Performs sparse matrix-vector multiplication on graphs based on an

NAS-CG [9] efficient compressed sparse-row (CSR) representation.
Hash-Create | [25] Array Times the creation and filling of a large hash table.
Hash-Read [25] Array, Basic Times reading all the elements of a large hash table.
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Figure 10. Speedup for prefetching used on unsorted
allocation-ordered data, using the same techniques as previ-
ously used on sorted data (figure 4).

Allocation-order Data  The extra cost associated with
prefetching is acceptable because it is outweighed by the cost
of cache misses when data is spread throughout memory.
However, when data is accessed more sequentially, cache
miss rates are lower, and prefetching less useful. To mea-
sure the impact in these cases, we evaluate our prefetching
techniques on unsorted allocation-order tuples.

We see in figure 10 that on the A53 for linked lists, perfor-
mance is still improved. This is because the in-order system is

so heavily memory bound that the extra computation is still
worthwhile, even though the majority of memory accesses
are anticipated by the hardware prefetcher. In other cases,
performance is typically reduced slightly, as the high cost of
the prefetching reduces the effective instructions per cycle
for the rest of the code. In practical terms, this means that
different library functions should be used for sorted versus
allocation-order lists, except when using in-order cores.

Disabling the Hardware Prefetcher Every system we
evaluate features hardware prefetchers, which are enabled
by default. On Haswell, we can disable this to observe per-
formance [53]. Relative metrics are shown in figure 11.
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There are a number of surprising results in this data. Hard-
ware prefetching gives an enormous performance improve-
ment on many of these workloads, including those for which
software prefetching also improves performance. While ei-
ther software or hardware prefetching alone is sufficient
to get the majority of the potential performance benefit,
both are necessary for the best speedup in many cases. This
is even true when, for example on the unboxed-integer list
benchmarks, the hardware and software prefetchers fetch the
same data. For some workloads (List.fold_right, List.rev_map,
Array.map) the hardware prefetcher captures other access
patterns, such as the stack frame and intermediate lists, and
so more software prefetches would be necessary for maximal
performance in a software-only setup than used here, where
we tune with the hardware prefetcher enabled.

Another surprising result is the speedup for lists versus
arrays from the hardware prefetcher, which is even more
necessary for linked lists in functional languages than for
arrays, despite arrays being a simpler pattern to pick up. This
is due to the out-of-order microarchitecture. In a sequence
of array loads, each address can be calculated independently,
and so the CPU can issue multiple loads in parallel. However,
in a linked list, the data dependencies prevent the out-of-
order hardware from exploiting memory-level parallelism
even if the data is laid out regularly in memory. In effect,
the hardware prefetcher is serving as a value predictor [34]
for addresses, allowing the system to overcome the data de-
pendencies of the linked list and dramatically increasing
performance. While without a hardware prefetcher we can
achieve a similar effect with software prefetching, with nei-
ther performance drops by up to an order of magnitude. This
also has implications for systems without hardware prefetch-
ers, such as in embedded environments, or systems with
less sophisticated hardware-prefetching mechanisms, such
as the Xeon Phi [31], where software prefetching is vital to
achieving high performance from functional languages.

6.7 Summary

Significant speedups are attainable both on sorting algo-
rithms and within the OCaml list and array libraries from
software prefetching. Up to 3X speedup can be achieved
from adding prefetch-aware code into libraries. Our memory-
bound benchmark suite for OCaml displays geomean im-
provements of 20% for Haswell, 28% for A53, and 11.5%
for KNL, with improvements of up to 2.1X. The hardware
prefetcher is vital for functional code: up to 10X performance
loss can be observed without it, though software prefetching
can make up much of this loss in its absence.

7 Analysis

We have shown that adding software prefetching to OCaml
can bring about significant speedups. We now consider wider
applications of prefetching for functional languages and how
our techniques fit into this landscape.
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7.1 Suitability for Functional Languages

Abstracting away precise memory layout, and avoiding giv-
ing the programmer access to memory addresses, is an ad-
vantage of functional languages compared with the low-level
access granted by C-like languages, in terms of ease of writ-
ing correct code. Our software-prefetching extensions are
unable to cause memory faults, don’t give direct memory
access, and don’t affect program semantics. This makes them
highly desirable as a performance optimisation whereby the
correct code can be written first, then improved by adding
prefetch instructions which cannot alter correctness. With
the exception of offset prefetching, none of our techniques
require a specific memory-access layout. None conflict with
garbage collectors that are allowed to move data in memory.
Indeed, while the general concept of prefetching is perhaps
somewhat imperative, that it is so unobtrusive in its imple-
mentation suggests that it is a nice fit even in a pure func-
tional language. That the improvements are so significant
(60% speedup for something as fundamental as accessing the
nth element of a linked list, for example) means that it is
hard to argue against adding such a feature.

7.2 How Does This Apply to Other Languages?

Though we have implemented our prefetching scheme in
OCaml, the performance issues, and thus improvements from
prefetching, are not limited to this language. Many functional
language implementations, including the Glasgow Haskell
Compiler, feature generational garbage collectors [36], make
heavy use of linked lists, and use pointer indirection to imple-
ment list elements. While GHC features a prefetch intrinsic,
this feature is undocumented, and we were unable to com-
pile programs using it; we suspect it is intended for backend
code such as garbage collection. The need to prefetch boxed
objects that have been reordered is common to all languages
without value types. While C# allows compound objects to
either be indirected to via pointer, or stored directly in an ar-
ray or list [11], as do C and C++, many high-level languages
only allow reference indirection [46]. OCaml allows built-ins
such as integers to be unboxed, thus stored directly within
an array or list, whereas Java’s templated classes such as
ArrayLists use costly indirection even for base types [12, 45].

For our linked-list schemes to work, walking ahead in
lists must be cheap, and thus linked-list nodes must be allo-
cated in an approximately sequential order. Having both a
compacting garbage collector, and immutable objects (which
prevents multiple insertions into the middle of a previously
allocated linked list) is sufficient to achieve this. We should
therefore expect this technique to be widely applicable to
functional languages, but less applicable to those where mu-
tability of data structures is a widely used feature of the
language. In the latter case, list nodes that are contiguous
may be widely distributed throughout memory.
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7.3 Automation

In OCaml, the process of walking through a linked list is eas-
ily observed in the syntax: whenever x::ys appears within a
pattern match, we can infer that a list is likely being iterated
through, and can insert prefetching. This pattern matching
could be done in the compiler; we could generate complex
and offset prefetching, by altering the arity of functions to
take the partially pre-walked list, and by specialising the
prefetch lookup pattern to the targeted data type and mem-
ory access pattern. By doing this in the backend, the output
prefetch code could be specialised for each datatype even
on polymorphic code. While automation is unnecessary for
library code, where implementations can be tuned manually,
for custom code an automatic technique would be favourable.
While the algorithm is relatively simple, we do not have an
implementation due to the unavailability of complex middle-
end optimisers, such as LLVM, for functional languages.
While many compilers, such as GHC and MosML, can out-
put LLVM backend code, too much semantic information is
lost by this point to reliably pick up linked-list code. Still,
with further development of optimising compilers for func-
tional languages, this analysis will be simple to implement,
though as we see in the comparison of figure 4 and figure 10,
the same code with prefetching can result in very differ-
ent performance profiles based on input, so profile-guided
optimisation may be necessary for ideal performance.

8 Related Work

Okasaki [41] designs data structures that work well with the
features of functional languages, particularly immutability.
Our work is in some sense the converse: we observe how the
data structures used in functional languages create oppor-
tunities to improve memory-system performance, and thus
allow prefetching in hardware and software for structures
such as linked lists, where normally this would not make
sense. Previous work on prefetching linked structures in
imperative languages has focused on the links themselves,
such as Luk et al. [35], particularly the single next element
of the list [14] or through storing jump pointers to move
ahead through structures [15] whereas we demonstrate that
such patterns are less significant in terms of performance
degradation than the items they point to, due to memory
layouts, in functional languages, and so we can instead fetch
many elements ahead, achieving more memory-level paral-
lelism. Prefetching in functional languages so far has been
limited to the back-end such as within the garbage collec-
tor [2, 40], where prefetching has been both used to target
existing algorithms [13] and those rearchitected for effective
prefetching [24], rather than in the language itself.
Ainsworth and Jones [3, 5] look at prefetching within lan-
guages such as C. They observe a similar pattern for arrays
that we observe in OCaml, where prefetching workloads
with indirection brings large benefits on in-order cores, and
benefits on out-of-order cores provided a reasonable amount
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of work occurs between accesses. This has been previously
observed for arrays of pointers in Java [16, 17], which is
also a common pattern in OCaml due to the extensive use of
pointer indirection in the language. However, in OCaml, not
all code with pointer indirection is memory bound, due to the
memory-allocation strategy and generational garbage collec-
tor. Further, these features mean linked lists behave similarly
to arrays in OCaml, in that they are mostly sequential in
memory and so are targets for software prefetching.

Wu et al. [56] utilise profile-guided optimisation to insert
software prefetches for linked lists in imperative languages,
when the linked lists are allocated approximately sequen-
tially in memory. Lee et al. [33] and Mowry [39] look at
prefetching imperative languages for array structures in sim-
ulation. Chen et al. [19] use prefetching for hash tables. These
feature a moderate amount of hash computation between
each access, so large performance improvements should be
observed, as we observe in OCaml. Some automated compiler
schemes exist for imperative languages [3, 18, 30, 31, 39]. As
the memory patterns in functional languages differ consid-
erably, the same techniques rarely apply directly.

In today’s systems, hardware prefetchers are designed pri-
marily to find stride patterns in addresses [8]. We have shown
that these also pick up the linked-list and array patterns
found in OCaml. Attempts to combine the strengths of hard-
ware and software prefetching via codesign, to achieve flexi-
bility without instruction cost, have been proposed [4, 6, 55].
These are also likely to yield benefits in functional languages.

9 Conclusion
The features typical within functional languages can result in
highly memory-bound programs. Pointer indirection within
data structures can result in irregular memory accesses, and
linked lists can make memory accesses unpredictable.
However, there is an opportunity to improve the execution
time of poorly performing code by using software prefetch-
ing. We have presented a variety of prefetching techniques
and have integrated these into the OCaml compiler and stan-
dard library. Significant speedup is attainable for code featur-
ing irregular memory accesses, using both arrays and linked
lists, particularly in data that is either being, or has been,
sorted, and even simple patterns can be vastly improved via
software prefetching. We expect the techniques developed
in this paper to be widely applicable to functional languages,
as the features we exploit are not particular to OCaml. The
improvements are large enough that such techniques should
be made widely available even in high-level languages.
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