
The Guardian Council: Parallel Programmable
Hardware Security

Sam Ainsworth
University of Cambridge, UK
sam.ainsworth@cl.cam.ac.uk

Timothy M. Jones
University of Cambridge, UK
timothy.jones@cl.cam.ac.uk

Abstract
Systems security is becoming more challenging in the face of
untrusted programs and system users. Safeguards against at-
tacks currently in use, such as buffer overflows, control-flow
integrity, side channels and malware, are limited. Software
protection schemes, while flexible, are often too expensive,
and hardware schemes, while fast, are too constrained or
out-of-date to be practical.

We demonstrate the best of both worlds with the Guardian
Council, a novel parallel architecture to enforce a wide range
of highly customisable and diverse security policies. We
leverage heterogeneity and parallelism in the design of our
system to perform security enforcement for a large high-
performance core on a set of small microcontroller-sized
cores. These Guardian Processing Elements (GPEs) are many
orders of magnitude more efficient than conventional out-
of-order superscalar processors, bringing high-performance
security at very low power and area overheads. Alongside
these highly parallel cores we provide fixed-function log-
ging and communication units, and a powerful programming
model, as part of an architecture designed for security.

Evaluation on a range of existing hardware and software
protection mechanisms, reimplemented on the Guardian
Council, demonstrates the flexibility of our approach with
negligible overheads, out-performing prior work in the liter-
ature. For instance, 4 GPEs can provide forward control-flow
integrity with 0% overhead, while 6 GPEs can provide a full
shadow stack at only 2%.
CCS Concepts. • Security and privacy → Hardware se-
curity implementation; • Computer systems organiza-
tion → Multicore architectures; Heterogeneous (hybrid) sys-
tems.
Keywords. Hardware Security, Heterogeneous Multicore

1 Introduction
Devices increasingly run applications the user doesn’t trust.
Codemay be running on cloud platforms that share resources
with third-party workloads [17], or on personal devices that
also store sensitive information [60]. Within today’s height-
ened threat environment [6, 25, 27, 34, 39, 48, 50, 53, 56], it
is increasingly necessary to detect security violations in real
time to ensure device safety and trustworthiness.
Enforcing security properites in hardware is a tempting

proposition [11, 23, 28, 31, 32, 36, 37, 47]. However, fixed-
function hardware is limited in utility if an attacker can

simply change their targets to components without protec-
tion, or design software to deliberately circumvent the de-
fences. Additionally, when vulnerabilities are discovered in
hardware implementations [34, 56], they cease to become
useful. Hardware schemes are typically unable to react to
new threats as they appear, and take too long to be intro-
duced into production systems, resulting in long windows of
vulnerability. Software schemes [3, 13, 27, 45, 52, 57], while
flexible, often result in too high overheads to see widespread
implementation: typically, security features with an over-
head greater than 5% do not see widespread use [56]. Current
programmable security hardware [26, 44, 54, 62] is limited
in performance, energy and silicon utilisation efficiency by
the high overheads of software programmable resources.

The Guardian Council presents a different paradigm, pro-
viding the fine-grained user-level control and customisation
of software, while keeping the low overheads associated with
pure-hardware techniques. By leveraging heterogeneous
parallelism and providing a parallel programming model
for checking security properties, we can support updatable
hardware security at extremely low overhead. Instead of
fixed-function security units or software schemes sharing
compute resources with a program, we add a set of dedicated
parallel programmable compute units alongside the main
compute core, each several orders of magnitude smaller than
the main core [55]. These Guardian Processing Elements
(GPEs) are augmented with data-forwarding channels and
limited, widely applicable, fixed-function support, dedicated
to security monitoring. We describe and evaluate our ar-
chitecture and parallel programming model for efficient up-
datable security protection that can change in response to
attack evolution over a device’s lifetime. We utilise these to
analyse filtered traffic from a processor to detect a broad
variety of violations, achieving high efficiency, applicability,
and programmability.

We demonstrate our architecture by offloading techniques
inspired by those currently implemented in hardware or soft-
ware, such as Rowhammer prevention [38], shadow stacks [3],
Control-Flow Guard [57] and AddressSanitizer [2] onto our
GPEs at minimal power, performance, and area overheads.
Contributions

• We propose a parallel architecture, the Guardian Coun-
cil, comprised of an array of Guardian Processing Ele-
ments, to allow realtime monitoring of entire program
execution while maintaining programmability.

• We describe a programming model that provides an
abstraction of the parallelism and monitoring strategy,
to allow this architecture to implement a wide variety
of different security policies, or Guardian Kernels.

• We give Guardian Kernel examples that can be imple-
mented on the Guardian Council for broad use cases.

• We evaluate the overheads of implementing modern
security protocols for a wide variety of techniques on
our programmable architecture in simulation.

2 Requirements
Software schemes [3, 13, 27, 45, 52, 57] to improve security
typically have unacceptably high performance overheads.
Hardware schemes [11, 23, 28, 31, 32, 36, 37, 47] are slow
to react to new attacks, and can be rendered ineffective if
limitations in their fixed functionality can be exploited. We
want to provide a system that can avoid the shortcomings of
each. This requires programmable security hardware capable
of implementing a wide set of current and future techniques.

2.1 Security Detection
A range of attacks target modern systems, all of which must
be prevented from causing damage, such as buffer over-
flows [6, 27], Rowhammer attacks on DRAM [39], side chan-
nels [22, 41] (including speculative-execution attacks [40,
43]) and fault attacks [15, 33]. We need to be able to miti-
gate these with custom actions per technique, such as by
terminating a program when necessary on a buffer overflow,
or by taking actions to avoid harm. Responses vary accord-
ing to the attack but may require, for example, refreshing
DRAM rows if a suspected Rowhammer has been observed,
or rescheduling threads if a side-channel attack is likely.

This paper is mainly focused around schemes that detect
security violations. These are particularly amenable to use of
decoupled hardware that is allowed to observe the execution
stream [51]. Other policies exist for providing security guar-
antees [23], which may also be offloaded to similar hardware,
but these are beyond the scope of this paper.

2.2 Analysis Channels
Many existing schemes [28, 36, 37, 47] use a variety of in-
formation channels to infer security violations, including
performance counters, loads and stores, and instructions
committed by the system. Any technique that seeks to im-
plement similar detection algorithms must provide efficient
channels for this information. Such channels should avoid
slowdown of user programs, while allowing monitoring of
malicious software. This favours a transparent hardware ap-
proach, instead of the programs themselves sending the data
by software signalling.

2.3 Heterogenous Parallelism
Given the breadth of attacks, it is necessary to check a large
number of different properties at once. Each requires cus-
tom programmable behaviour, and may need to analyse sig-
nificant portions of a program’s execution, at low cost in
performance, area, and energy. To do this it is necessary
to exploit parallelism. Small cores provide many orders of
magnitude more efficiency [55] than the large out-of-order
superscalar cores used in modern systems for good single-
threaded performance. If we can exploit these to implement
our architecture, overheads can be minimised.

Still, to be able to use such an implementation strategy the
requisite compute capabilities must be amenable to paralleli-
sation. Fortunately in this instance we have two opportuni-
ties to exploit parallelism. First, we can implement multiple
different techniques at the same time, to detect different secu-
rity violations, and each can be run on its own parallel unit.
Second, for security properties that are more intensive or
observe a larger proportion of the original program stream,
we can exploit parallelism within a technique. This requires
an efficient programming model that allows detection of the
properties we need yet is efficient to implement in hardware
so we can limit the overheads. The next section takes these
requirements and presents a programmable security infras-
tructure based around an array of tiny processing elements.

2.4 Threat Model
We assume that user code is untrusted, and that the operating
system’s kernel is non-malicious but not inherently trusted.
This means that the operating system should be allowed
to install security monitors onto our programmable system
without the monitors themselves needing to be analysed
dynamically, but that the operating system need not be bug-
free, and can have violations of its own properties reported
to it by our system.

The specific guarantees provided by a programmable tech-
nique should, where possible, be a configurable part of the
software programming model: a user should be able to trade
guarantees and coverage for performance, and vice versa.
Still, the fixed-function hardware we use mandates some con-
straints. To decouple a parallel and latency-tolerant model
of execution, useful when utilising heterogeneous cores, we
should allow some latency between an attack occurring and
it being detected. We therefore design our system to ensure
detections in a) a time-frame where only a small amount of
computation can occur, and b) before context switches or
system calls that could allow an attacker to escalate control
to shut down the security monitor itself.
Such detection hardware should be future-proof, by fea-

turing widespread programmability and observability. We
achieve this despite the provision of fixed-function hardware
to improve performance, by allowing new functionality to

Figure 1. Architecture of the Guardian Council.

be emulated in software on parallel hardware where nec-
essary. To limit design invasion into the main core, which
could affect critical paths and implementation complexity,
we deliberately limit observable behaviour to the commit-
ted instruction stream. This means that attacks based on
the behaviour of speculative execution [40] must be picked
up through mechanisms that leave a committed-instruction
footprint, such as an attacker’s attempts to recover leaked
data. To achieve this we assume some monitors running on
our fabric will have visibility of system-wide behaviour, able
to monitor attackers on behalf of potential victims.

3 The Guardian Council
The system architecture of The Guardian Council is shown
in figure 1. A conventional high-performance, out-of-order
superscalar core is coupled to a set of small, microcontroller-
sized Guardian Processing Elements (GPEs), each around a
thousandth the size of the main core and traditionally used
in systems-on-chips for programmable state machines [55].
Data channels (section 3.2) move information to the pro-
grammable units from the core’s instruction retirement stage
and hardware performance counters. This is filtered (sec-
tion 3.3) based on the data the GPEs are set to be interested
in, mapped to a parallel unit (section 3.4), then placed in a
FIFO queue to be processed. On each GPE a Guardian Kernel
runs, which is a small program that implements (part of) a
detection algorithmwe are interested in. If a Guardian Kernel
detects a violation, an exception is raised to the main core,
which can then handle it either by ending the appropriate
process or taking other mitigating actions.

3.1 Guardian Processing Elements
At the heart of our architecture is a set of small, in-order,
microcontroller-sized processing units, to allow high com-
putational capability at low power, performance, and area
overhead. An example is shown in figure 2. Each is limited
in terms of capabilities, but as a sum they can exceed the
peak performance of the main core, given parallel work.

The GPEs each run analysis Guardian Kernels mandated
by the operating system, or subscribed to by the user, but pre-
approved by the OS as part of its trusted code base. The GPEs
have a connection to the hardware counters of the main core,
small private L0 instruction and data caches, along with a
shared L1 cache. Data from the main core is passed to them
from channels indicating instructions committed, which are
then accessed by the cores from their respective FIFO queues.

The GPEs do not need to run the same instruction-set ar-
chitecture as the main core, and are unlikely to need floating
point hardware. Suitable target hardware would be a sim-
plified design, such as a Cortex M0+ [55], with a two-stage
pipeline and support for integer Thumb2 instructions.

3.2 Data Channels
We provide channels from main cores to the GPEs to carry
execution data from programs running on the main core.
These dedicated channels allow visibility of instruction exe-
cution on the core without adding explicit communication
into the program’s code. As in previous work on malware
detectors [37, 47] and debug trace analysers [10, 14, 59], we
add in a channel from the commit stage of the main core,
to transport the opcode, program count, instruction commit
time and operand data to the GPEs. We also transport hard-
ware counter data [28, 30, 36, 46]. Together, these channels
allow a large amount of visibility into execution. For exam-
ple, loads, stores, branches, and performance counters, along
with more complicated memory management instructions
and system calls, can be and forwarded for analysis.
These are similar to existing trace debug mechanisms,

with two key differences. As the Guardian Council works
on-chip, and trace is optimised for off-chip communication,
the Guardian Council typically forwards data instead of com-
pressing and recomputing (for example, by sending instruc-
tion PCs instead of offsets). In addition, while current off-
chip traces lose data when overloaded (to avoid slowdown),
the Guardian Council instead ensures full coverage at the
expense of slowdown, to guarantee security.
To limit design invasion, we do not provide channels di-

rectly into the main core. We read the main core’s registers at
commit time, and load/store data from the load-store queue.
Otherwise, the main core’s microarchitecture remains the
same. The Guardian Council does not, therefore, directly see
the behaviour of speculative state. This has the side effect
of limiting the potential of speculative state propagating to
introduce inadvertent side channels via the Guardian Coun-
cil itself. As the Guardian Council has a system-level view
over running applications, we instead allow it to observe
such behaviour indirectly, through the committed actions of
attackers, in priming and/or probing caches, which are easier
to spot than a victim’s seemingly innocuous misspeculation.

Figure 2. Microarchitecture of a single GPE.

3.3 Event Filter
The event filter is configured by the user to observe the main
core. It sees all retired instructions and associated data from
the commit stage of the core, but passes on only a fraction
of these to the next stage. Although we could pass all retired
instructions to a GPE that runs filtering software, to keep
up with the main core it is beneficial to implement fixed-
function logic for the task. We filter based on the opcode.
The event filter is implemented as a configurable SRAM
lookup table based on instruction masking, with a bit per
instruction type: if the bit is set, then matching instructions
are forwarded on to the mapper.

3.4 Mapper
Once irrelevant data-channel information has been filtered
out, the mapper distributes the output to the appropriate
GPE, both between separate Guardian Kernels running on
different GPEs, and also within a particular Guardian Ker-
nel, if it has multiple threads on different GPEs. To simplify
this, Guardian Kernels are pinned to GPEs, as we discuss
in section 4.3. The mapper features a separate connection
from itself to each GPE, to avoid bus contention, and is im-
plemented as a lookup table similar to the filter, along with
a small amount of fixed-function routing logic.
The case of distributing to different Guardian Kernels

simply involves forwarding the data to any GPE that is pro-
grammed to listen to a given instruction. However, when
work must be split across multiple GPEs, scheduling oppor-
tunities become significantly more complex. We choose to
implement three parallelism strategies: fixed, where partic-
ular opcodes for a Guardian Kernel always go to the same
GPE; round-robin mode, where work is split evenly between
Guardian Kernel threads; and a block mode, where work is
sent to a single GPE until it is full, upon which another GPE
is chosen, and a message sent to the first for synchronisa-
tion. The latter strategy is useful when data shows some
sort of locality. We implement more complicated strategies
in software on a GPE, when applicable (e.g., shadow stack,
section 5.1), at the expense of parallel compute resource.
Before sending instructions to the relevant GPE(s), the

mapper also masks out unimportant data. For example, if
a GPE only listens to one event, the opcode may not be

forwarded. If any operands are unused, they can also be dis-
carded instead of being sent to a GPE queue. The mapper
features a prefiltering stage for the most commonly observed
instructions, such as loads and branches. This means that,
instead of interpreting the register operands in software,
target addresses are computed, or forwarded from the origi-
nal execution, in hardware. This increases efficiency for the
common case, while still allowing more detailed access for
rarer or more complicated situations.
The mapper is conceptually similar to the event filter,

in that it too reduces the events that get sent to each GPE,
rather than broadcasting. Some functionality could be moved
between the two, and both could be implemented purely
in software. However, the mapper should receive a much
smaller amount of data, as it has already been passed through
the event filter, so will only be listening to a small subset of
information from the main core. This means the mapper can
feature more complex logic and scheduling schemes.

3.5 Hardware/Software Counters
Hardware performance counters have been shown to be
important for a number of detection techniques [28, 30, 36].
We give the GPEs access to these values from the main core.
However, not all counters we may need will be provided by a
given system, and so we may want to use the GPEs’ analysis
features to generate custom counters. We add support for
atomically updatable software counters in hardware. Any
GPE is allowed to read from them, but writes are restricted:
a GPE can only update a counter by sending the number
of a counted value it has observed. This gets added to the
counter atomically within the counter unit.

3.6 Per-GPE Queues
To allow decoupling between the mapping of events to a
GPE and the processing of an event, each GPE contains a
small FIFO queue. GPEs have their own FIFOs, which wake
a GPE when not empty. If a FIFO is filled, the main core
must stall commit until the FIFO has space available. This is
necessary to avoid missing events that may be needed for
detecting some security violations. For inter-security GPE
communication, it is possible to write data to another GPE’s
FIFO. This allows the GPEs to be combined tomap and reduce
data, or for the GPEs to act as a pipeline to perform different
work on the same data, for example.

3.7 Memory System
The GPEs need amemory connection to fetch instructions. In
addition, as they may keep state, they also need data memory
access. Each GPE has its own small, private L0 caches for
instructions and data. All GPEs share an L1 cache, which is
connected in turn to an L2 cache shared with the main core.
Coherence is implemented between GPEs using the shared
L1 as an inclusive snoop filter to avoid full broadcast and
thus limit its cost. Still, many Guardian Kernels do not need

shared memory, and instead use message-passing via the
GPEs’ FIFOs, avoiding locks and L1 cache contention. This
shared L1 is 4-way set associative, being optimised under the
assumption that L0 data cacheswill share data that GPEs only
read (AddressSanitizer, CFI), or that Guardian Kernels will
stream data and mark accesses as non-temporal (favoring
eviction from L1 over other data).

3.8 Multicore
Though our example (figure 1) is shown as one main core,
this design is not limited to single-core setups. Each core has
its own private set of GPEs, so when a main-core thread mi-
grates to a different main core, any user-subscribed Guardian
Kernels alsomovewith it, though kernel-controlled Guardian
Kernels (section 4.1) may stay in the same place, and run on
the GPEs of every main core. We discuss what happens on a
context switch in section 4.4.

For some attacks it is possible that by running on multiple
cores the same attack can be performed with a fraction of
the traffic from each, evading some forms of detector. In
this scenario, the programmer can either utilise Guardian
Kernels with lower (detection-specific) trigger thresholds, or
communicate via data channels between GPEs on multiple
main cores. At the simplest level, these data channels can be
implemented via shared-memory communication with no
extension. If a large amount of communication is necessary
for a system, then global GPE indexing and a dedicated ring
network between GPE clusters suffices for fast message-
passing capability.

Multicores are not considered further in this paper because
they do not affect the resulting overheads, and no evaluated
Guardian Kernels would reduce in effectiveness for attacks
spread across multiple cores.We include the potential attacks
and solutions here for completeness: the limitations can be
solved within software Guardian Kernel implementations.

3.9 Summary
The Guardian Council consists of a set of Guardian Process-
ing Elements along with supporting logic to transfer and
queue observations from a main core. Events from the main
core are distributed to GPEs using filtering and mapping, to
remove irrelevant data and distribute observations between
GPEs. We now describe how this system can be programmed.

4 Programming Model
For a given process running on the main thread, a number
of “Guardian Kernels”, each intended to provide a certain
security property, are run on the GPEs. Some are mandated
by the operating system, and always run, and others can be
subscribed to by the process itself.

4.1 User-Level vs OS-Level Detection
For some security properties, we only care that the security
of our own process isn’t violated. An example of such a
property is control-flow integrity [3]. In such cases, we can
allow the user to specify which properties of the system they
want to make sure hold, and may even allow the user to
directly program the security hardware.

However, in other cases, such as Rowhammer or side chan-
nel detection, it is the behaviour of other programs that a
user must defend against. In such cases, all programs must
be monitored, thus protection must be offered by the OS,
and run for every application. These Guardian Kernels can-
not be pre-empted by user-level Guardian Kernels, to avoid
denial-of-service. Similarly, under virtualisation, a hypervi-
sor’s Guardian Kernels take priority over virtualised tasks.

4.2 Protecting the GPEs Themselves
Allowing the user to run arbitrary code on the GPEs raises
its own set of potential security issues. A thread on a GPE,
able to read and write memory and observe the behaviour
of the main core, is liable to perform attacks such as side
channels or Rowhammer triggering. This means that they
too would need to be monitored by a Guardian Kernel of
higher privilege for the system to be secure, and thus we
would need a channel from the shared cache of the GPEs
back into the event filter.
Rather than running arbitrary code on GPEs, we allow

programs to subscribe to a set of services offered by exist-
ing OS-approved Guardian Kernels, potentially providing
each with data. These would then run alongside mandatory
Guardian Kernels run by the OS itself. New Guardian Kernels
could be installed with OS permission onto the system, such
as by issuing OS updates.
This solves the problem of policing the GPEs by moving

the code running on them into the trusted computing base.
As typical code running on such a device will be fairly simple,
this is a reasonable implementation choice, and simplifies
verification elsewhere.

4.3 GPE-Thread Virtualisation
Though Guardian Kernels can have multiple threads, in our
implementation each GPE can only be used for one security
thread at a time per application. This simplifies implemen-
tation, as each security thread is always running, and each
FIFO is only used for one thread at a time.

Still, it is potentially limiting from a capacity and through-
put point of view: if multiple kernels could virtualise on
the same hardware, this would improve resource utilization.
Since all Guardian Kernels in our system are trusted, there is
no risk of side-channel attacks from this multiplexing. The
reason that we do not currently support this is because it
complicates the design of the FIFO. Since we need an avail-
able FIFO for all data-channel information we are listening to,

1 while (true)
2 addr = get_fifo();
3 // one bit per 32-bit instr word
4 target = bitmap[(addr-min)>>5];
5 if (!target & (1<<(((addr-min)>>2)&7)))
6 raise_exception();

(a) Forward control-flow integrity

1 GPE k = 1..N
2 while (true)
3 (op,addr) = get_fifo();
4 if (op == block)
5 put_fifo(0,stack);
6 stack.empty();
7 put_fifo(0,(block,from,addr));
8 else
9 if (op == push)
10 stack.push(addr);
11 else
12 if (stack.size() > 0)
13 assert(addr == stack.top());
14 stack.pop();
15 else
16 put_fifo(0,(pop,addr));
17
18 GPE 0
19 while (true)
20 (op,addr,from) = get_fifo();
21 if (from != target)
22 queue[from].push(op,addr);
23 else
24 if (op == block)
25 target = from;
26 stack.fill(queue[from]);
27 else if (op == push)
28 stack.push(addr);
29 else
30 assert(addr == stack.top());
31 stack.pop();

(b) Shadow stack
1 while (true)
2 addr, pc = get_fifo();
3 // one bit per 128-bit allocation granule
4 char bits = shadow[(address)>>7];
5 if(!bits) continue;
6 if(bits & (1<<((address >> 7)&8)))
7 report_error(addr,pc);

(c) Sanitiser

1 while (true)
2 address, time = get_fifo();
3 if (time > cache_threshold)
4 rand = int.next();
5 if (rand > threshold)
6 refresh(adjacents(address));

(d) Rowhammer

Code listing 1. Example Guardian Kernels running on
GPEs.

we cannot switch out a currently active security thread. We
therefore need some support for multiple occupancy in the
FIFOs. This can be done by decoupling the FIFOs and GPEs
from each other, such that there is one FIFO per thread, but
threads can be moved between GPEs depending on schedul-
ing requirements.

4.4 Context Switches
On a context switch, as a result of the Guardian Council,
more state must be switched. Any OS-provided Guardian
Kernels should be used for all programs, so do not need to
switch, but any user-subscribed Guardian Kernels need sep-
arate state, and so must be switched out when the process
changes. To avoid losing data in the FIFOs (which may be
necessary for analyses that must track all state, and to pre-
vent vulnerability to attacks designed to deliberately empty
its FIFOs), we must ensure that FIFOs are empty on a context
switch. Therefore, we pause the main CPU and allow the
security threads to empty the FIFOs before switching. We
also do the same before system calls, and any handling of
precise exceptions or interrupts, to prevent a main thread
from gaining operating-system privileges before previously
executed code has been checked. Typically, FIFO elements
move through the Guardian Council at a faster rate than
other elements of the context switch that can be performed
in parallel, removing the need for a delay. This FIFO latency
is evaluated in section 6.5: emptying the Guardian Council’s
queues typically takes only a few nanoseconds, which is
shorter than flushing the main core’s pipeline.

5 Example Setups
The Guardian Council is suitable for deploying a variety
of defences. We present the general case of parallelism ab-
stractions for the Guardian Council in figure 3, before giving
specific examples and code using these techniques, then eval-
uating a subset of them in simulation. Where possible, we
focus on mature techniques from the literature, to keep the
design and evaluation of new techniques out of scope. We
give the setup of the event filter and mapper, and pseudocode
for the program(s) running on the GPEs, with details such
as memory management abstracted away.

5.1 Control Flow
Forward Control-Flow Integrity
Our first example (listing 1(a)) is a technique similar to
Control-Flow Guard [57]: all indirect branches are checked
in a bit array provided by the user when subscribing to the
Guardian Kernel. If the looked up bit is a zero, then an ex-
ception is raised to the main thread.
Event Filter: Indirect branches
Mapper: Indirect branches: Round robin betweenGPEs,masked

so only the destination goes to the FIFO.
Parallelism: Cyclic Task Farm (figure 3(a)).
Fine-grained Forward Control-Flow Integrity
Our second example is inspired by Clang CFI [24], in that it is
more fine-grained: instead of checking whether a destination
is valid, it further checks whether the called function is the
same type as the source. While normally this is implemented
by instrumenting the source, to fully decouple the check,
instead the source and destination PCs are observed by the

Branch X
Branch A
Branch B
Branch C
Branch A
Branch B
Branch A
Branch Q

CFI Table
Lookups

Main Core

Q ∉ Branches: Error

(a) Cyclic Task Farm, shown here running control-flow integrity, but also
used for differential fault analysis prevention, reference checker, spatial
safety and Rowhammer. Observations are interleaved between the GPEs,
and each checked in parallel.

Divide
Lock
Divide
Divide
Lock
Lock
Divide
Divide

Main Core Aggregators Classifiers

(b) Parallel Pipelines, shown here running a covert channel detection mech-
anism. Each type of event is sent to a single GPE, which then aggregates
this information to send to a classifier GPE, in a pipeline formation.

Call X
Return X
Call X
Call Y

Return Y
Call Z

Return Z
Call A
Call B
Call C

Return C
Call C

Return C
Call C

Return C
Return B
Return A
Return Q

Call X
Call A
Call B
Call C

Return C
Return B
Return A
Return Q

X != Q : Error

Main Core Filters

Aggregator

(c) Aggregated Bulk Task Farm, shown here running a shadow stack mapped
to GPEs. Calls and returns are processed in blocks, filtering push-pop pairs,
before handling inter-block dependencies on an aggregator GPE.

Load X
Load A
Load B
Load C
Load A
Load B
Load A
Load X

Performance
Counter

Classifier

Software
Counters

Main Core

(d) Aggregated Cyclic Task Farm, shown here running a software-defined
performance counter, but is also used for counter and ensemble classifi-
cations. The parallel work is fed into the software counter unit, which is
subsequently read by a single GPE running a classifier based on the data.

Figure 3. Example configurations for exploiting parallelism within Guardian Kernels.

Guardian Kernel, and looked up in tables of 8-bit entries to
ensure a match. This increases coverage relative to our first
technique at the expense of utilising more GPE resources.
Event Filter: Indirect branches
Mapper: Indirect branches: Round robin betweenGPEs,masked

so the PC and destination go to the FIFO.
Parallelism: Cyclic Task Farm (figure 3(a)).
Shadow Stack
Here (listing 1(b)) we implement a shadow stack [1, 3], to
prevent the overwriting of a return value, by a buffer over-
flow attack, for example. We parallelise this process using a
prefiltering stage. Calls and returns are sent to a GPE, which
adds these to its own shadow stack. When a GPE’s queue
is full, we move to another GPE. Any values that are left
over from an individual GPE’s stack are then sent to a co-
ordinating GPE, which combines the results from each to
verify integrity.
Event Filter: Calls, returns
Mapper: Calls, returns: send to GPE 1 to N, moving between
each when a queue is full. Send opcode, current PC for
calls, and return address for returns.

Parallelism: Aggregated Bulk Task Farm (figure 3(c)).

5.2 Memory Safety
Sanitiser (listing 1(c)) is a scheme for heap buffer overflow
and free reuse detection, inspired by AddressSanitizer [2, 52].
Custom mallocs and frees place poison “red zones” around
and within, respectively, the data’s allocated region in a
shadow address space, with one bit for every 128-bit allo-
cation granule in the original address space. The memory
reference checks can then be offloaded to the GPEs. Our
evaluated implementation is based on dlmalloc [42], though
any allocator would be suitable in practice.
Event Filter: Loads, stores
Mapper: Loads, stores: Round robin between GPEs, data

masked so only the address goes to the FIFO.
Parallelism: Cyclic Task Farm (figure 3(a)).
To avoid both false positives and false negatives, the GPE
queues must be allowed to empty before each malloc and
free, potentially causing a stall on the main core.

5.3 Differential Fault Analysis Prevention
This technique prevents differential fault analysis attacks [49]
by checking the results of ciphertext to ensure no bit flips
have been induced, which could lead to the leaking of a se-
cret key [15, 33]. Data encrypted on the main core is placed

into several buffers, each of which is checked in parallel by a
GPE. Any intermediate values necessary for the cipher to be
repeated on each section are forwarded. If a check completes
successfully, and all previous checks also complete, the buffer
is allowed to be written out to IO. The use of heterogeneous
cores is particularly useful in this context, in that errors will
manifest differently on the main core versus the GPEs, mak-
ing the system significantly harder to attack. Unlike previous
work on generic parallel error detection [4, 5], GPEs can run
a different architecture to the main core, as the checker code
can be algorithmically generated based on the algorithm,
reducing hardware complexity.
Event Filter: Explicit messaging from main core only.
Mapper: Round robin between GPEs, with messages con-

taining pointers to the buffers to be checked.
Parallelism: Cyclic Task Farm (figure 3(a)).

5.4 Rowhammer
We emulate a scheme from Kim et al. [38, 39] to prevent
Rowhammer (listing 1(d)), by randomly refreshing lines ad-
jacent to accessed addresses. As lines being attacked by
Rowhammer will be frequently activated, this will probabilis-
tically refresh those being attacked. This can be parallelised
across as many GPEs as necessary, as each observation is
independent. We infer which memory accesses have gone to
main memory from the CPU by timing instructions, rather
than adding a direct channel to main memory.
More complicated schemes to prevent Rowhammer at-

tacks [38] could also be implemented on our hardware. For
example, state can be tracked to obtain specific details on
which locations have been accessed.
Event Filter: Loads, stores, memory flushes
Mapper: Loads, stores, flushes: Round robin between GPEs,

masked so the address and commit time goes to the FIFO.
Parallelism: Cyclic Task Farm (figure 3(a)).

5.5 Performance Counters
Custom Performance Counter
Here we give an example of a performance counter designed
to count memory accesses within a certain range that is
configured by the subscriber. To reduce traffic on the bus, it
only reports new counts every 50 events.
Event Filter: Loads
Mapper: Loads: Round robin between GPEs, data masked so

only the address goes to the FIFO.
Parallelism: Aggregated Cyclic Task Farm (figure 3(d)).
Performance Counter Classification
Rather than using the data channel hardware to track in-
structions, we can just use aggregate performance counter
metrics. As with the work by Demme et al. [28] on online
malware detection, we can use these as input to a feature
classifier, by sampling the performance counters periodi-
cally. When anomalous software is detected, this can then
be passed up to a more detailed analysis framework, either

on the main core or on another GPE. As the amount of input
data is relatively small, we are unlikely to need to parallelise
the classifier onto multiple GPEs. We can instead use the
other GPEs for other tasks, or for custom performance coun-
ters as input to the classifier. In the case where we directly
use instructions as input to a classifier [47], it is likely that
more performance would be required, and parallelisation
would be necessary.
Ensemble Classifier
Other work features multiple classifiers, specialised to detect
particular attacks, which are then combined [37]. We can
run classifiers on multiple GPEs, then send the data from
each to a single GPE for combination.

5.6 Side Channels
Covert Channel Detector
To detect covert channels, we give a scheme based on the
work of Chen et al. [20]. This takes timing measurements
of shared resources, and analyses them using a histogram-
based approach. We utilise two forms of parallelism here.
First, we split different resources to different GPEs. Second,
we pipeline the detection: the first GPE processes data by
collecting events per unit time, and the second then analyses
that as a histogram to pick up the sending of ones or zeros
across the channel. This is exemplified in figure 3(b), where
we check for memory and divider timing channels, by de-
tecting the frequency of bus locks, and contended divides,
per unit time.
Event Filter: Bus locks, divides
Mapper: Bus locks: GPE 0; Divides: GPE 1. Filtered so that

the cycle time of each instruction is sent into the FIFO.
Parallelism: Parallel Pipelines (figure 3(b)).
Flush + Reload Detector
To detect cache side-channel attacks (speculative, as used
in Spectre [40] and Meltdown [43], and otherwise), we use
the Guardian Council to analyse a potential attacker’s use
of cache flushes, for detection of eviction, and barriers, to
indicate attempts to isolate instruction timing.
Event Filter: Flushes, Memory Barriers
Mapper: Flushes, Memory Barriers: Send to GPE 0.
Parallelism: Aggregated Cyclic Task Farm (figure 3(d)).
If both are used frequently, then an attempt at a cache timing
attack is inferred. This will not necessarily detect all forms
of cache side-channel attack, as it is possible to evict data
using the cache’s set-associativity policy, but cache-flushing
operations are significantly simpler and more efficient as a
side channel, and so this technique is useful for detecting
common attacks (including the Spectre and Meltdown proof
of concepts [40, 43]). If more precise detection is required,
then the Guardian Council could instead be reprogrammed
to detect more general cache misses.

1
1.25
1.5

2
2.5

3
3.5

4
5
6
7
9

12
15

20

30

 0 5 10 15 20

S
lo

w
d

o
w

n

Number of GPEs

astar
bzip2

bwaves

cactusADM
calculix

gcc

GemsFDTD
gobmk

h264ref

lbm
leslie3d

mcf

(a) Sanitiser

1

1.25

1.5

2

 0 2 4 6 8 10 12

S
lo

w
d

o
w

n

Number of GPEs

milc
namd

omnetpp
povray

sjeng
tonto

xalancbmk
geomean

(b) Control-Flow Guard [57] style forward control-flow integrity

1

1.25

1.5

2

2.5

 0 2 4 6 8 10 12

S
lo

w
d

o
w

n

Number of GPEs

(c) Fine-grained forward control-flow integrity

1

1.25

1.5

2

2.5

3

3.5
4

5

6

 2 4 6 8 10 12
S

lo
w

d
o

w
n

Number of GPEs

(d) Shadow stack [3]

1

1.25

1.5

2

2.5

3
3.5

4

5

6
7

9

12

 0 2 4 6 8 10 12

S
lo

w
d

o
w

n

Number of GPEs

(e) Custom performance counter (loads within an address range)

1

1.25

1.5

2

2.5

3
3.5

4

5

6
7

9

12

 0 2 4 6 8 10 12

S
lo

w
d

o
w

n

Number of GPEs

(f) Rowhammer prevention [39]

Figure 4. System slowdown when using varying numbers of GPEs to implement each Guardian Kernel.

6 Evaluation
To evaluate the resources necessary for the Guardian Coun-
cil, we modeled a high performance system using the gem5
simulator [16] in syscall emulation mode with the ARM in-
struction set and configuration given in table 1, based on
that validated in previous work [35]. We evaluate six tech-
niques from section 5, namely forward control-flow integrity,
fine-grained forward control-flow integrity, shadow stacks,
custom performance counters, Sanitiser, and Rowhammer
prevention. Our evaluation suite is SPEC CPU2006, which
we fast forward for 1 billion instructions before running
for 1 billion instructions, except for those cases where fast
forwarding affected the Guardian Kernel (Sanitiser, shadow
stack). We used the Arm 64-bit instruction set, except from
for Sanitiser, where the shadow lookup space for the heap
required us to use the 32-bit Arm instruction set, due to no
sparse mmap support in gem5. We present all applications
that would compile and run in gem5 in both modes.

6.1 Overheads
Figure 4 shows the slowdown caused to the main core from
waiting for event queue space, using increasing numbers of
1GHz GPEs to implement each Guardian Kernel.
Sanitiser Figure 4(a) is the technique with highest evalu-
ated overheads: 24 GPEs are needed for an average overhead
of 4.9%. This is dominated by a few workloads with very
high compute demands of the GPEs: cactusADM, h264ref,
GemsFDTD and hmmer. These feature a large number of
loads and stores without being particularly memory-bound,
thus causing each GPE to perform a significant amount of
work to verify each load and store is in-bounds and to an allo-
cated location. Further, because the main core must stall not
only when queues are full, but also on waiting for queues
to empty when the allocator causes the shadow stack to
change state, at low GPE counts large slowdowns are ob-
served since work builds up for the GPEs to clear. Still, many

Main Core

Core 3-Wide, out-of-order, 3.2GHz
Pipeline 40-Entry ROB, 32-entry IQ, 16-entry LQ, 16-

entry SQ, 128 Int / 128 FP registers, 3 Int ALUs,
2 FP ALUs, 1 Mult/Div ALU

Tournament 2048-Entry local, 8192-entry global, 2048-entry
Branch Pred. chooser, 2048-entry BTB, 16-entry RAS

Memory

L1 ICache 32KiB, 2-way, 2-cycle hit lat, 6 MSHRs
L1 DCache 32KiB, 2-way, 2-cycle hit lat, 6 MSHRs
L2 Cache 1MiB, 16-way, 12-cycle hit lat, 16 MSHRs, stride

prefetcher
Memory DDR3-1600 11-11-11-28 800MHz

Guardian Processing Elements

Cores In-order, 4 stage pipeline, 1GHz
FIFO 64-entry per GPE
Cache 2KiB L0 I & DCache per GPE, 16KiB shared L1

Table 1. Core and memory experimental setup.

other workloads need significantly fewer GPEs to reach sub-
5% overheads.
Integrity Figure 4(b) faces much lower overheads, with
four GPEs sufficient for negligible overheads on all evaluated
workloads. Many perform very little indirect flow control,
and so one GPE is sufficient, though others (h264ref, sjeng,
omnetpp, xalancbmk, GemsFDTD) require significantlymore
compute on the Guardian Council.
Fine-Grained Integrity Figure 4(c) responds to the same
events as the coarse-grained version, and so similar bench-
marks show significant overheads, while many workloads
show almost none even with a single GPE. However, the
increased work per indirect branch instruction causes over-
heads on some workloads to be higher, thus increasing the
value of offload to the Guardian Council. Even with 12 GPEs,
some workloads (xalancbmk and omnetpp) still show some
overhead: this is not because of the main core stalling due
to compute overload of the GPEs, or due to a lack of paral-
lelism, but is instead due to high demands on the memory
system, due to the larger tables that must be looked up to
compare types of program count versus target, in contrast
to the simple bitflag lookup of the coarse-grained scheme.
Still, 1% average overhead can be reached with 6 GPEs.
Shadow stack Figure 4(d) shows that we can reduce over-
heads to below 5% using 6 GPEs: this is higher than for the
forward-integrity techniques as all calls and returns must
be instrumented, along with the more complex data struc-
tures used to maintain and combine multiple parallel shadow
stacks. Four workloads (omnetpp, h264ref, xalancbmk, sjeng)
asymptote above 1 even with 12 cores: this is caused by
the imperfect parallelism of our shadow-stack algorithm
overloading the single aggregating core (figure 3(c)) used to
manage communication of each parallel shadow filter.

 0

 5

 10

 15

 20

Contro
lFlowGuard

Coarse C
FI (4

 G
PEs)

LLVM-C
FI

Fine C
FI (6

 G
PEs)

Shadow-LBP

Shadow (8
 G

PEs)

AddressSanitiz
er

Sanitis
er (2

4 G
PEs)

Avg 74, Max 168

O
v
e

rh
e

a
d

 (
%

)

Comparisons Guardian Council

Figure 5.Average andmaximum overheads for the Guardian
Council and state-of-the-art software techniques.

Counter As all workloads feature a significant amount
of loads, we see in figure 4(e) that two or more GPEs are
necessary for every evaluated workload in SPEC CPU2006.
Eight GPEs are needed to lower geometric mean overhead
to below 5%, and h264ref and astar still see some cost with
12 GPEs. While the analysis (load counting with hardware
aggregation using the Guardian Council’s software perfor-
mance counters) is simpler than Sanitiser’s, instrumenting
all loads still requires significant GPE compute in some cases.
Rowhammer The pattern is broadly similar in figure 4(f)
as for Counter, as most observed events require little work,
with only occasional DRAM refreshes. However, as all mem-
ory events must be observed, instead of just loads, overheads
are typically higher, though 8 GPEs are still sufficient for
overheads below 5%.
Comparison to Software Techniques Figure 5 shows the
performance of the Guardian Council versus the best per-
forming equivalent software-only techniques we could find
in the literature [18, 19, 52]. This is not a direct comparison
as numbers are reported for x86 systems, and the software
techniques feature complex optimisations not featured in
our Guardian Council implementations. Offloading to the
Guardian Council significantly reduces worst- and average-
case overheads even against the best software techniques, by
offloading instrumentation to dedicated hardware channels,
and offloading software compute to efficient, parallel units.

6.2 Size and Power Estimates
To avoid reducing performance, some Guardian Kernels oc-
casionally require a large number of GPEs. However, each
is low performance and low overhead, with a small ISA. A
comparable current core is the ARM Cortex M0+, which
contains fewer than 12,000 gates [9] (approximately 50,000
transistors). Even when using 40nm power values for the
M series cores and 20nm power values for A series without
adjustment [7, 8], giving a highly conservative estimate, 24
GPEs at 1GHz can be included on a system within a 2.8%

1

1.25

1.5

2

 1 2 3 4 5 6

S
lo

w
d

o
w

n

Number of GPEs per Guardian Kernel

Both
Counter
Fine CFI

(a) GemsFDTD

1
1.25
1.5

2
2.5

3
3.5

4
5
6
7

9

12

 1 2 3 4 5 6

S
lo

w
d

o
w

n

Number of GPEs per Guardian Kernel

Both
Counter
Fine CFI

(b) H264ref

1

1.25

1.5

2

2.5

3

3.5
4

 1 2 3 4 5 6

S
lo

w
d

o
w

n

Number of GPEs per Guardian Kernel

Both
Counter
Fine CFI

(c) Omnetpp

1

1.25

1.5

2

2.5

3

3.5
4

 1 2 3 4 5 6
S

lo
w

d
o

w
n

Number of GPEs per Guardian Kernel

Both
Counter
Fine CFI

(d) Xalancbmk

Figure 6. Slowdown for running fine-grained control flow and the load counter simultaneously, along with each individually.

power consumption overhead budget. By the same data [7, 8]
on comparable silicon processes we should expect these 24
GPEs to take up approximately 2.7% of the area of a Cortex
A57, even if we exclude the A57’s shared caches. With the
added 112KiB of SRAM cache [61] that would be used for
this number of GPEs, along with 32KiB of total FIFO queue
space, this still results in an area overhead of only 8.4% total
core area overhead relative to an unmodified main processor.

6.3 Combining Defenses
Figure 6 shows the slowdown when running two distinct
Guardian Kernels simultaneously, on the subset of bench-
marks that are performance intensive for both. We see that,
in general, the slowdowns when running multiple defences
exhibit a maximum, rather than a multiplicative, behaviour,
which means that we only pay the overhead of the slowest
Guardian Kernel, rather than all overheads combined. This
is because, if one Guardian Kernel slows down an applica-
tion’s execution, then the event stream of instructions from
that application will also slow down in throughput, causing
lighter loads on other Guardian Kernels.

6.4 Evolution
The Guardian Council is designed to defend against both cur-
rent and future attacks. This raises a question on how much
security compute resource is necessary over time. As new
attacks and defenses become available, resources for these
will be necessary, and if those resources are already used by
current defenses, then the system will slow down. For many

defenses, they will only need to run some of the time: not ev-
ery defense will be relevant to every process, we can switch
out older defenses when more comprehensive or efficient
ones become available, and different levels of coverage can
be chosen based on application-specific overheads. For fu-
ture generations of Guardian-Council-assisted architectures,
the most widely-used Guardian Kernels can be moved into
hardware, while still using the same data channels as the soft-
ware GPEs. Every kernel we evaluate can be implemented
simultaneously in 40 GPEs, which is less than 5% power
overhead even for a comparatively small and efficient Arm
Cortex A57 [7, 8]. Even this is over-provisioning: each kernel
does not need its maximum allocation of GPEs simultane-
ously, and not all policies are necessary for all applications.
Instead, we envision kernels being chosen per application
based on overhead and required security. Still, for the most
security conscious systems, significant over-provisioning
may be necessary in terms of the number of GPEs provided
in a system, to provide comprehensive lifetime coverage.

6.5 Detection Latency
Though detection rates are controlled by choice of technique,
and are typically identical to pure software implementations,
the decision to decouple techniques previously implemented
inline in software (such as control-flow integrity) inevitably
increases detection delay. This is acceptable as long as this
delay doesn’t allow attackers to exploit the system as a result.
A mitigation here is that Guardian Kernels can neither be
terminated nor reconfigured, and main-core system calls
cannot execute, until GPE queues are empty.

 0 100 200 300 400 500 600 700 800

D
e
n
s
it
y

Time (ns)

cactusADM
bwaves
leslie3d

(a) Sanitiser

 0 200 400 600 800 1000 1200 1400

D
e
n
s
it
y

Time (ns)

povray (fine)
povray (coarse)

h264ref (fine)
h264ref (coarse)

tonto (fine)
tonto (coarse)

(b) Integrity

 0 200 400 600 800 1000 1200

D
e
n
s
it
y

Time (ns)

povray
cactusADM

astar

(c) Shadow Stack

 0 100 200 300 400 500 600

D
e
n
s
it
y

Time (ns)

h264ref
lbm
milc

(d) Counter

 0 100 200 300 400 500 600

D
e
n
s
it
y

Time (ns)

h264ref
gcc

bzip2

(e) Rowhammer

Figure 7. Delay of analysis for events when using eight GPEs to implement each Guardian Kernel.

Since GPE queues must be cleared on context switches,
this also has performance implications by, if this isn’t fin-
ished on time, delaying the switch. However, we see that
in most cases, the time for an event to make it through the
Guardian Council, and thus the time for a queue to empty if
logging is stopped ready to context switch, is in the tens of
nanoseconds, far smaller than a typical context switch [58].
Delays for analysis of inputs, from being placed in the

queue to being removed, when using eight GPEs, are given
in figure 7. The data shown here gives, for each technique, a
benchmark with high, low, and medium overheads, to show
the range of results. The shadow-stack technique (figure 7(c))
exhibits the longest average delays and the most variable
delays of all of the techniques. This is due to queues being
added to until full, to preserve the locality of the data, as
opposed to spreading equally in the other techniques. The
position in the queue results in a distinctly box-shaped pat-
tern for cactusADM and povray. However, astar features
execution sections with very few function calls and thus a
single GPE can keep up with the program, resulting in a
spike where most observations are verified in a few nanosec-
onds (or cycles). Figure 7(b), for both coarse and fire-grained
control flow integrity, has a lower average, with almost all
observed events removed from queues and checked immedi-
ately. The exception is h264ref using fine-grained integrity,
where occasionally cache misses are observed that result in
higher (1200ns) overheads.

Sanitiser and Rowhammer (figure 7(e) and figure 7(a)) ex-
hibit bimodal delays. This is because with 8 GPEs, both can
still be significantly GPE-compute bound. This results in two
cases: one where events are removed and checked immedi-
ately (with negligible delays of tens of nanoseconds), and
one where an entire queue’s worth of data must be processed

first, resulting in hundreds of nanoseconds latency. This is
repeated to a lesser extent with Counter (figure 7(d)), where
h264ref is occasionally, but variably, GPE-compute bound,
resulting in a wide bump in the hundreds of nanoseconds.
6.6 Summary
Overheads of below 5%, and significantly lower than in equiv-
alent software techniques [2, 18, 19], can be achieved for
coarse-grained flow control integrity with 2 GPEs on aver-
age, and with 4 for a fine-grained technique. Shadow stack
requires 6, a custom load counter 4, and Rowhammer pre-
vention 6. Sanitiser is significantly more expensive at the
benefit of providing more comprehensive coverage, requir-
ing 24 GPEs, but with some workloads only requiring 8. This
maximal number of GPEs (24) can be achieved at around
2.8% power and 8.4% area overhead. Typically, a Guardian
Kernel analyses an observed event in tens of nanoseconds (a
few cycles) when enough security compute is available, and
hundreds of nanoseconds when underprovisioned.

7 Related Work
A wide variety of defence techniques for system-level secu-
rity analysis have been proposed and implemented. We split
these up into relevant hardware and software defences.

7.1 Hardware Techniques
Hardware Logging Techniques have previously used log-
ging hardware to improve the performance of software secu-
rity mechanisms. Chen et al. [21] present log-based architec-
tures, which move a several common tracking mechanisms
into the hardware to reduce software security overheads.
Shetty et al. present HeapMon [54], which combines hard-
ware support with a helper thread to offload memory bug
detection, but does not attempt to exploit the significant

parallelism advantages that can be exploited by using many
small cores for security. Lo et al. [44] add hardware data
channels with the ability to drop a portion of their input
data, to reduce software overheads. Deng et al. [29] couple
a field-programmable gate array (FPGA) to a processor, to
allow monitoring on configurable hardware. Compared to
FPGA accelerators, the many-core Guardian Council is easier
to program, has higher sequential performance, integrates
with the memory system without slowing it down, and can
achieve fast context switches necessary to allow different
properties for different processes.

The Guardian Council takes a different approach because
modern silicon scaling allows highly-complex programmable
units to be very low cost, provided that parallelism is treated
as a first-order design constraint. Compared with techniques
using larger cores without exploiting heterogeneous paral-
lelism [26, 44, 54, 62], The Guardian Council vastly reduces
power-performance-area overheads for a given coverage.
Hardware Malware Detection Hardware malware detec-
tion has recently become a popular research topic, often as
part of a hierarchy of detectors from cloud to microarchitec-
ture, reducing the requirements at each level. These use fea-
tures such as instruction streams or performance counters as
input to detectors. Kazdagli et al. [36] present an evaluation
methodology, and argue the need for application-specific
detection using machine learning. Demme et al. [28] use
performance counters as input to detection hardware. Ozsoy
et al. [47] use linear classifiers and neural networks, with
a channel for all instructions, as a weak classifier to direct
more complicated software detection mechanisms. Both pa-
pers note that, due to the arms-race effect between malware
creators and detectors, updatability of the detection scheme
is required. Khasawneh et al. [37] run multiple specialised
detectors at once, generated using ensemble learning.

7.2 Software Protection Mechanisms
Many security mechanisms can be implemented in pure
software. Though overheads may be higher, it is possible to
roll such schemes out more quickly, and backport them to
existing systems. Szekeres et al. [56] present a summary of
attacks and defences based around memory corruption. They
argue that techniques with over 5% overhead [56] rarely see
active use, which limits observable behaviour to high-level
system calls, or page-level granularity protection.

Abadi et al. [3] implement control-flow integrity to detect
unintended control flow. This is achieved using a combi-
nation of ID-based checking, to ensure that the location of
an indirect branch is to a valid target, and a shadow stack,
which checks that returns from function calls go to their orig-
inal locations. Microsoft have recently introduced Control
Flow Guard [50, 57], which looks up each indirect branch
in a data structure to ensure it is a valid target. Return Flow
Guard [1] improves upon this by adding a shadow stack.

Arthur et al. [12] instead replace indirect jumps with multi-
way “branch sleds” of possible targets for each location.

Rather than just preventing the negative effects of buffer
overflows, it is also possible to detect attempts to access
beyond boundaries. AddressSanitizer [52] uses a shadow
allocation space to detect overflows. On mallocs, a “poison”
zone is placed around allocations, and on a free, the same is
added to all of the now-freed memory locations, preventing
many cases of overflow. Software fat-pointer schemes [13,
45] give stronger guarantees at greater performance loss.

8 Conclusion
We have presented the Guardian Council, an architecture
for programmable security analysis hardware. This features
a data channel to feed the work of a main core into many
Guardian Processing Elements, to enable widely applicable,
high performance, efficient, general-purpose security detec-
tion for conventional processors.
We have used our architecture to execute a wide variety

of implementations of current defences against attacks in
the wild today, at very low overhead. Still, in an architec-
ture where a large amount of low cost parallel computation
is available for security, we should validly expect the tech-
niques we can use to expand significantly. Our architecture
gives programmers the basic building blocks to explore and
implement a very wide range of techniques.

An updatable hardware scheme allows patches to be sent
out to allow devices to self-repair, instead of product recall
upon discovery of flaws. We believe that this will play a
significant role in risk mitigation for future devices. This
is just one design in a wide space, but it is clear that some
degree of programmable security hardware will be neces-
sary for efficient, reliable, and updatable security guarantees
that can keep processors secure for their lifetime, and that
effectively exploiting parallelism is necessary to achieve this
at overheads that are feasible in real systems.

Acknowledgements
This work was supported by the Engineering and Physical
Sciences Research Council (EPSRC), through grant refer-
ences EP/K026399/1, EP/P020011/1 and EP/M506485/1, and
ARM Ltd. Additional data related to this publication is avail-
able in the repository at https://doi.org/10.17863/CAM.46514.

https://doi.org/10.17863/CAM.46514

References
[1] http://xlab.tencent.com/en/2016/11/02/return-flow-guard/, 2016.
[2] https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorith

m, 2017.
[3] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity.

In CCS, 2005.
[4] S. Ainsworth and T. M. Jones. Parallel error detection using heteroge-

neous cores. In DSN, 2018.
[5] S. Ainsworth and T. M. Jones. Paramedic: Heterogeneous parallel error

correction. In DSN, 2019.
[6] Aleph One. Smashing the stack for fun and profit. Phrack Magazine,

49(14), 1998.
[7] AnandTech. http://www.anandtech.com/show/8542/cortexm7-

launches-embedded-iot-and-wearables/2, 2014.
[8] AnandTech. http://www.anandtech.com/show/8718/the-samsung-

galaxy-note-4-exynos-review/6, 2015.
[9] ARM. http://www.arm.com/products/processors/cortex-m/cortex-

m0plus.php.
[10] ARM. Embedded trace macrocell architecture specification. http:

//infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0014q/i
ndex.html, 2011.

[11] W. Arthur, S. Madeka, R. Das, and T. Austin. Locking down insecure
indirection with hardware-based control-data isolation. In MICRO,
2015.

[12] W. Arthur, B. Mehne, R. Das, and T. Austin. Getting in control of your
control flow with control-data isolation. In CGO, 2015.

[13] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient detection of all
pointer and array access errors. In PLDI, 1994.

[14] R. Backasch, C. Hochberger, A. Weiss, M. Leucker, and R. Lasslop.
Runtime verification for multicore soc with high-quality trace data.
ACM Trans. Des. Autom. Electron. Syst., 18(2):18:1–18:26, Apr. 2013.
ISSN 1084-4309.

[15] E. Biham and A. Shamir. Differential fault analysis of secret key
cryptosystems. In CRYPTO, 1997.

[16] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The gem5 simulator.
SIGARCH Comput. Archit. News, 39(2), Aug. 2011.

[17] S. Brenner, D. Goltzsche, and R. Kapitza. Trapps: Secure compartments
in the evil cloud. In XDOMO, 2017.

[18] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and
M. Payer. Control-flow integrity: Precision, security, and performance.
ACM Comput. Surv., 50(1), Apr. 2017.

[19] N. Burow, X. Zhang, and M. Payer. Shining light on shadow stacks. In
S+P, 2019.

[20] J. Chen and G. Venkataramani. An algorithm for detecting contention-
based covert timing channels on shared hardware. In HASP, 2014.

[21] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons, T. C. Mowry,
V. Ramachandran, O. Ruwase, M. Ryan, and E. Vlachos. Flexible hard-
ware acceleration for instruction-grain program monitoring. In ISCA,
2008.

[22] S. Chen, R. Wang, X. Wang, and K. Zhang. Side-channel leaks in web
applications: A reality today, a challenge tomorrow. In SP, 2010.

[23] S. Chhabra, Y. Solihin, R. Lal, and M. Hoekstra. An analysis of secure
processor architectures. Transactions on Computational Science VII,
2010.

[24] Clang 10 documentation. Control flow integrity. https://clang.llvm.o
rg/docs/ControlFlowIntegrity.html.

[25] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, M. Negro, C. Liebchen,
M. Qunaibit, and A.-R. Sadeghi. Losing control: On the effectiveness
of control-flow integrity under stack attacks. In CCS, 2015.

[26] M. L. Corliss, E. C. Lewis, and A. Roth. Dise: a programmable macro
engine for customizing applications. In ISCA, 2003.

[27] C. Cowan, F. Wagle, C. Pu, S. Beattie, and J. Walpole. Buffer overflows:
attacks and defenses for the vulnerability of the decade. In DISCEX,

volume 2, 2000.
[28] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethumad-

havan, and S. Stolfo. On the feasibility of online malware detection
with performance counters. In ISCA, 2013.

[29] D. Y. Deng, D. Lo, G. Malysa, S. Schneider, and G. E. Suh. Flexible
and efficient instruction-grained run-time monitoring using on-chip
reconfigurable fabric. In MICRO, 2010.

[30] M. Elsabagh, D. Barbara, D. Fleck, and A. Stavrou. Detecting rop with
statistical learning of program characteristics. In CODASPY, 2017.

[31] A. Francillon, D. Perito, and C. Castelluccia. Defending embedded
systems against control flow attacks. In SecuCode, 2009.

[32] M. Frantzen and M. Shuey. Stackghost: Hardware facilitated stack
protection. In SSYM, 2001.

[33] C. Giraud. DFA on AES. In AES, 2004.
[34] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller. Cache attacks on

Intel SGX. In EuroSec, 2017.
[35] A. Gutierrez, J. Pusdesris, R. G. Dreslinski, T. Mudge, C. Sudanthi, C. D.

Emmons, M. Hayenga, and N. Paver. Sources of error in full-system
simulation. In ISPASS, 2014.

[36] M. Kazdagli, V. J. Reddi, and M. Tiwari. Quantifying and improving
the efficiency of hardware-based mobile malware detectors. InMICRO,
Oct 2016.

[37] K. N. Khasawneh, M. Ozsoy, C. Donovick, N. Abu-Ghazaleh, and
D. Ponomarev. Ensemble learning for low-level hardware-supported
malware detection. In RAID, 2015.

[38] D. H. Kim, P. J. Nair, and M. K. Qureshi. Architectural support for miti-
gating row hammering in dram memories. IEEE Computer Architecture
Letters, 14(1), Jan 2015.

[39] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai,
and O. Mutlu. Flipping bits in memory without accessing them: An
experimental study of dram disturbance errors. In ISCA, 2014.

[40] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Man-
gard, T. Prescher, M. Schwarz, and Y. Yarom. Spectre attacks: Exploiting
speculative execution. ArXiv e-prints, Jan. 2018.

[41] P. C. Kocher. Timing attacks on implementations of diffie-hellman,
rsa, dss, and other systems. In CRYPTO, 1996.

[42] D. Lea. A memory allocator. http://gee.cs.oswego.edu/dl/html/malloc
.html.

[43] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Meltdown. ArXiv
e-prints, Jan. 2018.

[44] D. Lo, T. Chen, M. Ismail, and G. E. Suh. Run-time monitoring with
adjustable overhead using dataflow-guided filtering. In HPCA, 2015.

[45] G. C. Necula, S. McPeak, andW.Weimer. Ccured: Type-safe retrofitting
of legacy code. In POPL, 2002.

[46] J. Nomani and J. Szefer. Predicting program phases and defending
against side-channel attacks using hardware performance counters.
In HASP, 2015.

[47] M. Ozsoy, C. Donovick, I. Gorelik, N. Abu-Ghazaleh, and D. Ponomarev.
Malware-aware processors: A framework for efficient online malware
detection. In HPCA, Feb 2015.

[48] C. Percival. Cache missing for fun and profit. In BSDCan, 2005.
[49] P. Rauzy and S. Guilley. Countermeasures against high-order fault-

injection attacks on crt-rsa. In 2014 Workshop on Fault Diagnosis and
Tolerance in Cryptography, 2014.

[50] M. Schenk. Bypassing control flow guard in windows 10. https:
//improsec.com/blog/bypassing-control-flow-guard-in-windows-10,
2017.

[51] F. B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst.
Secur., 3(1), Feb. 2000.

[52] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. Address-
Sanitizer: A fast address sanity checker. In USENIX ATC, 2012.

[53] H. Shacham. The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86). In CCS, 2007.

http://xlab.tencent.com/en/2016/11/02/return-flow-guard/
https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
http://www.anandtech.com/show/8542/cortexm7-launches-embedded-iot-and-wearables/2
http://www.anandtech.com/show/8542/cortexm7-launches-embedded-iot-and-wearables/2
http://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-exynos-review/6
http://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-exynos-review/6
http://www.arm.com/products/processors/cortex-m/cortex-m0plus.php
http://www.arm.com/products/processors/cortex-m/cortex-m0plus.php
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0014q/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0014q/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0014q/index.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
http://gee.cs.oswego.edu/dl/html/malloc.html
http://gee.cs.oswego.edu/dl/html/malloc.html
https://improsec.com/blog/bypassing-control-flow-guard-in-windows-10
https://improsec.com/blog/bypassing-control-flow-guard-in-windows-10

[54] R. Shetty, M. Kharbutli, Y. Solihin, and M. Prvulovic. Heapmon:
A helper-thread approach to programmable, automatic, and low-
overhead memory bug detection. IBM J. Res. Dev., 50(2/3), Mar. 2006.

[55] A. L. Shimpi. ARM’s Cortex M: Even smaller and lower power cpu
cores. http://www.anandtech.com/show/8400/arms-cortex-m-even-
smaller-and-lower-power-cpu-cores, 2014.

[56] L. Szekeres, M. Payer, T. Wei, and D. Song. Sok: Eternal war in memory.
In SP, 2013.

[57] J. Tang. An in-depth look at Control Flow Guard technology in Win-
dows 10. https://documents.trendmicro.com/assets/wp/exploring-
control-flow-guard-in-windows10.pdf, 2015.

[58] Tsuna’s blog. How long does it take to make a context switch? https:
//blog.tsunanet.net/2010/11/how- long-does- it- take-to-make-

context.html.
[59] P. Wagner, T. Wild, and A. Herkersdorf. Diasys: Improving soc in-

sight through on-chip diagnosis. Journal of Systems Architecture, 75
(Supplement C), 2017.

[60] R. Xu, H. Saïdi, and R. Anderson. Aurasium: Practical policy enforce-
ment for Android applications. In USENIX Security, 2012.

[61] M. Yabuuchi, Y. Tsukamoto, M. Morimoto, M. Tanaka, and K. Nii. 20nm
high-density single-port and dual-port srams with wordline-voltage-
adjustment system for read/write assists. In ISSCC, 2014.

[62] C. B. Zilles and G. S. Sohi. A programmable co-processor for profiling.
In HPCA, 2001.

http://www.anandtech.com/show/8400/arms-cortex-m-even-smaller-and-lower-power-cpu-cores
http://www.anandtech.com/show/8400/arms-cortex-m-even-smaller-and-lower-power-cpu-cores
https://documents.trendmicro.com/assets/wp/exploring-control-flow-guard-in-windows10.pdf
https://documents.trendmicro.com/assets/wp/exploring-control-flow-guard-in-windows10.pdf
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html

A Artefact Appendix
A.1 Abstract
This artefact contains the simulator, a sample benchmark,
guardian kernels, and scripts to reproduce and plot experi-
ments from the ASPLOS 2020 paper by S. Ainsworth and T.M.
Jones – The Guardian Council: Parallel Programmable Hard-
ware Security, which uses a many-core support architecture
to provide programmable security analysis for conventional
processors. It can be used standalone for a short run, or with
a copy of SPEC CPU2006 to fully re-evaluate the experiments
from the original paper.

A.2 Artefact check-list (meta-information)
• Algorithm: Control-Flow Integrity, Sanitizer, Shadow Stack
• Data set: SPEC CPU2006, bitcount
• Metrics: Slowdown, Delay
• Output: Simulation metadata, Graphs
• Experiments: Simulation
• Howmuch disk space required (approximately)?: 3GB
• How much time is needed to prepare workflow (ap-
proximately)?: 1 hour

• How much time is needed to complete experiments
(approximately)?: 2 hours (short), 4 days (full)

• Publicly available?: Yes
• Code licenses (if publicly available)?: gem5, MIT.
• Archived (provide DOI)?: https://doi.org/10.17863/CAM
.46514

A.3 Description
A.3.1 How delivered. Our simulator, Guardian Kernels, scripts
and a sample benchmark for the short evaluation are available on
Github: https://github.com/SamAinsworth/reproduce-asplos2020-
gc-paper.

A.3.2 HardwareDependencies. Any recent x86-64 system run-
ning Ubuntu 16.04 or 18.04 should suffice. Other Linux or Mac
operating systems may also work, perhaps with altered package
dependencies, but are untested. For the full workload, a system
with several cores is advised to reduce simulation time through
parallel simulation runs.

A.3.3 Software dependencies. Our simulator and kernels re-
quire several package dependencies, which can be automatically
installed by our scripts. For the full evaluation, a copy of SPEC
CPU2006, in iso format, is required, though the short evaluation
can run without.

A.4 Installation
You can install this repository as follows:
1 $ git clone https://github.com/SamAinsworth/reproduce

↪→-asplos2020-gc-paper

All scripts from here onwards are assumed to be run from the
scripts directory, from the root of the repository:
1 cd reproduce-asplos2020-gc-paper
2 cd scripts

To install software package dependencies, run
1 ./dependencies.sh

Then, in the scripts folder, to compile the Guardian Council
simulator and the Guardian Kernels, run
1 ./build.sh

To compile SPECCPU2006 for theGuardian Council (only needed
for a full evaluation), first place your SPEC .iso file (other images can
be used by modifying the build_spec.sh script first) in the root direc-
tory of the repository (next to the file ‘PLACE_SPEC_ISO_HERE’).
Then, from the scripts directory, run
1 ./build_spec.sh

Once this has successfully completed, it will build and set up run
directories for all of the SPEC benchmarks (the runs themselves
will fail, as the binaries are cross compiled).

A.5 Experiment workflow
For a quick evaluation, once everything bar SPEC is built, from the
scripts file run
1 ./run_bitcount.sh

This will run a short, but representative open source workload
whichwill cause a significant amount of compute from theGuardian
Kernels, and can be completed in around 2 hours.

For the full evaluation, with the SPEC CPU2006 workloads from
the paper, run
1 ./run_spec.sh

to resimulate the Guardian Council’s experiments. This will take
several days, depending on the amount of RAM and number of cores
on your system. By default, the script will run as many workloads
in parallel as you have physical cores, as long as you have enough
RAM to do so. To change this default, alter the value of ’P’ inside
run_spec.sh.

If any unexpected behaviour is observed, please report it to the
authors.

A.6 Evaluation and expected result
To generate graphs of the data, from the scripts folder run
1 ./plot_bitcount.sh

or for the full evaluation:
1 ./plot_spec.sh

Thiswill extract the data from the simulation runs’m5out/stats.txt
files, and plot it using gnuplot. The plots themselves will be in the
folder plots, and the data covered should look broadly similar to the
plots for figures 4 and 7 from the paper. As for the small evaluation,
bitcount was not included in the original paper, we have provided
sample data and results in the folder sample_plots.

The raw data will be accessible in the run directories within the
spec or bitcount folder, as stats*.txt and delays*.txt.

If anything is unclear, or any unexpected results occur, please
report it to the authors.

A.7 Experiment customisation
Workloads Newworkloads can be runwith each of the Guardian
Kernels provided in the artefact. An example of how such a work-
load should be compiled is given in the Makefile of the bitcount
directory. To run a workload on the gem5-guardian simulator, use
the scripts in scripts/gem5_scripts, after exporting the BASE vari-
able:
1 export BASE=*YOUR_ARTEFACT_ROOT*:

https://doi.org/10.17863/CAM.46514
https://doi.org/10.17863/CAM.46514
https://github.com/SamAinsworth/reproduce-asplos2020-gc-paper
https://github.com/SamAinsworth/reproduce-asplos2020-gc-paper

The *nofwd variants can be used to run full short workloads.
The others are used to fast forward and sample (as is necessary for
longer workloads such as SPEC).

Workloads should be for Aarch64 or Aarch32, and statically
linked, to run on the simulator. For shared-memory Guardian Ker-
nels (Sanitizer in our existing set), youmust compile in the allocator:
see bitcount’s Makefile for more information.
Guardian Kernels You can create new Guardian Kernels to
evaluate on the simulator. These are written as standard C/C++ pro-
grams, with custom instructions (typically implemented as inline
ASM, but can be imported from the m5ops list - see the exam-
ple kernels for more information) for FIFO queues and setup. The
Filter and Mapper are programmed with secmap.ini files in the
root of your simulation run directory. An example of how this is
programmed is given in guardian_kernels/example_filter_map.ini.
Multiple kernels can be run simultaneously by adding further lines
to secmap.ini.
Simulator Much of the code for the Guardian Council is imple-
mented in gem5-guardian/src/mem/cache/securelogentry.hh and
.cc. The commit path of the O3CPU (src/cpu/o3/commit_impl.hh)
can be altered to add further observation channels. If you would
like further information on modifying the simulator, please contact
the authors.

A.8 Notes
• We had an issue on recent Linux kernels with compiling
m5threads (for the Sanitizer guardian kernel). To this end,
the make command is commented out in our buildscript, and
the object file for m5threads preshipped. If this causes issues,
please try to rebuild m5threads (guardian_kernels/sanitiz-
er/m5threads-master) and if that doesn’t solve the issue re-
port it to the authors.

• You may have to specify a toolset when SPEC is being built.
We chose linux-suse101-AMD64.

• The gnuplot scripts will issue several warnings for the small
evaluation - these can be ignored, and are caused by using
the same scripts as the full evaluation.

A.9 Methodology
Submission, reviewing and badging methodology:

• http://cTuning.org/ae/submission-20190109.html
• http://cTuning.org/ae/reviewing-20190109.html
• https://www.acm.org/publications/policies/artifact-review-
badging

http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

	Abstract
	1 Introduction
	2 Requirements
	2.1 Security Detection
	2.2 Analysis Channels
	2.3 Heterogenous Parallelism
	2.4 Threat Model

	3 The Guardian Council
	3.1 Guardian Processing Elements
	3.2 Data Channels
	3.3 Event Filter
	3.4 Mapper
	3.5 Hardware/Software Counters
	3.6 Per-GPE Queues
	3.7 Memory System
	3.8 Multicore
	3.9 Summary

	4 Programming Model
	4.1 User-Level vs OS-Level Detection
	4.2 Protecting the GPEs Themselves
	4.3 GPE-Thread Virtualisation
	4.4 Context Switches

	5 Example Setups
	5.1 Control Flow
	5.2 Memory Safety
	5.3 Differential Fault Analysis Prevention
	5.4 Rowhammer
	5.5 Performance Counters
	5.6 Side Channels

	6 Evaluation
	6.1 Overheads
	6.2 Size and Power Estimates
	6.3 Combining Defenses
	6.4 Evolution
	6.5 Detection Latency
	6.6 Summary

	7 Related Work
	7.1 Hardware Techniques
	7.2 Software Protection Mechanisms

	8 Conclusion
	References
	A Artefact Appendix
	A.1 Abstract
	A.2 Artefact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Experiment customisation
	A.8 Notes
	A.9 Methodology

