
ParaMedic: Heterogeneous Parallel Error Correction
Sam Ainsworth, Timothy M. Jones

University of Cambridge, UK
{sam.ainsworth,timothy.jones}@cl.cam.ac.uk

Abstract—Processor error detection can be reduced in cost
significantly by exploiting the parallelism that exists in a repeated
copy of an execution, which may not exist in the original code, to
split up the redundant work on a large number of small, highly
efficient cores. However, such schemes don’t provide a method
for automatic error recovery.

We develop ParaMedic, an architecture to allow efficient
automatic correction of errors detected in a system by using
parallel heterogeneous cores, to provide a full fail-safe system
that does not propagate errors to other systems, and can recover
without manual intervention. This uses logging to roll back any
computation that occurred after a detected error, along with a
set of techniques to provide error-checking parallelism while still
preventing the escape of incorrect processor values in multicore
environments, where ordering of individual processors’ logs is
not enough to be able to roll back execution. Across a set of
single and multi-threaded benchmarks, we achieve 3.1% and
1.5% overhead respectively, compared with 1.9% and 1% for
error detection alone.

Keywords—fault tolerance; microarchitecture; error detection

I. INTRODUCTION

Fault tolerance is an increasingly important property for com-
puter processors. As transistors shrink, both hard (permanent)
and soft (transient) faults become more common in silicon
chips [1], [2], [3], as a result of increased variability, lowered
energy required to cause a transistor to flip bits from, for
example, cosmic rays, and increased points of failure [4]. In
addition, fault-intolerant computation is becoming increasingly
important. Automotive applications require strict safety stan-
dards to be met, and thus typically require fault detection
and correction for all safety-critical components [5], [6],
[7]. With the advent of self-driving cars, the performance
requirements make traditional fault-tolerance schemes, such
as lock-stepping [6], impractical, as they double silicon area
and CPU power consumption. Similarly, many scientific and
large-scale applications are increasingly error intolerant due to
the number of potential failures in such systems.

A recent innovation in this area is heterogeneous parallel
error detection [8]. This allows error detection to be achieved
at a significantly reduced power-performance-area (PPA) over-
head compared with previous schemes, by exploiting new
parallelism that exists in code that has already been executed
once, to allow the checking to be done on parallel checker
cores, each of which is orders of magnitude smaller and lower
power [9], [10] than a traditional out-of-order superscalar [11].
However, previous work does not extend this to cover cor-
rection of faults in a system, and so errors are allowed to
propagate outside the sphere of replication, and returning to
a safe state must be achieved by manual intervention. Indeed,

there are a variety of factors that make this challenging. The
increased latency of error detection for such schemes when
compared with lock-stepping and redundant multi-threading,
necessary to exploit parallelism, makes rolling back incor-
rect writes in the correct order a challenge. Keeping track
of unchecked state in an efficient manner is also difficult:
handling this in software is too expensive, as anything that
has been written potentially may need to be rolled back. Hard
errors are challenging to correct, as the hardware running
the application will repeatedly exhibit the same error, and
the requirement of checking for errors before the result is
propagated out of the system, necessary for correct behaviour
outside of a sphere of replication [4], means high checking
latency may be impractical for performance.

We develop ParaMedic, a parallel error-correction technique
to solve these issues for both single and multi-core processors,
and make hard- and soft-error correction in hardware both
practical and highly efficient. To extend heterogeneous parallel
error detection [8] to full correction, we use solutions inspired
by transactional memory [12]: fine-grained eager versioning
to support efficient rollback from many different concurrent
checkpoints, combined with coarser-grained lazy versioning
to create a total order on rollback between multiple parallel
cores. To maintain correct behaviour even in the presence of
hard-errors, we develop a novel hard-fault log to guarantee
forward progress. We can provide error-correcting codes for
correct rollback by reusing resources from error detection [8]
and the existing cache infrastructure. And we can dynamically
extract the maximal amount of error-correction latency and
parallelism from an application while still allowing correct
executions to propagate out of their fault domain quickly, by
dynamically adjusting checkpoint frequency using an additive-
increase multiplicative-decrease technique.

Across a set of single and multi-threaded benchmarks [13],
we achieve 3.1% and 1.5% overhead respectively, compared
with 1.9% and 1% for error detection alone.

II. BACKGROUND

A. Dual-Core Lockstep

Current techniques for reliability in commercial systems tend
to involve dual-core lockstep [6], [14]. The same code is run
on two identical copies of a processor, usually with some
delay to avoid correlated errors, and the results compared. This
approximately doubles core area and power consumption, as
everything has to be run twice in the same way.

A dual-core lockstep detection system can extend to cor-
rection by adding a further processor [6], where a majority
vote is taken on instruction commit. However, overheads

become significantly worse, now requiring three times the core
area and power of an unprotected system. For this reason,
academics have considered schemes based on additional re-
dundant threads instead.

B. Redundant Multi-Threading

In redundant multi-threading [4], [15], [16], [17] the same
code is run twice within two different threads on the same
core, typically with hardware forwarding of load and store
values, to check correctness. This suffers from a significant
reduction in performance compared to no checking, greatly
increasing energy consumption, and is unable to detect hard
faults without introducing spatial diversity [18], as the same
hardware is used for both the check and the original execution.
Since threads are decoupled from each other, errors cannot
be caught before instructions retire, and so can propagate
into main memory [16]. This means that typically software
or hardware checkpoints are used to revert to a correct state.
However, it is possible to couple the threads more tightly [19]
to ensure the checker thread executes before the main thread
commits, though this heavy restriction in scheduling decreases
performance even further.

C. Heterogeneous Parallel Cores

A recent alternative architecture for error detection appends a
set of small, power-efficient cores to a main high-performance
core to perform the redundant computation in parallel [8]. The
key insight is that running code a second time to check its
correctness is more parallel than the original execution. It is
possible to split up the application by taking periodic register
checkpoints, then overlap the checking of the code between
multiple checkpoints. Due to the parallelism available in the
second run, a set of simple cores (the checker cores) can
together provide enough computational power to keep up with
a high-performance core.

To allow the checker cores to replay load values, and
check store values and load and store addresses, all loads
and stores are extracted in-order from the program stream at
commit time within the large out-of-order processor used as
a main core. These are placed into a load-store log, which is
partitioned such that it is divided equally between the checker
cores. When a segment is filled, or an instruction timeout is
reached, a new checkpoint is triggered, and a check between
the previous checkpoint and the new one is started on the
corresponding checker core. Stores are allowed to propagate
to main memory before they are checked, to avoid impacting
performance significantly.

This approach to error detection is highly advantageous,
with performance, area and power overheads of 1.8%, 24%
and 16%, respectively compared to a processor without check-
ing [8]. When compared with more conventional lock-stepping
schemes [6], the area and power requirements are reduced
significantly from the 100% cost in both dimensions caused
by doubling the core. This makes heterogeneous parallel
error detection the most suitable starting point for an error-
correction scheme.

D. Challenges for Error Correction

Although at first glance it seems straightforward to augment a
parallel error-detection scheme with circuitry for correcting er-
rors, there are a number of challenges that present themselves.
Tight coupling of parallel error-detection circuitry with the
main core is infeasible because a large number of instructions
need to be executed, without being checked, to achieve paral-
lelism in the detection. We must therefore design a system that
can tolerate much more latency between error initiation and
detection, without sacrificing correction ability. This means
we must be able to log a large number of potentially incorrect
stores to be able to roll them back. It also means that we need
to be able to deal with the complexities of multicore shared
memory, where errors that remain uncaught for long periods
of time may propagate around the system. Still, there is also an
opportunity because, unlike in dual-core lockstep or redundant
multithreading, many copies of hardware capable of executing
code exist, as detection is achieved via multiple checker cores
that have the same capabilities as the main core. This means
that a majority vote can be achieved without tripling or even
doubling the hardware overheads, and so even hard errors can
be corrected efficiently. We take these challenges forwards
in this paper to design ParaMedic, a parallel error-correction
architecture, considering the requirements for a single core
setup (section III) before extending to multicore (section IV).

III. SINGLE-CORE CORRECTION

Figure 1 shows an overview of ParaMedic, our system for het-
erogeneous error correction. The hardware we add for single-
core correction is coloured green; structures for multicore
correction (described in section IV) are orange with hatching.

Execution proceeds in the same manner as with heteroge-
neous error detection, with the following changes. Addresses
and data for loads and stores are placed into the load-store
log in program order, along with ECC to protect them. Each
segment of the load-store log obtains a timestamp each time
it starts being filled, so as to create an ordering between seg-
ments. Once full, the associated checker core starts validating
the segment’s contents by re-executing all instructions. In the
common, error-free case, the segment can be reused once
all segments with earlier timestamps have been successfully
validated. However, on detection of an error, execution is
stopped and state reverted to the register checkpoint at the
start of the erroneous log segment by rolling back each load-
store log segment in reverse sequential order, so as to “undo”
each of the stores that has taken place up to that point. The
main core then starts running the application again, starting
from this checkpoint.

The following sections describe these operations and the
extensions we require to achieve this form of execution.

A. Partitioned Load-Store Undo Log

As in the scheme for error detection only [8], a hardware
SRAM log records past loads and stores, so that the smaller
checker cores can replicate load data, and check store data
and load and store addresses. This is partitioned, with separate

2

Fig. 1: ParaMedic: a heterogeneous parallel error-correction system. Units required for single-core error correction are
presented in green. Units for multi-core correction are presented in orange with hatching. Structures for necessary for detection
of errors are in grey, and the main out-of-order core in blue.

segments of the log for each checker core. We store virtual
addresses stored in the load-store log, as this removes the need
for translation by the checker cores. Writes are sent to the load-
store log after having ECC for the cache calculated on them,
so that any errors before this will propagate into the log and be
caught, and any on the separate cache path will be corrected
by ECC bits. Load data is duplicated by the load forwarding
unit before being forwarded, and errors within log forwarding
cause errors to be detected on future checks.

To enable correction of errors in the system, we must be
able to revert writes that may be incorrect, since they occur
after a check fails. Unchecked data that is potentially incorrect
propagates into the cache system, to allow efficient forwarding
of writes to new computation. We therefore take a copy of the
old value of each word written to the L1 cache and record it in
the load-store log, so as to provide the ability to undo stores.
We do this for every write, extending the amount of data stored
per write compared to error detection alone. The data fields
recorded for each load and store are shown in figure 2. We also
add a dedicated load/store bit, for the unroller to determine
which log segments are loads or stores, which the detection
mechanism infers from the instruction stream. On detection of
an error, these writes are then rolled back by walking the log in
reverse order, and writing the old values back to the cache. The
virtual addresses in the load-store log are retranslated by the
TLB upon a rollback, moving the translation to the uncommon,
rather than the common case, as translation does not need to
be performed for correct segments.

B. ECC

Error detection by itself does not require ECC in the load-
store log. Load data forwarded to the load-store log from the
cache takes a separate path from the connection to the main
core’s load-store buffer, so there is never a point where there

is a single copy of unprotected data. Errors in addresses or
data held in the log will be detected, because the error occurs
after the original execution and the two will diverge. This also
holds true for error correction in the case of load and store
data. However, if an error were to occur in the store address
or the old data values (those overwritten by the store), we
would either write to an incorrect address or write incorrect
data in the event of a rollback. For correction, therefore, we
must protect store addresses and old data values with ECC.

To avoid recomputation of ECC bits [20] for the data values,
it is useful to recover as much of this information as possible
from the cache. We assume that ECC bits are stored per word
in the cache [21], [22], and copy those directly. While the
cache will have ECC bits for the address tag in the cache,
these are likely to represent the physical address, and cover
only line rather than byte granularity, and so we calculate a
new ECC for the virtual address on every store. This ECC
data is then stored in the load-store log (see figure 2).

C. Commit Ordering

Once a checker core has finished execution of its load-store
log segment, it validates the register checkpoint at the end of
the segment (and the beginning of the next). Depending on
how many instructions are in each segment, and the types of
instruction, these checks can complete out-of-order. If we are
only detecting errors, a checker core’s log segment can be
reallocated immediately after a check is complete, because if
the check is successful, the data is no longer needed. However,
when correcting errors, we can only allow this to occur once
we are certain that there are no errors in earlier segments (i.e.,
those containing older program instructions), which may take
more time to check if they contain more or longer-latency
instructions, for example. If earlier log segments do contain
errors then we need to use the current segment to roll back

3

Fig. 2: Structure of entries in the load-store log. Loads use two
64-bit entries; stores use three. We assume that ECC bits give
single error detect, single error correct (SEDSEC) capability,
using Hamming codes [20]. Abbreviations are Address ECC
(AE), Old Data ECC (ODE), Unused (U), Load (L) and Store
(S). Load and store bits are placed such that they are the first
bit seen in a packet when read in reverse on an unroll.

stores, so as to ensure that memory values are correct for the
register checkpoint we are reverting to. We can therefore only
reallocate a load-store log segment once all prior segments
have been successfully validated.

The cases in which this new constraint can affect perfor-
mance are those where utilisation of the checker cores is
reduced, and thus the main core has to be stalled for longer,
waiting for load-store log space. This is only significant when
the runtime length of each check is highly variable. By keeping
them at a similar instruction length in any given phase, the
additional slowdown can be minimised.

D. Register Checkpoints

For detection alone, for each segment of the load-store log, we
must store a checkpoint of the register file as the main core
saw it at the end of that particular sequence of instructions.
If this matches what the checker core produces, then there
is no error. However, to perform error correction, we must
store and be able to roll back to the checkpoint at the
start of a segment (i.e., the checkpoint at the end of the
previous segment). This increases the length of time we must
keep the starting register checkpoint before overwriting it—
essentially the previous segment’s register checkpoint cannot
be overwritten until the following segment commits. However,
the previous segment’s undo log can still be filled while the
current segment is being checked, and so no slowdown is
caused by this: if the main core must stall waiting to be able
to overwrite a register checkpoint, it would also stall waiting
for the subsequent load-store log segment to become free.

ECC is unnecessary on register checkpoints while the asso-
ciated partition is being checked. This is because information
redundancy is achieved by the two execution copies, one from
the main core and one from the checker core. Still, since we
may need to roll back to a register checkpoint after it has
been checked, due to a later error, a window of vulnerability
is introduced. We can mitigate this with ECC on the register
checkpoints but, crucially, this is only necessary once the

register checkpoint has been validated. This means the ECC
can be calculated in parallel with the computation check, does
not need to be calculated when the checkpoint is taken, and
does not sit on any performance-critical path.

E. Error Recovery

On the detection of an error, ParaMedic must roll the system
back to a consistent state. We do this by stopping the main
core, stopping all checker cores with timestamps that are later
than the one exhibiting the error, then rolling back all filled
and partially filled load-store log segments, starting with the
youngest (i.e., most recent instructions), in reverse order, until
the segment with the error has been rolled back. The register
file of the main core is then restored to that at the start of
the segment with the error. By storing a read/write bit in the
log for each entry (figure 2), which is unneeded for the initial
check as it can be determined from the instruction stream, we
can quickly identify old write data.

As there may be multiple writes to the same location,
we must perform this in sequential reverse order to regain
a consistent state. While this is a slow operation, it occurs
infrequently, as hard and soft errors are relatively uncommon.
Further, we can place bounds on it by altering the number
of instructions per log segment accordingly, at the expense of
greater checkpoint overhead for smaller log segments. Since
the load store log stores virtual addresses, to avoid retrans-
lation during checking, we assume the TLB and page table
walkers are protected using their own redundancy mechanisms
such as ECC, to prevent the need for retranslation in the
common case and reduce the amount of translation logic
required. This means that, for a rollback, translation must
be repeated to re-retrieve the physical address. Any changes
in translation map state between execution and recovery will
naturally be rolled back by reversing all subsequent writes.

Events such as exceptions are speculatively handled by the
main core, as with all other computation, before checks are
completed. If this exception later turns out to be incorrect (for
example, a soft error changes a value which causes an out-of-
bounds memory access), the exception handling is naturally
rolled back by the undoing of all loads and stores.

An earlier check that hasn’t yet completed may fail after
a later one in program order, particularly when we have hard
faults in a system. In this case, we must wait for the future
rollback to complete before proceeding to roll back further.
On a failure, we increment the current commit timestamp,
as opposed to returning to the timestamp before the error
occurred. This, as we shall see later (sections III-F and IV-A),
reduces the amount of book-keeping in the cache without
affecting correctness, and enables hard-fault tracking. We mark
all checkpoints after the error as “rolled back”, equivalent
to “committing”, save for the fact that no new roll back
is necessary on new errors, but do not commit them until
all previous checks have completed. This ensures correct
behaviour even if an earlier error is later detected. An example
of this behaviour is shown in figure 3.

4

Fig. 3: Example of an error being rolled back, followed by
discovery of an earlier error. Though it would not harm cor-
rectness to repeat roll back of entries marked as “R”, treating
them as committed prevents redundant work. Abbreviations are
Committed (C), Validating (V), Error (E), Undoing (U), Rolled
back (R), Filling (F).

F. Hard Faults

Transient errors are unlikely to occur twice in the same place,
so we can successfully recover from them by returning the
system to a consistent state and beginning execution again
with associated checking, which should succeed the second
time. However, this is not the case with hard faults, either in
the core itself or within the checker hardware of a core, where
the same error will be detected twice. Further complicating this
is that the same hard fault may manifest in different locations
in a checker log even if we assume the log is in program order,
due to non-deterministic scheduling. This makes a hard fault
difficult to distinguish from a soft fault.

Our solution aims to maintain forward progress in the
presence of hard faults by keeping track of the address/data
pair of the most recent error detected in a previous-error log.
The address is either a memory location or an architectural
register, depending on whether the fault was detected in
the register checkpoint or within a memory instruction. On
detection of an error we check this pair and if there is a match
then we move to a different checker core for the subsequent re-
execution after rollback. If that doesn’t succeed in correcting
the issue, we can then move to different main core and checker
unit for the next attempt.

To succeed in detecting hard faults, this scheme ensures
the error written back to the tracking hardware is the first
error in a sequence. Before we update the previous-error log,
all prior checks must have been completed. We do this by
keeping both a speculative-error register and a committed-
error register. The former is updated whenever an error occurs
that has an earlier timestamp than the existing error. The
latter is updated when the committed timestamp goes past
the timestamp of the speculative-error register. All new errors
are compared with the committed-error register. This won’t
necessarily identify all hard errors as being permanent, but
is sufficient to maintain forward progress. As the timestamp
is monotonically increasing, the committed-error register is

5
Committed Error Speculative Error

Time Committed Time Data Addr Time Data Addr

0 0 0 0 0 0 0
7 1 0 0 5 0x43 0xA4
8 1 0 0 3 0x84 0xBE
8 7 0x84 0xBE 3 0x84 0xBE

11 7 0x84 0xBE 9 0x84 0xBE

Fig. 4: An example of hard error tracking, using the execution
of figure 3 as a starting point. A speculative error occurs at
time 5, and is checked against the current committed error, but
does not match. When the earlier time 3 error is checked, this
replaces the value in the speculative-error register. Finally,
when time 3 is committed, this data goes into the committed-
error register. The program is re-executed, and the same error
is detected, triggering hard error recovery and maintaining
forward progress.

updated correctly even after rollbacks. An example of this is
shown in figure 4.

If no other main cores are available we can still recover from
hard faults by effectively checking the code on two different
checker cores. We store the data and address of the committed
error, using the value from the first checker core. We then
restart execution, ensuring the new start point is scheduled for
checking on a different core. If the next error matches, it is
assumed that the main core is incorrect, and the checker cores
correct. The program is rolled back to immediately before the
error occurred, the correct operation proceeds, and execution
is continued on the main core, with the register file copied
from a checker core immediately after the operation.

G. Context Switches

As with all interrupts, context switches trigger new check-
points, to avoid replaying them in the middle of a check. On
a rollback, this behaves correctly: the stores are rolled back for
the process that has been switched to, followed by the stores
for the earlier process, as a result of the timestamps for each
core having a total ordering regardless of process.

If we have to roll back an incorrect computation, on
the successive attempt at running the computation a context
switch may be triggered at a different point. However, this
should cause no issues, as the second execution is checked
independently of the first failed attempt.

One complication with rolling back stores is that the load-
store log structure tracks store addresses in the virtual address
space, to avoid having to translate before checking. This means
that to write back to the correct physical location, the rollback
hardware must have access to the TLB, and also we must
store a process ID per partitioned load-store log segment. As
we switch entry on a context switch, we only have to store a
single process ID for each segment.

H. Kernel Code

In addition to user-space code, ParaMedic must also check
kernel-level code to maintain correct execution. This is also

5

separated from user-space code by register checkpoints that are
taken when any transfer to kernel mode occurs (e.g., system
calls or hardware interrupts). Kernel-level registers must also
be stored in the necessary checkpoints in this case. The error
detection process works similarly, as all data the kernel-level
code must read will also be forwarded in the load-store log.
While checker cores themselves do not need access to kernel
memory while performing this check, as loads and stores are
forwarded, kernel-level code rollback does need to be able to
write to kernel memory. As data may have propagated to the
kernel code from unprivileged code and vice versa through,
for example, system call arguments, we roll back both kinds
of checkpoint in the detection of an error in either. In effect,
we treat the two identically.

I. Writes Outside the System

To avoid having to report errors and corrections to other
systems, a fault tolerant system should only allow correct
results to escape from its sphere of replication. We therefore
need to make sure that all data that leaves the system has
been checked. Similarly, all unrepeatable reads and writes
(for example, to some IO devices) must be non-speculative
in terms of errors. To do this, we must stop the system,
issue a check, and wait until the check has completed before
issuing communications with other systems, or more general
unrepeatable reads and writes. We consider all uncacheable
data as coming from an unrepeatable operation and force
checks to complete before the operation succeeds.

This could introduce a significant delay in the execution
of such operations, when the number of instructions between
checkpoints is large. However, if they are infrequent, this can-
not cause a significant performance loss. If they are frequent,
then each checkpoint will be small and the latency between
each operation will thus be similarly small. Performance will
in effect be limited by the checker cores, as the enforced
checkpoints will cause every instruction between nonspecula-
tive reads/writes to be in the same checkpoint. However, since
such code is likely to be IO-bound, this is unlikely to reduce
performance significantly, as the smaller cores will likely be
able to keep up with larger ones. We have two cases: buffered
IO only results in overhead at the single point of the DMA
request, rather than on all IO operations, and unbuffered IO
is not compute bound so can be adequately serviced despite
lacking parallelism in ParaMedic in this scenario. Still, we
come up with a scheme to ameliorate these issues, and others,
using dynamic checkpoint scheduling, in section IV-D.

J. Summary

This section has dealt with the properties of ParaMedic
necessary to develop a heterogeneous parallel error-correction
scheme, under the assumption that a system has a single
main core. The load-store log must be extended to include
overwritten data, so we can roll back writes on detection of an
error. These old values must be covered by ECC, to make sure
rolled back values are correct, but most of this data can be re-
covered from the memory system. A stricter commit ordering

Address Timestamp State

0x80 89 M

0x90 80 M

0x30 N/A S

Store 0x60

Committed Timestamp: 85 Speculative Timestamp: 93

89 > 85

✓
✓

✗

Fig. 5: An example store into the L1 cache. At the current
timestamp, 93, a write miss occurs. We cannot evict the line
at address 0x80 because its timestamp (89) is more recent than
the committed timestamp (85), and so potentially-incorrect
data could be written out to the L2 cache.

needs to be placed on the checkpoints taken for each parallel
check, to allow sequential rollback of data. We can correct
hard faults by tracking the repetition of error observations, to
guarantee forward progress, and to give the illusion of a fault-
free system to the outside world, IO operations are delayed
until all previous instructions are checked. The next section
deals with error correction for multicore CPUs.

IV. MULTICORE CORRECTION

The solution presented in the previous section works for
single core processors. However, when multiple main cores
are included in a system the problem of correcting errors
becomes more complicated because we have to know far data
has propagated when committing and on an error.

As an example, suppose a check fails and ParaMedic rolls
back to an earlier checkpoint. How do we know which other
cores have seen data affected by the rollback, since they will
also need to be rolled back to a correct state? Conversely, how
do we know that all data used by a particular load-store log
segment has been validated, so it is safe to commit the current
entry? What ordering should we apply when two load-store log
segments read data generated by the other? How do we know
the order in which stores should be undone when we have
multiple load-store logs being written to concurrently?

We solve all these issues by mandating that data must be
checked before communication can occur. If a core cannot see
uncommitted data from another core, errors are independent,
and failed checks can be rolled back independently. However,
we need to minimise the overheads of enforcing checks-
before-communication. The following section discusses tech-
niques used to achieve this, while still allowing high perfor-
mance even for workloads with communication between cores.

A. Cacheline Timestamps

To prevent data propagation to other cores until it has been
checked, we keep modified data within private caches until it
has been committed. A timestamp, local to each core rather
than to each process, is stored per cacheline in the L1 cache
and data is only allowed to leave if its line hasn’t been modi-
fied or if the line’s timestamp is less than or equal to the most
recently committed timestamp. This means that modified data
cannot be evicted through the cache’s replacement policy or

6

coherence requests (either invalidating the line or changing to
shared state). An example is given in figure 5. As uncommitted
data cannot escape to shared caches, we do not need to extend
this scheme further than the L1, reducing the storage overhead.

If a check fails, we roll back and undo stores by overwriting
new cached data with its old value, leaving the timestamp
unchanged (i.e., we do not undo the timestamp update that
occurred with the store that is being reverted). As the failed
checks are marked as ready to commit, but are not committed,
this behaves correctly if an earlier check subsequently fails.
When all previous checks have been completed, the timestamp
will be below the last committed timestamp, and can thus
be considered committed. This is a safe overapproximation:
we may falsely mark data that was written before any
uncommitted timestamps as uncommitted, however we still
guarantee forward progress, as once all previous timestamps
have committed, execution will be able to continue.

B. Data Eviction

To prevent unchecked data escaping the L1, we can only evict
data once it has been committed. In cases where the data
must be evicted, we pause the main core until the data has
been checked. If the timestamp of the data is the same as
that currently executing on the core, we immediately issue a
checkpoint to start checking the data, to avoid deadlock.

As the core must stall at this point, we wish to do it
as infrequently as possible. We thus bias against evicting
uncommitted data by favouring eviction of other data within
the cache set first. We stop the core if all cache lines within
a set are uncommitted and modified, so one must be evicted.

A 36KiB load-store log can hold between 1,500 and 4,500
entries, approximately, assuming 64-bit words and depending
on the ratio of loads to stores in the log. By comparison, a
typical 32KiB data cache can store approximately 4,000 64-
bit words, or 500 cache lines. However, multiple accesses
to the same location take up multiple entries in the load-
store log. Thus, provided there is some temporal or spatial
locality, uncommitted data is unlikely to be evicted from the
L1 as a result of a capacity miss. However, conflict misses in
low-associativity caches are possible. These can be mitigated
by increasing the associativity of the cache, or by using an
eviction buffer for uncommitted writes, which is stored in
order of timestamp.

C. Coherence Requests

In addition to eviction by other data and through invalidation,
requests from the cache coherence protocol can also force data
to be written to either the upper level caches, or the private
caches of other cores. If a request is observed to a cache line
that is currently uncommitted, the response must be delayed
until the relevant check completes. This means that writes
become visible in commit-order of checkpoints. If the write
timestamp in the local cache is the same as the timestamp
currently executing on the main core, again it is necessary to
issue an early checkpoint. The coherence request further takes

precedence over future writes to the cache-line and so a write-
attempt by a core to a coherency-requested cache line must
stall until the coherence request is satisfied. This is sufficient to
avoid deadlock within the protocol: any cache lines that have
been requested by another core will eventually be checked and
released, as no cyclic dependencies can be constructed. If a
check fails, and a cache line is rolled back, then the earlier
data is available to the requesting core, once all checkpoints
earlier than the failure are committed.

D. Variable-Length AIMD Checkpointing

Fundamentally, parallel error checking exploits increasing
checking latency to extract parallelism in the redundant ex-
ecution of code. However, in cases where we must stall
a main core, or delay a coherence request, to issue early
checks (e.g., unrepeatable reads and writes, cache evictions),
we have overestimated the amount of latency the system
can tolerate. One solution to this would be to reduce the
number of instructions, loads, and stores allowed between
each checkpoint. However, in cases where this behaviour does
not occur, this would reduce performance, as taking register
checkpoints is relatively expensive.

Our solution is to make the number of instructions allowed
between each checkpoint (i.e., in the corresponding load-store
log segment) dynamic. While we cannot do anything about
overestimating the checking latency the first time this occurs,
we can use this as a prediction that the same will happen in
the short term future, and thus reduce the checkpoint length
accordingly. To do this, while generating a stable estimate for
checkpoint length, we use an additive increase multiplicative
decrease (AIMD) scheme, as used in TCP [23]. Here, every
event that triggers a pause in execution, or a delayed coherence
response, halves the target number of instructions in a segment.
In contrast, any checkpoints for which such events do not
occur increase the target instruction limit by 5, up to a limit
of 5,000, which is the maximum size of any load-store log
segment. This avoids penalising the cases where such pauses
do not occur, but is highly reactive when they do, thus rapidly
decreasing the target length when necessary, and increasing
the target slowly, to keep each checkpoint at a similar length
in the short term.

E. SMT Extension

Our current discussion has assumed that caches are private,
and only one thread can be executing on a core at a time. This
does not hold true for cores that support simultaneous multi-
threading [24], where instructions are committed from multiple
threads at once. Here, we need a more sophisticated scheme
that prevents loads and stores from different contexts from
entering the same load-store log segment, stops unchecked
writes from propagating to other threads, and defines an order
in which writes should be reversed on an error.

ParaMedic separates committed loads and stores by thread
ID, and issues separate checks to checker cores for each thread.
Thread ID bits are concatenated to the timestamp: a check can
commit when all previous timestamps with the same thread

7

Main Cores

Core 3-Wide, out-of-order, 3.2GHz
Pipeline 40-Entry ROB, 32-entry IQ, 16-entry LQ, 16-

entry SQ, 128 Int / 128 FP registers, 3 Int
ALUs, 2 FP ALUs, 1 Mult/Div ALU

Tournament 2048-Entry local, 8192-entry global, 2048-
Branch Pred. entry chooser, 2048-entry BTB, 16-entry RAS
Reg. Checkpoint 16 cycles latency

Memory

L1 ICache 32KiB, 2-way, 1-cycle hit lat, 6 MSHRs
L1 DCache 32KiB, 2-way, 2-cycle hit lat, 6 MSHRs
L2 Cache 1MiB shared, 16-way, 12-cycle hit lat, 16

MSHRs, stride prefetcher
Memory DDR3-1600 11-11-11-28 800MHz

Checker Cores

Cores 12× In-order, 4 stage pipeline, 1GHz
Log Size 36KiB: 3KiB per core, 5000 inst. max length
Cache 2KiB L0 ICache per core, 16KiB shared L1

TABLE I: Core and memory experimental setup.

ID have committed. When a cache line is accessed that was
modified by another thread at an uncommitted timestamp, we
stall the reading thread, issuing an early checkpoint on the
thread that wrote to the cache line if necessary, until the
writing thread commits. This enforces a serial, independent
ordering on writes between threads, so on an error we need
only roll back the thread in which the error occurred.

F. Summary

This section has dealt with extending ParaMedic’s error cor-
rection to multicore systems, while still allowing the undoing
of stores after detecting an error. We avoid ordering issues
by ensuring that any communication between cores only
propagates correct data, by buffering writes in private caches
based on their timestamps. If a coherence request forces
communication early, the data response is delayed until after
it has been checked, potentially triggering a new checkpoint.
To prevent a loss of performance, the size of checkpoints is
dynamically adjusted, based on the amount of communication
and uncommitted data stored in the L1 cache, to adapt the
coarseness of parallelism to suit the application.

V. EXPERIMENTAL SETUP

To evaluate the performance impact and detection latency of
ParaMedic, we modeled a high-performance system using the
gem5 simulator [27] with the ARMv8 64-bit instruction set,
and configuration given in table I. This is similar to systems
validated in previous work [28] and close to that used in
previous work on heterogeneous error detection [8].

The benchmarks we evaluate are given in table II. Where
possible we choose benchmarks similar to those used in
previous work [8]. However, as their scheme has no impact
on the efficiency of multicore systems, unlike ours, due to the
prevention of error propagation (section IV), we further add
multi-threaded versions of Parsec [13] applications running

Single Core Benchmarks Source Input

randacc HPCC [25] 100000000
stream HPCC [25]
bitcount MiBench [26] 75000
blackscholes Parsec [13] simsmall
fluidanimate Parsec [13] simsmall
swaptions Parsec [13] simsmall
freqmine Parsec [13] simsmall
bodytrack Parsec [13] simsmall

Multicore Benchmarks Source Input

blackscholes Parsec [13] simsmall
canneal Parsec [13] simsmall
fluidanimate Parsec [13] simsmall
swaptions Parsec [13] simsmall

TABLE II: Summary of the benchmarks evaluated.

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

blackscholes

randacc

fluidanimate

bodytra
ck

fre
qmine

bitcount

swaptions
stre

am
average

N
o

rm
a

lis
e

d
 S

lo
w

d
o

w
n

Detection
Correction

Fig. 6: Normalised slowdown for each single core benchmark,
with both detection-only and correction schemes.

on two threads. This required using gem5’s threading module,
m5threads, and thus ARMv7 instead of ARMv8. The subset
of benchmarks chosen are those that run successfully using
m5threads on ARMv7.

VI. EVALUATION

Exploiting heterogeneous parallelism for multicore error cor-
rection incurs performance overheads of just 3.1%. We first
look at the impact of the changes required for single core ma-
chines, as described in section III, showing minimal difference
in performance compared to detection only. We then evaluate
the techniques required for correctness on multicore machines.

A. Single-Core Error Correction

Figure 6 shows normalised slowdown for a set of single
core benchmarks, using both error detection [8] and the
basic correction scheme suitable for single core systems from
section III. In effect, the latter is error detection but with extra
data for stores in the load store log, thus reduced maximum
capacity, in-order commit of error-detection checkpoints, and
blocking on IO requests to allow error checking to catch up.

We see that these cause very little extra slowdown compared
with the baseline with no error detection. In many ways this is
unsurprising. Increasing the amount of data in the load store
log slightly increases the frequency of register checkpointing,

8

 0 1000 2000 3000 4000 5000

D
e

n
s
it
y

Time (ns)

bitcount
freqmine

stream
fluidanimate

swaptions
bodytrack

blackscholes
randacc

(a) Detection

 0 1000 2000 3000 4000 5000

D
e

n
s
it
y

Time (ns)

bitcount
freqmine

stream
fluidanimate

swaptions
bodytrack

blackscholes
randacc

(b) Correction

Fig. 7: Density plot to show delays between a store commit-
ting and being checked, with error detection and correction,
respectively.

but not enough to have a large performance impact. Because
checkpoints are typically similarly-sized, due to being either an
equivalent number of loads and stores, or an equivalent number
of total instructions if the limit is reached before a load-
store log segment is filled, error-detection checkpoints usually
commit in order, and so allowing out-of-order commit rarely
improves resource availability. While the workloads we look
at do feature IO operations, high-performance applications
typically buffer these in main memory, and thus there are few
operations where we have to stall and wait for detection to
finish. Even if the latter were not the case, direct IO operations
are sufficiently slow that each small checker core would be
able to keep up with the main core, and thus the lack of
exploitable parallelism is unlikely to affect performance.

Figure 7 shows the delay between an error occurring and
it being found in both schemes. We see that the constraints
introduced for correction actually reduce the delays observed
slightly. This is typically because checkpoints are smaller, due
to the larger amount of stored data, reducing the number
of loads and stores in each checkpoint and causing each
checkpoint to be issued and checked more quickly.

B. Multicore Error Correction

Next we evaluate the additional constraints introduced by
section IV. The most salient of these is the prevention of data
escaping from the L1 cache before it has been checked by a
checker core. First, we evaluate the performance overhead for

single-threaded benchmarks where we assume that data may
be shared with other cores, along with the AIMD technique
(section IV-D) to reduce the performance impact of this, before
evaluating the impact on the cache coherency system using
multithreaded shared memory benchmarks.

1) Single-Threaded Benchmarks: Unless we can be sure
that a program isn’t reading from or writing to data from
other processes running concurrently on other cores, or the
process isn’t locked to a particular core, then we still need
to use the techniques presented in section IV to prevent
error propagation to separately checked code, even for single-
threaded workloads.

Figure 8 presents the same single-threaded benchmarks as
figure 6, but with additional bars for timestamps and data
blocking in the L1 cache (L1 Timestamps) necessary for
preventing error propagation, as presented in section IV-A,
along with the variable length checkpointing (L1 AIMD
Timestamps) presented in section IV-D used to reduce the
overheads in cases of conflict misses causing the triggering
of early checkpoints and paused main core execution.

Three benchmarks are particularly impacted by blocking
data from being evicted from the L1 based on timestamp data.
The first of these, randacc, suffers because of its highly random
memory-access pattern, with little temporal or spatial locality,
causing a large number of both conflict and capacity evictions.
However, since this results in the program being extremely
memory bound even without error detection or correction, we
can eliminate the overheads entirely by dynamically setting
checkpoint lengths with AIMD timestamps. The overhead of
additional checkpointing is negligible as the workload is not
compute bound, and by shrinking the checkpoint length we
have fewer stores concurrently buffered in the L1 cache.

However, the performance for the other two benchmarks
affected, freqmine and swaptions, is less optimal. Freqmine
is particularly impacted, increasing overhead to 14% with
L1 timestamps and reducing to 10% with variable length
checkpointing. While both workloads suffer from frequent
conflict evictions, as with randacc, the relevant data is typically
temporally local, and available in the L2 cache, unlike with
randacc, and thus the code is not as memory bound. Reducing
the size of checkpoints is less effective for conflict than
capacity misses, therefore variable-length checkpointing does
not entirely solve the problem of overheads from using the
low-associativity L1 cache as a buffer. A higher-associativity
cache or victim buffer could mitigate this considerably.

Figure 9 shows the delays observed once we add in AIMD
variable timestamps. Again, we see that typical delays are
reduced further with respect to both schemes in figure 7. This
is particularly true for randacc because the checkpoints are
smaller, so average delays are reduced considerably.

Indeed, in figure 10 we see that, while most benchmarks
spend over 90% of their execution time with a maximal
instruction window of 5,000 instructions, randacc, freqmine
and swaptions spend the majority of their execution with much
smaller checkpoint lengths. Freqmine spends only 21% of
its time at this maximum, while randacc spends 2.4% of its

9

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

blackscholes

randacc

fluidanimate

bodytra
ck

fre
qmine

bitcount

swaptions
stre

am
average

N
o

rm
a

lis
e

d
 S

lo
w

d
o

w
n

Detection
Correction

L1 Timestamps
L1 AIMD Timestamps

Fig. 8: Normalised slowdown for each single core benchmark,
with the schemes from figure 6, along with the L1 timestamp
scheme necessary to ensure correctness in multicore shared
memory environments, and the AIMD timestamp length scheme
to improve its performance.

 0 1000 2000 3000 4000 5000

D
e

n
s
it
y

Time (ns)

bitcount
freqmine

stream
fluidanimate

swaptions
bodytrack

blackscholes
randacc

Fig. 9: Density plot to show the delays observed between a
store committing and being checked, with data being buffered
in the L1 and a dynamic AIMD timestamp length scheme.

time there, and swaptions less than a thousandth of a percent.
The capacity and associativity of the L1 are too low for
maximal performance on these benchmarks when the L1 is
used as a buffer for checked data, with a fixed checkpoint
size. However, performance is still relatively high provided
we alter the checkpoint size dynamically.

2) Multithreaded Benchmarks: While the single-threaded
benchmarks may suffer from using the L1 cache as a buffer
for unchecked results due to cache evictions, with true mul-
tithreaded shared-memory workloads the additional problem
of shared data emerges. As we discuss in section IV-C, other
cores may force data to be flushed from an L1 cache, or be
directly shared with another core.

Figure 11 shows the performance of Parsec [13] benchmarks
running with two threads with our schemes and detection
alone. With the addition of timestamps in the L1 cache, to
prevent inter-thread communication before error checking, we
do observe some slowdown. However, this is surprisingly
slight, and almost entirely mitigated with the use of AIMD
timestamps, to vary checkpoint lengths based on the amount
of communication between cores.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 1000 2000 3000 4000 5000

randacc

freqmine

swaptions

D
e

n
s
it
y

Checkpoint Length (Instructions)

 0.8
 0.82
 0.84
 0.86
 0.88

 0.9
 0.92
 0.94
 0.96
 0.98

 1

other benchmarks

D
e

n
s
it
y

bitcount
freqmine

stream
fluidanimate

swaptions

bodytrack
blackscholes

randacc

Fig. 10: Density plot of timestamp lengths during execution
when using variable length AIMD timestamps (section IV-D).

 1

 1.005

 1.01

 1.015

 1.02

 1.025

 1.03

 1.035

blackscholes

canneal

fluidanimate

swaptions

average

N
o

rm
a

lis
e

d
 S

lo
w

d
o

w
n

Detection
Correction

L1 Timestamps
L1 AIMD Timestamps

Fig. 11: Normalised slowdown for Parsec workloads running
on two threads, with techniques from figure 6, along with the
L1 timestamp scheme necessary for correctness in multicore
shared memory environments, and the AIMD timestamp length
scheme to improve its performance.

Still, in many ways this should be expected. The Parsec
benchmarks are designed to scale well to multiple threads,
and even on current systems, frequent communication causes
programs to scale poorly. Because of this, we can say more
generally that, for programs with high thread-level parallelism,
the additional performance loss from delaying communication
before error checking, to prevent error propagation and there-
fore allowing recovery from errors, is slight when compared
with just providing error detection.

C. Other Overheads

Our prior work [8] places other overheads at 16% and 24%
for power and area respectively for their heterogeneous de-
tection system. We should expect ParaMedic to be similar:
the additional overheads we are L1 data cache tag timestamps
(a fraction of a percent of core area), along with the hard
error table, AIMD unit and commit order tracker, which are
small units that are insignificant in overall area and power

10

blackscholes

randacc

fluidanimate

bodytra
ck

fre
qmine

bitcount
stre

am

swaptions

P
ro

p
o

rt
io

n

Loads
Stores

Register File
Masked

Fig. 12: Graph showing how errors injected into the register
file propagate through the system.

calculations. While the register checkpoints store more state
than in our prior work [8], we have implemented this in an
area-neutral way by reducing numbers of entries stored, so this
is taken into account in our performance numbers.

D. Fault Injection Study

ParaMedic re-executes all computation by the main core on
checker cores, and so captures all observable errors that dual-
core lockstep would: the difference is that computation may
be checked in a different order from the dual-core lockstep
execution due to the exploitation of parallelism.

However, the way errors manifest may differ due to the
register checks at the end of each segment: in dual-core
lockstep, these errors would instead appear the retirement
of an instruction, and in other sequential error detection
mechanisms [15], [4], [16], would either affect a future load
or store, or be masked entirely. By comparison, in ParaMedic
we must also check register files to ensure continuity between
parallel checked segments. We explore this in figure 12. Here,
we inject a random bit error in a random integer register at the
start of each checkpoint, to observe the error’s propagation. We
see that errors are split significantly between load addresses,
store addresses and data, and register files. We also see that
up to half of all injected errors on the register file never affect
the resulting computation: they are in registers that are never
used by the application, and are overwritten by the time a
checkpoint is completed.

E. Summary

For single-threaded code without shared memory, the extra
slowdown from error correction is minimal, at just 2.0%
compared with 1.9% for error detection. When we introduce
shared memory, mandating communication limitations that
prevent the escape of data from the L1 before it is committed
by using timestamps, this increases to 4.6%. However, it can be
reduced to 3.1% by using an additive-increase-multiplicative-
decrease (AIMD) scheme to dynamically scale the size of
timestamps, to reduce cache capacity evictions from data that
hasn’t yet been checked. When we extend this to multithreaded
code, the pattern is similar: overheads of 1% for error detection
increase to 1.5% for correction.

VII. COMPARISON WITH TRANSACTIONAL MEMORY

ParaMedic rolls back speculative execution in the presence of
errors. There is, therefore, a clear comparison to be made with
transactional-memory systems [12]. Further, we can consider
the problem of error propagation as being akin to conflict
detection, both within-core to subsequent checkpoints, and
out-of-core when errors may propagate due to shared memory.

However, there are clear and necessary implementation
differences between our technique and typical hardware trans-
actional-memory (HTM) schemes. Most real-world HTM im-
plementations are best-effort [12], meaning forward progress
isn’t guaranteed. This is possible because the system can al-
ways fall back on sequential execution of transactions, whereas
there is no alternative to checking the code for correctness
when performing error correction. Whereas concurrent writes
in transactions are a cause for rollback, for error checking
we should expect addresses to be written to multiple times
in different checkpoints. This means that buffering in the
L1 is suitable for best effort hardware transactional memory
systems [29], but is not suitable for error correction; inter-
mediate writes need to be buffered as well for more fine-
grained rollback and commit. Another difference is that we can
partition checkpoints as we wish for error checking, whereas
they are necessarily in fixed points for atomic transactions.

Our error correction solution is, in transactional-memory
terms, an eager versioning, optimistic conflict-detecting system
up until the L1, and a lazy versioning, pessimistic conflict-
detecting system between cores [30]. Optimistic “conflict
detection” between checkpoints on the same core is necessary
to achieve the desired parallelism: if we were pessimistic, any
data accessed in multiple checkpoints would cause a stall until
the previous check had completed. Similarly, eager versioning,
where we use an undo log instead of using the L1 cache as
a buffer of data which can be thrown away, is necessary to
avoid the fates of all concurrent checks being tied together:
we need to be able to overwrite uncommitted data in the L1
for future transactions without stalling, and also to be able to
commit data within the L1 without forcing write-through to the
L2. Without an undo log, intermediate rollback states become
inaccessible. This would result in stalls while waiting for the
last in a set of checks to complete, reducing performance. As
all code is within a fault tolerance “transaction”, this means the
amount of sharing involved leaves lazy versioning impractical
from a performance perspective, unlike in typical hardware
transactional-memory implementations [12].

However, we disallow uncommitted data to leave the L1,
and prevent the sharing of uncommitted data between cores.
This, in effect, makes the transaction policy between cores
somewhat like a lazy versioning, pessimistic conflict-detection
system. We use lazy versioning in that the L2 is guaranteed
to contain correct data, and the L1 is used as a write buffer.
This makes rollback easier, as we don’t have to serialise undo
writes between different cores. For the same reason, we have
pessimistic conflict detection, in that uncommitted shared data
between cores is prevented by design, again to make rollback

11

simpler by avoiding error propagation. A more optimistic
solution might let potential errors propagate, and detect this at
commit time, but this would be significantly more complicated
from a verification and protocol perspective.

VIII. RELATED WORK

A wide design space exists for providing processor fault
tolerance: we compare the main categories here.

A. Hardware Redundancy

The two broad categories of hardware-only redundancy for
computation can be described as space-based and time-based.
Space-based schemes, such as lockstepping, duplicate hard-
ware for redundancy. Lockstepping is used in ARM’s Cortex-R
series [14], which are designed for high reliability applications.
Error correction can be achieved with lockstepping by using
three cores with a majority voting system [6]. Lockstepping
has also been used in other commercial designs such as the
IBM G5 [31] and Compaq Himalaya [32]. Traditional lock-
stepping calculates the redundant results immediately, meaning
fault propagation is trivial to prevent. However, it is often
desirable to have the second core trail the first, as exemplified
by Gupta et al. [33], to reduce cache misses and correlated
errors. This has the side effect of increasing communication
delay between multiple cores, as with our scheme.

Time-based schemes, by comparison, run the same code on
the same hardware at different times, typically with hardware
support to forward loads and stores between two threads. AR-
SMT [15] is an example of a time-based redundant-multi-
threading scheme without this forwarding, where the address
space is duplicated instead to achieve the same effect at high
overhead, whereas Reinhardt and Mukherjee [4] extend it with
a load forwarder similar to that used by heterogeneous parallel
error detection [8]. The overheads are still high, however:
Mukherjee et al. [16] estimate a 32% performance overhead,
along with the loss of a hardware context. Vijaykumar et
al. [19] use tighter coupling between the two threads to ensure
the checker thread executes before the main thread commits, to
provide correction as well as detection. Time-based techniques
tend to delay the checking of errors when compared with
lockstepping, which finds them immediately, and so techniques
such as SafetyNet [34] are necessary to roll back to consistent
states. With ParaMedic, we can reuse many of the architectural
elements from heterogeneous error detection [8], reducing the
hardware necessary for arbitrary error recovery, allowing us to
match the granularity of checking and recovery precisely, so
we can free state as soon as it is no longer needed. Further,
we can directly trap errors within a core’s cache, preventing
their escape to other parts of the system, or other systems,
and guarantee forward progress even in the presence of hard
errors, by tracking their behaviour within error detection.

B. Software Redundancy

It is also possible to achieve redundancy without any hard-
ware support, by re-executing code and comparing the re-
sults in software, albeit at a significant performance penalty.

SWIFT [35] is a solution which runs two copies of each in-
struction within a single thread to compare the results. Khudia
and Mahlke [36] extend this by only repeating computation for
error-intolerant parts of an application. Wang et al. [37] run the
second execution in a separate thread, to make better use of
multicore and multithreaded systems. Mitropoulou et al. [38]
extend this by using a more efficient queue to share results
between cores. However, for performance reasons hardware
support is highly beneficial [4], [15], [16]. Hybrid schemes
such as CRAFT [17] have also been proposed, which use
compiler assistance to duplicate instructions, coupled with a
special hardware detection structure.

C. Heterogeneous Redundancy

Our prior work [8] presented a heterogeneous parallel er-
ror detection scheme. This work focuses on exploiting the
parallelism inherent in fault detection to reduce the power-
performance-area (PPA) overheads of error checking, by per-
forming the second run of a program on an array of smaller
cores. Other work to exploit heterogeneity in error detection
includes Austin’s DIVA [39], which uses a superscalar in-order
core to verify correctness of the execution of a larger out-of-
order superscalar core. Errors on the in-order core are left
unchecked through the assumption that it is implemented with
larger transistors that are less susceptible to errors. However,
extensive alterations to the main core’s microarchitecture are
necessary, including ECC on all register state.

Ansari et al. [40] utilise heterogeneity by pairing an older
and newer version of the same microarchitecture series on a
chip. If the newer core suffers from hard faults, it can be
repurposed to provide hints for the slower previous generation
core. By comparison, LaFrieda et al. [41] design for het-
erogeneity induced by manufacturing variability. They couple
cores dynamically for lockstep execution, based on profiling,
to maximise system performance by pairing similar cores.

IX. CONCLUSION

We have designed ParaMedic, an architecture for exploiting
parallelism for error correction. This involves coupling a
hardware undo log for rolling back errors, with using the
L1 cache as a buffer for forwarding of unchecked values to
future computation, without allowing it to escape to other
cores to restrict the sphere of replication and thus avoid
ordering problems upon rollback of writes within the load-
store log. The system also allows recovery from hard faults,
by detecting when repeated errors occur, and thus triggering
hardware migration.

Performance is reduced relative to detection alone, but
typically this is very minor. With an adaptive technique to
set checkpoint lengths, the overheads increase from just 1.9%
with detection, to 3.1% with correction. We therefore have
provided a practical architecture to allow full error correction
to be implemented extremely efficiently for commodity out-
of-order superscalar systems.

12

ACKNOWLEDGEMENTS

This work was supported by the Engineering and Physical
Sciences Research Council (EPSRC), through grant references
EP/K026399/1 and EP/M506485/1, and Arm Ltd. Additional
data related to this publication is available in the data reposi-
tory at https://doi.org/10.17863/CAM.37963.

REFERENCES

[1] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The impact of
technology scaling on lifetime reliability,” in DSN, 2004.

[2] S. E. Michalak, K. W. Harris, N. W. Hengartner, B. E. Takala, and S. A.
Wender, “Predicting the number of fatal soft errors in los alamos national
laboratory’s asc q supercomputer,” IEEE Transactions on Device and
Materials Reliability, 2005.

[3] S. Borkar and A. A. Chien, “The future of microprocessors,” Commu-
nications of the ACM, vol. 54, 2011.

[4] S. K. Reinhardt and S. S. Mukherjee, “Transient fault detection via
simultaneous multithreading,” in ISCA, 2000.

[5] C. Hernandez and J. Abella, “Timely error detection for effective
recovery in light-lockstep automotive systems,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 34,
2015.

[6] X. Iturbe, B. Venu, E. Ozer, and S. Das, “A triple core lock-step
(TCLS) ARM R©Cortex R©-R5 processor for safety-critical and ultra-
reliable applications,” in DSN-W, 2016.

[7] M. Rausand, Reliability of Safety-Critical Systems: Theory and Appli-
cations. Wiley, 2014.

[8] S. Ainsworth and T. M. Jones, “Parallel error detection using heteroge-
neous cores,” in DSN, 2018.

[9] http://www.anandtech.com/show/8542/cortexm7-launches-embedded-
iot-and-wearables/2.

[10] https://www.sifive.com/products/coreplex-risc-v-ip/e51/.
[11] http://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-

exynos-review/6.
[12] T. Nakaike, R. Odaira, M. Gaudet, M. M. Michael, and H. Tomari,

“Quantitative comparison of hardware transactional memory for Blue
Gene/Q, zEnterprise EC12, Intel Core, and POWER8,” in ISCA, 2015.

[13] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

[14] N. Werdmuller, “Addressing functional safety applications with ARM
Cortex-R5,” https://community.arm.com/groups/embedded/blog/2015/
01/22/addressing-functional-safety-applications-with-arm-cortex-r5,
2015.

[15] E. Rotenberg, “AR-SMT: A microarchitectural approach to fault toler-
ance in microprocessors,” in FTCS, 1999.

[16] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt, “Detailed design and
evaluation of redundant multithreading alternatives,” in ISCA, 2002.

[17] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I. August, and S. S.
Mukherjee, “Design and evaluation of hybrid fault-detection systems,”
in ISCA, 2005.

[18] E. Schuchman and T. N. Vijaykumar, “Blackjack: Hard error detection
with redundant threads on smt,” in DSN, 2007.

[19] T. N. Vijaykumar, I. Pomeranz, and K. Cheng, “Transient-fault recovery
using simultaneous multithreading,” in ISCA, 2002.

[20] T. K. Moon, Error Correction Coding: Mathematical Methods and
Algorithms. Wiley-Interscience, 2005.

[21] N. N. Sadler and D. J. Sorin, “Choosing an error protection scheme for
a microprocessor’s L1 data cache,” in ICCD, 2006.

[22] ARM Ltd., http://infocenter.arm.com/help/index.jsp?topic=/com.arm.
doc.ddi0500g/CHDEEHDD.html.

[23] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease al-
gorithms for congestion avoidance in computer networks,” Computer
Networks and ISDN Systems, vol. 17, 1989.

[24] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multithread-
ing: Maximizing on-chip parallelism,” in ISCA, 1995.

[25] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F. Lucas,
R. Rabenseifner, and D. Takahashi, “The hpc challenge (hpcc) bench-
mark suite,” in SC, 2006.

[26] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in WWC, 2001.

[27] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, 2011.

[28] A. Gutierrez, J. Pusdesris, R. G. Dreslinski, T. Mudge, C. Sudanthi, C. D.
Emmons, M. Hayenga, and N. Paver, “Sources of error in full-system
simulation,” in ISPASS, 2014.

[29] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar, “Performance
evaluation of Intel transactional synchronization extensions for high-
performance computing,” in SC, 2013.

[30] A. Mcdonald, “Architectures for transactional memory,” Ph.D. disserta-
tion, 2009.

[31] T. J. Slegel, R. M. Averill III, M. A. Check, B. C. Giamei, B. W.
Krumm, C. A. Krygowski, W. H. Li, J. S. Liptay, J. D. MacDougall,
T. J. McPherson, J. A. Navarro, E. M. Schwarz, K. Shum, and C. F.
Webb, “IBM’s S/390 G5 microprocessor design,” IEEE Micro, vol. 19,
1999.

[32] A. Wood, “Data integrity concepts, features, and technology,” Tandem
Division, Compaq Computer Corporation, White Paper, 1999.

[33] S. Gupta, S. Feng, A. Ansari, J. Blome, and S. Mahlke, “The stagenet
fabric for constructing resilient multicore systems,” in MICRO, 2008.

[34] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood, “Safetynet:
Improving the availability of shared memory multiprocessors with global
checkpoint/recovery,” in ISCA, 2002.

[35] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“Swift: Software implemented fault tolerance,” in CGO, 2005.

[36] D. S. Khudia and S. Mahlke, “Harnessing soft computations for low-
budget fault tolerance,” in MICRO, 2014.

[37] C. Wang, H. S. Kim, Y. Wu, and V. Ying, “Compiler-managed software-
based redundant multi-threading for transient fault detection,” in CGO,
2007.

[38] K. Mitropoulou, V. Porpodas, and T. M. Jones, “COMET:
Communication-optimised multi-threaded error-detection technique,” in
CASES, 2016.

[39] T. M. Austin, “Diva: A reliable substrate for deep submicron microar-
chitecture design,” in MICRO, 1999.

[40] A. Ansari, S. Feng, S. Gupta, and S. Mahlke, “Necromancer: Enhancing
system throughput by animating dead cores,” in ISCA, 2010.

[41] C. LaFrieda, E. Ipek, J. F. Martinez, and R. Manohar, “Utilizing
dynamically coupled cores to form a resilient chip multiprocessor,” in
DSN, 2007.

13

https://doi.org/10.17863/CAM.37963
http://www.anandtech.com/show/8542/cortexm7-launches-embedded-iot-and-wearables/2
http://www.anandtech.com/show/8542/cortexm7-launches-embedded-iot-and-wearables/2
https://www.sifive.com/products/coreplex-risc-v-ip/e51/
http://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-exynos-review/6
http://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-exynos-review/6
https://community.arm.com/groups/embedded/blog/2015/01/22/addressing-functional-safety-applications-with-arm-cortex-r5
https://community.arm.com/groups/embedded/blog/2015/01/22/addressing-functional-safety-applications-with-arm-cortex-r5
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0500g/CHDEEHDD.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0500g/CHDEEHDD.html

	Introduction
	Background
	Dual-Core Lockstep
	Redundant Multi-Threading
	Heterogeneous Parallel Cores
	Challenges for Error Correction

	Single-Core Correction
	Partitioned Load-Store Undo Log
	ECC
	Commit Ordering
	Register Checkpoints
	Error Recovery
	Hard Faults
	Context Switches
	Kernel Code
	Writes Outside the System
	Summary

	Multicore correction
	Cacheline Timestamps
	Data Eviction
	Coherence Requests
	Variable-Length AIMD Checkpointing
	SMT Extension
	Summary

	Experimental Setup
	Evaluation
	Single-Core Error Correction
	Multicore Error Correction
	Single-Threaded Benchmarks
	Multithreaded Benchmarks

	Other Overheads
	Fault Injection Study
	Summary

	Comparison with Transactional Memory
	Related Work
	Hardware Redundancy
	Software Redundancy
	Heterogeneous Redundancy

	Conclusion
	References

