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Preface

This volume contains the papers presented at SmP 2023 Workshop: Structure
Meets Power 2023 held June 25, 2023 in Boston and online.

The volume includes the abstracts of 12 accepted contributed talks SmP 2023
is the third workshop in the series of Structure Meets Power workshops. Earlier
instalments of the series have been held in 2021 (online, affiliated with LiCS
2021) and 2022 (in Paris and online, affiliated with ICALP 2022).

The program of the SmP 2023 workshop focuses on bridging the divide in the
field of logic in Computer Science, between two distinct strands: one focusing on
semantics and compositionality (“Structure”), the other on expressiveness and
complexity (“Power”). It is remarkable because these two fundamental aspects
of our field are studied using almost disjoint technical languages and methods,
by almost disjoint research communities. We believe that bridging this divide
is a major issue in Computer Science, and may hold the key to fundamental
advances in the field. The aim of the Structure meets Power workshop is to
cultivate interaction between researchers who are interested in combining ideas
from these two strands.

Our main sponsor was the EPSRC 2020-2023 project Resources and co-
Resources: a junction between categorical semantics, model theory and descrip-
tive complexity.

On June 5, 2023
in London, Cambridge,
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CATEGORICAL STRUCTURE IN THEORY OF ARITHMETIC

LINGYUAN YE

1. Extended Abstract

This paper intends to provide a categorical analysis of the weak arith-
metic theory IΣ1. IΣ1 is a weaker theory than Peano arithmetic PA, ob-
tained by restricting the induction axioms to Σ1-formulas only. Let T be
any theory of arithmetic. One important parameter in characterising the
strength of an arbitrary arithmetic system T is its class of provably total
recursive functions. A function f is provably total recursive in T i� there
exists a Σ1-formula 'f in T that de�nes f , and that T proves the function-
ality of 'f as follows,1 T ⊢ ∀x∃!y'(x, y).
Below is a classical result in proof theory that connects arithmetic and
complexity classes:

Theorem 1.1 (Provably Total Recursive Functions in IΣ1). The provably
total recursive functions in IΣ1 are exactly the primitive recursive functions.

We will show that the validity of the above theorem is due to the follow-
ing structural/categorical reason: The theory of Σ1 induction presents the
initial object of certain classes of categories, and Σ1 subsets and primitive
recursive functions between them forms an instance of such a category.

From a categorical perspective, the characterisation of primitive recur-
sive functions aligns quite well with the de�nition of parametrised natural
number objects (PNO) in a general category. Roughly speaking, a PNO in
an arbitrary category is an object that supports primitive recursive con-
struction internally. Crucially, being a PNO is a universal property, and it
makes the categorical machinary works well in this situation.

The class of categories important for us are coherent categories equipped
with a PNO, or simply, pr-coherent categories. Coherent categories are the
categorical counterpart of �rst-order theories. Just like any propositional

Date: May 3, 2023.
Key words and phrases. Arithmetic, Provably Total Resursive Function, Categorical

Logic.
1Through out the paper, we will use x, y , etc., to abbreviate a list of variables.
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2 LINGYUAN YE

theory generates a Lindenbaum-Tarski algebra, every �rst-order theory
generates a coherent category called its syntactic category (cf. [1]).

A very special object in the class of pr-coherent categories will be the ini-
tial pr-coherent category . Initiality means that for any other pr-coherent
category, there exists an essentially unique functor from  to that pre-
serves the coherent structure and the PNO; such functors will be denoted
as pr-coherent functors. For instance, Set is a pr-coherent category, and
initiality of  induces a canonical interpretation  → Set of objects in .

The main result of this paper is that the initial pr-coherent category can
be presented as the syntactic category of some �rst-order theory T, which
will be a coherent theory of arithmetic. In coherent logic, the connec-
tives are restricted to ⊤, ⊥, ∧, ∨, ∃, and in particular, ¬,→, ∀ are not allowed.
Hence, a priori, all formulas within T will automatically be Σ1.

To arrive at an axiomatisation of T, we need a detailed study of the
semantic properties satis�ed by a PNO in a general coherent category. The
axiomatisation of T should be suitable, so as for it to be (a) interpretable
in any coherent category equipped with a PNO, and (b) strong enough to
show that its syntactic category [T] has a PNO, and proves its initiality.

Then, if we further observe that there is also a pr-coherent categoryPriM of recursively enumerable sets with primitive recursive functions be-
tween them (details see Section 5), and the canonical inclusion PriM ↪ Set
is also a pr-coherent functor, the initiality of [T] will imply we have the
following factorisation of pr-coherent functors,

[T] //

##

Set
PriM

<<

Such a factorisation means that the canonical interpretation of formulas
in T in the standard model ℕ factors through PriM, and hence all provable
total functions in T will indeed be primitive recursive.

To go back to Theorem 1.1, we further study the relationship between T
and the classical theory IΣ1. We will prove that IΣ1 is conservative over T,
in the sense that if a sequent in T is provable in IΣ1, then it is already prov-
able in T itself. This su�ces to conclude that T is exactly the Π2-fragment
of IΣ1, and thus they have the same class of provably total recursive func-
tions.

Roughly speaking, our categorical analysis implies that the validity of
Theorem 1.1 comes from the following structural fact: The category of Σ1
formulas and provable Σ1-functions between them in IΣ1 turns out to be
the initial pr-coherent category, and primitive recursive functions between
recursively enumerable subsets is an instance of a pr-coherent category.
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Algebras for Automatic Relations*

Rémi Morvan
LaBRI, Univ. Bordeaux

14th May 2023

Abstract
We introduce the notion of synchronous algebras, which are algebras tailored to recognize

automatic relations (a.k.a. regular, i.e. accepted by a synchronous automaton): any relation
admits a syntactic synchronous algebra, and this relation is automatic if and only if this
algebra is finite. We show that these algebras naturally arise by using Bojańczyk’s theory of
recognizability over monads on typed sets. We also highlight why this notion of algebras is
inherently more suitable to studying properties of automatic relations compared to monoids
or semigroups: using synchronous algebras, we prove the decidability of the membership
and separation problems for the class of commutative relations. Lastly, we mention future
work on projecting Eilenberg correspondances via monad functors.

1. Synchronous Automata

(a
b

)

(a
⊥
)

(⊥
a

)

(a
⊥
)

(⊥
a

)

Figure 1.1: Synchronous auto-
maton accepting the binary relation
{(u, v) ∈ Σ∗ × Σ∗ | |u| ⩽ |v|}. Let-
ters a,b in the transitions represent
arbitrary elements of Σ.

We study n-ary (n ∈ N>0) relations over finite words over
some alphabet Σ, and start by describing the well-known
model of synchronous automata. Define SnΣ as the set
of all “synchronous words”, namely all words over the al-
phabet (Σ ∪ {⊥})n ∖ {(⊥, . . . ,⊥)}, such that for each pair of
positions i < j, for each k ∈ J1,nK, if the k-th component of
the i-th tuple is ⊥, then so is the k-th component of the j-th
tuple. For instance,

(
a
b

)(
a
a

)(⊥
a

)
∈ S2Σ but

(⊥
a

)(
b
c

)
̸∈ S2Σ if

Σ = {a,b, c}. By construction, (Σ∗)n and SnΣ are naturally
in bijection.

We define a synchronous automaton similarly to non-
deterministic automata, except that transitions are labelled
by n-tuple of letters or blank symbols, i.e. (a1, . . . ,an)

where each ai ∈ Σ ∪ {⊥} with the constraint that not all
ai equal ⊥—see Figure 1.1 for an example. Relations
R ⊆ SnΣ ∼= (Σ∗)n accepted by finite-state automata are called automatic or regular. Over unary
relations (i.e. languages), recognizable relations (in the sense of being recognized by a monoid
morphism (Σ∗)n → M with finite domain) and automatic relations coincide, and define the
class of regular languages. However, for n-ary relations with n ⩾ 2, the latter notion is strictly
more expressive. For instance, the “has greater length” binary relation is automatic, as shown
in Figure 1.1, but is not recognizable. See e.g. [CCG06] for pointers.

*Extended abstract submitted to Structure Meets Power 2023. Email: remi.morvan[at]u-bordeaux.fr. Work in
progress.
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2. Synchronous Algebras

In this section we only deal with binary relations but all definitions and results can be imme-
diately lifted to n-ary relations. First, note that S2Σ can be partitioned in six sets:

• the empty word;
• words in which the first and last letters belong to Σ× Σ (resp. Σ× {⊥}, resp. {⊥}× Σ);
• words in which the first letter belongs to Σ× Σ and last to Σ× {⊥} (resp. {⊥}× Σ).

Moreover, for u, v ∈ S2Σ, to know whether the concatenation u · v belongs to S2Σ it is necessary
and sufficient to know to which of these six sets u and v belong. For the sake of simplicity,
we now exclude the empty word and denote by S+

2 Σ the set S2Σ∖ {(ε, ε)}.

Definition 2.1. A synchronous algebra A consists of:

• five sets1 (All→ll,All→lb,Alb→lb,All→bl,Abl→bl): we simply write x ∈ A if x ∈ Aα→β for
some α,β, and we say that x has type α → β;

• together with binary operators · : Aα→β ×Aβ→γ → Aα→γ for all types α → β and β → γ,
such that (x · y) · z = x · (y · z) for all x,y, z ∈ A with compatible type.

For instance, S+
2 Σ is a synchronous algebra. Note that synchronous algebra are an example

of semigroupoids with three objects. Morphisms between synchronous algebras are defined nat-
urally. This gives rise to a notion of “being recognized by a sychronous algebra (morphism)”.

Theorem 2.2.

1. Each relation R ⊆ S+
2 Σ admits a syntactic synchronous algebra (morphism), namely a pair

⟨AR, fR : S+
2 Σ → AR⟩ such that for each synchronous algebra morphism f : S+

2 Σ → B which
recognizes R, there exists a morphism g : AR → B such that f = g ◦ fR;

2. A relation is automatic if and only if its syntactic synchronous algebra is finite;
3. Mapping a relation to its syntactic synchronous algebra yields a bijection between pseudovarieties

of automatic relations and pseudovarieties of finite synchronous relations.

Proof sketch. 1 and 3 essentially follow from Bojańczyk’s theory of recognizability over mon-
ads [Boj15, Boj20] for the monad

⟨A,B,C,D,E⟩ 7→ ⟨A+,A∗BC∗,C+,A∗DE∗,E+⟩

in the category of 5-typed sets, and 2 follows from the fact that we can associate to any
synchronous automaton a transition synchronous algebra—defined analogously to transition
monoids/semigroups.

3. Commutative Relations

Note that each automatic relation R ⊆ S+
2 [Σ] can be seen as a regular language over the

alphabet (Σ ∪ {⊥})n, and this regular language admits a syntactic semigroup. However, we
claim that this semigroup has little interest to study R: its properties follows from R, but also
from the constraint that each element in R is a synchronous word.

1l stands for “letter” and b for “blank”.

2
8



For instance, say that a relation R is commutative if, for every words u, v,w, x,y ∈ S+
2 [Σ] such

that both uxvyz and uyvxz belong to S+
2 [Σ], then uxvyz ∈ R if and only if uyvxz ∈ R. Knowing

the syntactic semigroup of R, seen as a regular language, is of little help to determine if R is
commutative. However, using syntactic synchronous algebras, we can easily show:

Proposition 3.1. Whether an automatic relation is commutative is decidable. Moreover, given two
automatic relations R1,R2, we can decide if there exists a commutative relation (or equivalently, a
commutative and automatic relation) S that separates R1 from R2.

4. Future Work

Projecting Eilenberg correspondances via monad functors. We can show that there is a
monad functor—in the sense of [Str72, §1]—from the monad used in Theorem 2.2 to Kleene’s
monad X 7→ X+ (in the category of sets). This monad functor naturally induces a functor
from the category of synchronous algebras to the category of semigroups2. Dually, there
is a monad functor from the latter monad to the former. This situation is far from being
an exception: classical monads used in automata theory are very often linked by monad
functors, for instance there are monad functors from Kleene’s monad to Wilke’s monad (which
gives rise to Wilke’s algebras), and reciprocally, but also from the former to the monad of
finitary countable words. This begs the following question: given two monads T and S and
monad functors between them, can we find sufficient conditions on these functors so that a
correspondance V ↔ V between pseudovarieties of finite T-algebras and pseudovarieties of
recognizable T-languages yields a correspondance V ′ ↔ V ′ between pseudovarieties of finite
S-algebras and pseudovarieties of recognizable S-languages?
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Compositional Algorithms on Compositional Data:
Deciding Sheaves on Presheaves

Benjamin Merlin Bumpus

Algorithmicists are well-aware that fast dynamic program-
ming algorithms are very often the correct choice when com-
puting on compositional (or even recursive) graphs. Here
we initiate the study of how to generalize this folklore intu-
ition to mathematical structures writ large. We achieve this
horizontal generality by adopting a categorial perspective
which allows us to show that: (1) structured decompositions
(a recent, abstract generalization of many graph decomposi-
tions) define Grothendieck topologies on categories of data
(adhesive categories) and that (2) any computational prob-
lem which can be represented as a sheaf with respect to
these topologies can be decided in linear time on classes of
inputs which admit decompositions of bounded width and
whose decomposition shapes have bounded feedback vertex
number. This immediately leads to algorithms on objects
of any C-set category; these include – to name but a few
examples – structures such as: symmetric graphs, directed
graphs, directed multigraphs, hypergraphs, directed hyper-
graphs, databases, simplicial complexes, circular port graphs
and half-edge graphs. Finally we pair our theoretical results
with concrete implementations of our main algorithmic con-
tribution in the AlgebraicJulia ecosystem. The paper-length
version of this extended abstract – which is joint work Ernst
Althaus, James Fairbanks and Daniel Rosiak – is available at
https://arxiv.org/abs/2302.05575.

1 PHILOSOPHY
Among the many different incarnations of compositionality
in mathematics, the following three will be the main charac-
ters of this story: (1) the structural compositionality arising
in graph theory in the form of graph decompositions whereby
one decomposes graphs into smaller and simpler constituent
parts [2–7], (2) the representational compositionalityarising
in the form of sheaves in algebraic topology (and elsewhere)
and (3) the algorithmic compositionality embodied by the
intricate dynamic programming routines found in parame-
terized complexity theory [2, 3, 5–7]. Our main contribution
(Theorem 4.2) is an algorithmic meta-theorem obtained by
amalgamating these three perspectives.

2 DECISION PROBLEMS
Computational problems are assignments of data – thought
of as solution spaces – to some class of input objects. We
think of them as functors F : C → Sol taking objects of
some category C to objects of some appropriately chosen

category Sol of solution spaces. Rather than computing the
entire solution space, we often have to settle for more ap-
proximate representations of the problem – in the form of
decision/optimization/enumeration problems. When does a
given computational problem admit a compositional struc-
ture that is well-behaved with respect to decompositions of
the input data? One of our motivations was the observation
that sheaves may be applicable to this situation. Here we
will focus on decision problems: for a given computational
problem F we define the F -decision problem as the com-
posite C F−→ Sol

dec−−→ 2where dec is a functor into 2mapping
solutions spaces to either ⊥ or ⊤ depending on whether they
witness yes- or no-instances to F . For example consider the
GraphColoring𝑛 problem1; it can easily be encoded as the
representable functor SimpFinGr(−, 𝐾𝑛) : SimpFinGr𝑜𝑝 →
FinSet on the category of finite simple graphs. One turns
this into decision problems by taking dec : FinSet → 2 to be
functor which takes any set to ⊥ if and only if it is empty.
By passing to other categories of graphs (for instance that of
graphs and theirmonomorphisms) one can also easily encode
other decision problems such as VertexCover and OddCy-
cleTransversal.

3 COMPOSITIONAL DATA
Parameterized complexity [3] is a two-dimensional frame-
work for complexity theory whose main insight is that one
should not analyze running times only in terms of the total
input size, but also in terms of other parameters of the inputs
(such as measures of compositional structure [3]). Here we
represent compositional structure via diagrams: we think of
an object 𝑐 ∈ C obtained as the colimit of a diagram𝑑 : J → C
as being decompoised by 𝑑 into smaller constituent pieces. In
particular we work with a special class of diagrams (suited
for algorithmic manipulation) called structured decompo-
sitions [1]. Roughly they consist of a collection of objects
in a category and a collection of spans which relate these
objects (just like the edges in a graph relate its vertices).

Definition 3.1. Fixing a base category K, we define
a K-valued structured decomposition of shape 𝐺
as a diagrama of the form 𝑑 :

∫
𝐺 → K whose arrows

are all monic in K. Structured decompositions assemble

1It asks to determinewhether a given input graph𝐺 admits a proper coloring
with at most 𝑛 colors.
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into a subcategory𝔇m K of the category of diagrams in
K.
aWe think of graphs as presheaves: the Grothendieck construction
applied to a graph𝐺 yeilds a category whose arrows form spans

from each edge of𝐺 to its endpoints.

4 DECISION PROBLEMS AS SHEAVES
One of our main contributions is to show that structured
decompositions yield Grothendieck topologies on adhesive
categories which are adhesively cocomplete2.

Theorem 4.1. Let C be an adhesively cocomplete cat-
egory. There is a functor Dcmp : C𝑜𝑝 → Set defined on
objects as Dcmp : 𝑐 ↦→ {𝑑 | colim𝑑 = 𝑐 and 𝑑 ∈ 𝔇m C}.
This functor makes the pair (C,Dcmp) a site.

This result allows us to consider those decision problems
which display compositional structure compatible with that
highlighted by structured decompositions; namely any prob-
lem F : C𝑜𝑝 → Set which is a sheaf with respect to the
decomposition topology of Theorem 4.1.

Roughly, our main algorithmic result shows that any such
problem can be solved in time that grows linearly in the size
of the decomposition and exponentially3 in terms of the size
of the objects in the decompositions (its width).

Theorem 4.2. Let D be a small adhesively cocomplete
category, let F : C𝑜𝑝 → FinSet be a sheaf on the site(
C,Dcmp

)
. If we are given an algorithm AF which com-

putes F on any object 𝑐 in time 𝛼 (𝑐), then there is an algo-
rithm which, given any C-valued structured decomposi-
tion𝑑 :

∫
𝐺 → C of an object 𝑐 ∈ C and a feedback vertex

set 𝑆 of𝐺 , computes decF 𝑐 in time O(max𝑥∈𝑉𝐺 𝛼 (𝑑𝑥)+
𝜅 |𝑆 |𝜅2) |𝐸𝐺 | where 𝜅 = max𝑥∈𝑉𝐺 | F 𝑑𝑥 |.

4.1 Sketching Theorem 4.2
Notice that, if C has colimits, then, since sheaves preserve
colimits (sending them to limits of sets) [8], the following
diagram will always commute [1].

C FinSet𝑜𝑝 2𝑜𝑝

𝔇m C 𝔇m FinSet𝑜𝑝
colim colim

F

𝔇m F

𝑐𝑜𝑚𝑚.

dec𝑜𝑝

(1)

Unpacking the diagram, the blue path corresponds to for-
getting the compositional structure and then solving the
problem on the entire input. On the other hand the red
path corresponds to a compositional algorithm for decid-
ing sheaves: one first evaluates F on the constituent parts of

2i.e. they have colimits of diagrams of monomorphisms.
3which we expect since we are interested in NP-hard problems here

the decomposition and then joins4 these solutions together
to find a solution on the whole.
Unfortunately what we just described is still very ineffi-

cient since, for any input 𝑐 and no matter which path we take
in the diagram, we always end-up computing all of F (𝑐):
this is very large in general (think of coloring sheaf men-
tioned above). One might hope to overcome this difficulty
by lifting5 dec to a functor from FinSet𝑜𝑝 -valued structured
decompositions to 2𝑜𝑝 -valued structured decompositions as
is shown in the following diagram.

C FinSet𝑜𝑝 2𝑜𝑝

𝔇m C 𝔇m FinSet𝑜𝑝 𝔇m 2𝑜𝑝
colim colim

F

𝔇m F

𝑐𝑜𝑚𝑚.

dec𝑜𝑝

𝔇m dec𝑜𝑝

colim=∧

However, this too is to no avail: the right-hand square of the
above diagram does not commute in general. The main ingre-
dient in proving our algorithmic result is to show that there is
an efficiently computable endofunctorA : 𝔇m Set𝑜𝑝 → Set𝑜𝑝

making the following diagram commute.

C FinSet𝑜𝑝 2𝑜𝑝

𝔇m C 𝔇m FinSet𝑜𝑝 𝔇m FinSet𝑜𝑝 𝔇m 2𝑜𝑝
colim colim

F

𝔇m F

𝑐𝑜𝑚𝑚.

dec𝑜𝑝

A 𝔇m dec𝑜𝑝
∧𝑐𝑜𝑚𝑚.
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rial [1], this is inherited from the analogous statement for categories of
diagrams.
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GADTs Are Not (Even Lax) Functors

Pierre Cagne
Appalachian State University

Abstract

We expose a fundamental incompatibility between GADTs’ function-mapping opera-
tions and function composition. To do this, we consider sound and complete semantics of
GADTs in a series of natural categorical settings. We first consider interpreting GADTs
naively as functors on categories interpreting types. But GADTs’ function-mapping op-
erations are not total in general, so we consider semantics in categories that allow partial
morphisms. Unfortunately, however, GADTs’ function-mapping operations do not pre-
serve composition of partial morphisms. This compels us to relax functors’ composition-
preserving property, and thus to interpret GADTs as lax functors. This exposes yet another
behavior of GADTs that is not computationally reasonable: if G interprets a GADT, then
G(f) can be defined on more elements than G(g) even though f is defined on fewer elements
than g. This is joint work with Patricia Johann.

In this talk, I will present several obstructions to the generalization of the usual Initial
Algebra Semantics (IAS) of Algebraic Data Types (ADTs) to their syntactic generalizations
known as Generalized Algebraic Data Types (GADTs). ADTs — such are lists, trees, graphs,
etc. — are ubiquitous in modern programming. They encode, for example, data structures that
are critical in reducing the complexity of algorithms that process them. Moreover, they are
safe and easy to reason with precisely because of the theoretical understanding that IAS affords
them. Pattern-matching, folds, mapping, etc., are all justified by the fact that IAS is sound and
complete for ADTs. For this reason, we would like to construct an IAS for GADTs in such a way
that it specializes to the standard IAS for ADTs [MA86]. Although GADTs are extensively used
in practice in, say, Haskell and OCaml, they are still missing a sound and complete semantics.

The obstructions to IAS for GADTs can be illustrated using the equality defined by

data Eq :: * → * → * where

Refl :: ∀ α. Eq α α

According to the above Haskell syntax, Eq is a binary GADT with a unique constructor Refl

inhabiting each instance of the form Eq α α. Although it seems simple at first glance, Eq

support the definition of the following transport function, which will be important below:

trp :: ∀ α β. Eq α β → (α → β)
trp Refl x = x

Naive IAS for GADTs. Our first attempt at an IAS for GADTs is by direct extension.
Recall that the standard IAS of ADTs associates to each n-ary ADT A a functor A : Cn → C
where C is a category interpreting closed types. Moreover, this functor A is obtained as the
(carrier of the) initial algebra of an endofunctor on the functor category Func (Cn, C) derived
from the body of the definition of the ADT A; taking C to be the category Set of sets and
functions is usually enough to carry out most reasoning on ADTs. The completeness of IAS
for ADTs implies in particular that, for every closed type τ with interpretation X, A(X) is (in
natural bijection with) the set of normal forms of closed terms of type A τ . The same property
cannot be obtained for GADTs. Indeed, suppose that there is a functor E : Set2 → Set inter-
preting Eq. If we want the interpretation to be sound, then for each type τ with interpretation
X we need an element rX ∈ E(X,X) interpreting Refl :: E τ τ . Moreover, soundness and
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completeness imply that the interpretation of the unit type must be a singleton set 1, so for
any function x : 1→ X, there must be an element E(x, id1)(r1) ∈ E(X, 1). We can prove that,
for any types τ1 and τ2 with interpretations X1 and X2, respectively, the interpretation of the
function trp sends elements of E(X1, X2) to bijections X1 ' X2. Thus, whenever the type τ
has at least one element, the element found in E(X, 1) forces X ' 1. Clearly, this semantics
fails to be complete. As shown in [CJ23], this argument is not specific to the category Set and
can be replayed in any category C with the enough structure to express the usual IAS of ADTs.

Allowing for partial functions. The failure of the first attempt is instructive: the core
issue there is that functions of the form E(x, id1) must send the element r1 to elements in
E(X, 1) even when completeness would require E(X, 1) to be empty. In other words, the
totality of functions of the form E(x, id1) is problematic. We can try to overcome this problem
by allowing such functions to be partial, but we need a notion of partiality that is coherent
with computations. In our view, the core feature of such a notion is that computations cannot
recover from failure. We therefore propose the following definition:

Definition 1. A structure of computational partiality on a category C is a wide subcategory of
C whose complement is a cosieve.

A wide subcategory of C is a subcategory of C that contains all objects of C, and a cosieve on C
is a subclass S of the morphisms of C such that for all morphisms f : A → B and g : B → C
in C, if f ∈ S then gf ∈ S. The category PSet of sets and partial functions between them is an
example of such a category when we take the structure of computational partiality to be Set
seen as a subcategory of PSet. For this reason, we often call the morphisms of a structure of
computational partiality total, and the morphisms in the cosieve that is its complement partial.

Given a category C with a structure of computational partiality D on it, we aim to repair
the naive attempt above by interpreting the ambient language in D, except for the GADTs,
which will be interpreted as functors from Cn to C rather than from Dn to D. Informally, we
interpret everything definable in syntax in D, but we allow the function-mapping operations
of GADTs to send total morphisms to partial morphisms. In particular, the unit type must
be interpreted as a terminal object 1 in D. Now the functor E : C2 → C interpreting Eq is
free, a priori, to give a partial morphism E(x, id1) even when x : 1 → X is a total morphism.
However, such a morphism x : 1→ X is always a section, with its retraction being the unique
total morphism from X to 1 given by the fact that 1 is terminal in D. Being a functor, E( , 1)
must send sections to sections, so that E(x, id1) is a section as well. Now our hope to fix the
issue is dashed because sections in C are always total: if s : X → Y were a partial section, then,
for any retraction r of s, idX = rs would need to be partial as well. But identities are total by
definition. We can then replay the argument of the naive attempt: being total, E(x, id1) must
send the (now global) element r1 of E(1, 1) to a (now global) element of E(X, 1), which again
forces X ' 1. This shows, as before, that the interpretation of any type τ with at least one
element is the object 1, making the interpretation highly non-complete.

Relaxing GADTs’ functorial behavior. Allowing GADTs’ functorial behavior to target
partial morphisms failed because classes of morphisms defined by equations, such as the class of
sections, are necessarily preserved by functors. We therefore can’t expect GADTs’ interpreta-
tions to respect composition on the nose. However, if we can map a function f over an element
of a GADT, and if we can also map a function g over that result, then we should obtain the
same result by mapping g . f in one go over the original element. That is, mapping a compo-
sition should be the same as mapping the components of the composition one after the other
provided all these operations are well-defined. This suggests that C should include an order ≤
on each hom-set, where f ≤ g is read informally as “g is an extension of f to a bigger domain of

2

13



GADTs Are Not (Even Lax) Functors Pierre Cagne

definition”. We therefore require that C is enriched over the category Pos of posets and mono-
tonic functions between them. We intend to interpret GADTs as normal lax functors, rather
than simple functors, into C. Anormal lax functor G : B → C between Pos-enriched categories
is defined in the same way as an enriched functor, except that we require G(g)G(f) ≤ G(gf)
instead of G(g)G(f) = G(gf) for all composable morphisms f and g of B. Interpreting GADTs
as normal lax functors resolves the issue raised by sections in the previous paragraph: if s is a
section with retraction r, and G is a normal lax functor, then G(r)G(s) only has to be less than
or equal to G(rs) = G(id) = id, and so G(s) must no longer be a section and can be non-total.

Now consider the Pos-enriched category PSet, where f ≤ g holds for f, g : X → Y if and only
if, for all x ∈ X, f defined on x implies g(x) = f(x). A sound and complete interpretation of
the type Bool of booleans in PSet must be a 2-element set, say B = {⊥,>}, where ⊥ interprets
false and > interprets true. It must also take product types must take sets X and Y to the
cartesian product X × Y . Now, consider the partial function f : B ×B → B ×B defined only
on the pairs of the form (⊥, y), and given by f(⊥, y) = (⊥, y). Then f ≤ g, where g is total
and defined by g(x, y) = (x, x ∨ y). The monotonicity of the normal lax functor E interpreting
Eq implies E(f, f) ≤ E(g, f). In particular, E(g, f) is defined on any element of E(B ×
B,B × B) on which E(f, f) is defined, and agrees with E(f, f) on it. Thus, E(g, f)(rB×B) =
E(f, f)(rB×B) = rB×B . According to the algorithm given in [JC22], this is a contradiction: only
the pairs of function of the form (h, h) for a given h : B×B → B×B can be mapped over rB×B .

It might be difficult to spot the source of the problem with Eq because it is so degenerate,
but the above example is important because Eq is quintessential in the theory of GADTs. Nev-
ertheless, the issue deriving from E(f, f) ≤ E(g, f) is perhaps better illustrated by a properly
recursive GADT that uses Eq, such as

data Seq :: * → * where

inj :: ∀ α. α → Seq α
pair :: ∀ α β γ. Seq α → Seq β → Eq γ (α,β) → Seq γ

Write S : PSet → PSet for the normal lax functor interpreting Seq, iB : B → S(B) for the
interpretation of inj instantiated at Bool, and pB : S(B) × S(B) × E(B × B,B × B) →
S(B × B) for the interpretation of pair instantiated at Bool, Bool, and (Bool,Bool). It
should be intuitively clear that the partial function f can be mapped over (the interpretation
of) pair (inj false) (inj true) Refl :: S (Bool,Bool). The formal justification, given
in [JC22], is that f can be written as (x, y) 7→ (f1(x), f2(y)) for the partial functions f1, f2 : B →
B, where f1 is defined only on ⊥ with value ⊥ and f2 is idB . To perform this mapping operation,
we simply strip the constructors, apply f1 and f2 to the relevant data, and reapply the con-
structors. The result is the element we started with, namely, S(f)(pB(iB(⊥), iB(>), rB×B)) =
pB(iB(⊥), iB(>), rB×B). Since f ≤ g, since S(g) is defined wherever S(f) is defined, and
since S(g) agrees with S(f) there, S(g) is also defined on pB(iB(⊥), iB(>), rB×B) with value
pB(iB(⊥), iB(>), rB×B). This implies that g is also of the form (x, y) 7→ (g1(x), g2(y)) for some
(necessarily total) functions g1, g2 : B → B. But we easily check that it is not: g(⊥,⊥) = (⊥,⊥)
implies that g2(⊥) = ⊥ and g(>,⊥) = (>,>) implies that g2(⊥) = >.
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Capturing Quantum Isomorphism in the Kleisli Category of the

Quantum Monad

Amin Karamlou

February 2023

Graph1 Homomorphism and isomorphism are two of the most central problems in computer science. Naturally,
relaxations of these problems have been introduced and studied. Many of these relaxations can be phrased in terms of
spoiler-duplicator games. The recently introduced game comonads (see e.g. [ADW17, AS20, Abr22, MS21]) provide
a structural, and compositional account of this class of relaxations, whereby winning strategies for duplicator in
various spoiler-duplicator games can be captured in the Kleisli category of the relevant comonads. Examples include
k-consistency [ABD07], and the Weisfeiler-Lehman method [Kie20], which can both be characterised by suitable
pebble games. In some sense the comonads formalise the intuition that these relaxations are coalgebraic in nature,
pointing towards potential connections with ideas of universal coalgebra [Rut00] and the tradition of applying
coalgebraic methods in computer science.

On the other hand, there are also relaxations of graph homomorphism and isomorphism which appear to be
algebraic in nature. Examples of this second class of relaxations include fractional homomorphism [BD21] , and
fractional isomorphism [RSU94], which both admit linear algebraic characterisations. In the language of category
theory, one might expect that these relaxations can be captured by monads, the dual construction to comonads,
which are known to have intimate links with the study of universal algebra. Indeed, an example of such a construction
appeared in [ABdSZ17] where it was shown that quantum homomorphisms [MR16] are in bijective correspondence
with homomorphisms in the Kleisli category of a certain graded quantum monad. [ABdSZ17] left open the question
of providing an account of the related quantum isomorphism [AMR+19] relaxation in this categorical framework.

In this talk, we will discuss ongoing work on answering the above question. We will show how quantum
isomorphism can be captured by the existence of suitable back-and-forth morphisms in the Kleisli category of the
quantum monad. We will also show how non-signalling graph homomorphism and isomorphism can be captured
using similar constructions in the Kleisli category of a version of the distribution monad, defined on the category
of graphs.

1 Non-local Games

A non-local game is a cooperative game played between a verifier and two players, usually referred to as Alice and
Bob. Informally, the game consists of one round of the following protocol: (1) The verifier sends a question to each
player. (2) Without communicating, each player responds with an answer. (3) The players win the game if their
answers satisfy a pre-defined winning condition.

Given two graphs G,H, the (G,H)-homomorphism game is played as follows: (1) The verifier sends each player
a vertex from G. (2) Each player responds with a vertex from H. (3) The players win the game if they respond with

1We consider simple loopless undirected graphs for simplicity, however, the results discussed here hold more generally for arbitrary
relational structures.
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the same vertex whenever they receive the same vertex, and with adjacent vertices whenever they receive adjacent
vertices. The (G,H)-isomorphism game is a natural isomorphism variant of the above game. We refer the reader
to [AMR+19] for a definition.

With access to classical resources, the players win the (G,H)-homomorphism (isomorphism) game precisely
when there is a homomorphism (isomorphism) between G and H. What is interesting is that when given access
to quantum resources, specifically the ability to share an entangled quantum state between them, the players can
win the game even in cases where there is no homomorphism (isomorphism) between the underlying graphs. We

write G
q→ H (G

q∼= H) whenever such a quantum strategy exists. One can even consider a larger class of strategies,
called non-signalling strategies, where the only restriction is that Alice’s answer cannot depend on Bob’s question

and vice-versa. We write G
ns→ H (G

ns∼= H) in this case. It is worth mentioning that an arbitrary non-signalling
strategy may not be producible by any physical device.

2 Monads

In [ABdSZ17] the quantum monad Qd is introduced and used to provide a categorical account of quantum homo-
morphisms.

Proposition 1. ([ABdSZ17, proposition 8]) G
q→ H iff there exists a Kleisli morphism G → QdH.

The quantum monad can be seen as a variant of the well-known distribution monad D, where probabilities are
replaced with projectors. In fact, we can show that a version of the D defined over the category of graphs can be
used to capture non-signalling homomorphisms.

Proposition 2. G
ns→ H iff there exists a Kleisli morphism G → DH.

Given the above propositions, one might expect that quantum and non-signalling isomorphisms are captured by
Kleisli isomorphisms of Qd and D. This turns out to not be the case. In fact, these Kleisli isomorphisms correspond
to classical graph isomorphism.

Proposition 3. G ∼=kl(Qd) H iff G ∼=kl(D) H iff G ∼= H

Our next result shows that quantum and non-signalling isomorphism can still be captured in terms of the Kleisli
categories of Qd and D. This is achieved by introducing an intermediate notion of equivalence, based on the
existence of suitable back-and-forth Kleisli morphisms. Before defining this back-and-forth equivalence we recall
that Kleisli morphisms of D correspond to stochastic matrices. The Kleisli morphisms of Qd can also be seen as
matrices, which we refer to as projective stochastic matrices. These are matrices where each entry is a projector,
and where the projectors in each column form a PVM.

Definition 1. Let T be the quantum monad Qd or the distribution monad D. We define the relation G
Kl(T )

⇄ H
whenever there are Kleisli morphisms M : G → TH and N : H → TG such that N = MT .

We can now prove the following.

Proposition 4. G
q∼= H iff G

Kl(Qd)

⇄ H

A similar result also holds in the case of non-signalling strategies2.

2It is worth noting that [AMR+19] showed that non-signalling isomorphism also corresponds to fractional isomorphism.
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Proposition 5. G
ns∼= H iff G

Kl(D)

⇄ H

This account of quantum and non-signalling isomorphism in terms of back-and-forth Kleisli arrows is reminiscent
of the formulation of winning strategies for duplicator in the k-pebble game in terms of back-and-forth coKleisli
morphisms in [ADW17]. This later equivalence was eventually phrased in terms of the existence of a span of open
pathwise embeddings in the coEilenberg-Moore (coEM) category of the pebbling comonad [AS20]. Thus, it would
be interesting to see if a similar span (or cospan) construction in the EM categories of Qd and D could capture the

G
Kl(T )

⇄ H relation.
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Abstract
Spoiler-Duplicator games are used in finite model theory (FMT) to study the expressive power of
logical languages. These games make use of resources (e.g. number of rounds) which correspond to
restrictions on the fragments of first-order logic considered (e.g. quantifier rank). One may venture
beyond Spoiler-Duplicator games to a framework that supports both resources and structure. In
the semantic world, concurrent games and strategies based on event structures [12, 13, 14] have
been demonstrated to achieve that goal: concurrent games and strategies can be composed and also
support quantitative extensions, e.g. to probabilistic and quantum computation, as well as realise
the usage resources [15, 6, 5, 4, 16]. As a result, concurrent games and strategies provide a rich
arena in which structure meets power – a line of research that became prominent with the paper of
Abramsky, Dawar and Wang [1] on the pebbling comonad in finite model theory.

We introduce concurrent games and strategies over relational structures with many-sorted
signature Σ. The use of many sorts allows individual games and strategies to involve multiple
relational structures. Through their foundation in event structures, concurrent games and strategies
represent closely the operational nature of games, their interactivity, dependence, independence,
and conflict of moves. One advantage of concurrent games and strategies is that they support
composition of strategies to form a bicategory, and a category in the case of deterministic strategies.

As a first exploration of the expressivity of this framework, we exhibit a deconstruction of
the traditional examples of games and strategies of FMT as specifying strategies from one game
to another. It applies to pebbling games, such as the k-pebble game and the all-in-one k pebble
game; and their variants on transition systems determining simulation and trace inclusion. We
thus reconcile the composition of strategies as coKleisli maps, prevalent in recent algebraisation of
finite model theory (e.g. [1, 3, 8, 11]), with the more usual composition of strategies following the
paradigm of Conway and Joyal [7, 10].

We provide a first systematic method for constructing comonads for all one-sided Spoiler-
Duplicator games describable in our framework. Game comonads are now realised by adjunctions to
a category of δ-games; a comonad δ in a bicategory of signature games gives a generic specification
of Spoiler-Duplicator interaction.

We characterise strategies of δ-games in the one-sided case via functions taking the form of
δ-homomorphisms which extend the role of coKleisli maps w.r.t. game comonads. [The one-sided
case is treated in a recent submission to MFCS by Montacute and W.]

A recent characterisation of strategies of δ-games in the two-sided case is more subtle; it involves
a pair of functions which interact in the manner of Geometry of Interaction [9, 2].
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The category of mso transductions
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This talk is about the connection between logic and automata, which is one of
the central subjects of logic in computer science and formal language theory. The
original result, due to Büchi, Elgot and Trakhtenbrot (see [14, Theorem 3.1] in the
survey of Thomas), says that for finite words, the languages recognized by finite
automata (or equivalently, semigroups) are the same as those definable in monadic
second-order logic (mso). This result has seen countless extensions, to objects such
as trees or graphs, and also for infinite objects; see [14, 2] for surveys. In some cases,
the recognisability side is best modeled by automata (e.g. nondeterministic automata
for infinite trees, as surveyed in [14, Section 6]). In other cases it is best described by
algebras (e.g. Courcelle’s algebras for graphs [9], or generalizations of semigroups for
countable infinite words [5, Section 3]). In some cases, both automata and algebras
are useful, e.g. finite words and trees.

Since the relationship between recognisability and definability (in mso) can be
studied in so many settings, and since these studies share many techniques, it is natu-
ral to search for common generalizations. An early example of this kind is a paper of
Eilenberg and Wright [10], which studies automata in general algebras, i.e. algebras
that do not necessarily describe finite words. The underlying definition is Lawvere
theories, which are the same as finitary monads. Although the early results of Eilen-
berg and Wright were about free theories, which are the same as automata on ranked
trees, the abstract framework has been further developed to handle other kinds of
objects, as witnessed by variety theorems for general algebras that were proposed
in [13, 2, 6]. An attempt to connect logic and recognisability in the abstract setup of
monads was made in [4]. In that work, the point of departure is recognizability, and
the connection with mso is obtained by simulating logical operations (such as Boolean
combinations or set quantification) using operations on algebras (such as product or
powerset).

In this talk, we take the opposite approach. Our point of departure is mso logic,
and we connect it to recognizability by framing recognizability in terms of logic. For
many kinds of structures, the logical aspect is simpler than the algebra aspect, hence
the usefulness of reducing algebra to logic in a uniform way. An example of this phe-
nomenon is graphs. It is clear how mso logic can be applied to graphs (although there
are certain design decisions to be made, e.g. whether or not the set quantifiers can
range over sets of edges). In contrast, the algebraic approach to graphs, namely Cour-
celle’s hr and vr algebras [9, Section 2.3 and 2.5], is arguably less natural and requires
a non-trivial amount of book-keeping, such as infinitely many sorts and extra anno-
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tation with distinguished vertices or colours. A similar situation arises for matroids,
where mso definability is a clear notion, while a definition of recognizability requires
a careful analysis of how a matroid can be parsed by an automaton, see [12, Section
3].

Our approach of reducing recognizability to logic is based onmso transductions [1,
7, 11]. These are binary relations between structures. The structures could be strings,
trees, graphs, etc. The inputs and outputs need not have the same type, e.g. a string-
to-graph transduction inputs a string and outputs a graph, with the output graph
being not necessarily unique. Two key properties of mso transductions are: (a) they
are closed under composition; and (b) in the case of languages, i.e. mso transductions
with Boolean outputs, they coincide with mso definable languages. Thanks to (a), the
mso transductions form a category (objects are classes of structures, and morphisms
are mso transductions), and thanks to (b), this category describes mso definable prop-
erties. (This work is not intedned to study this category from the point of view of
category theory.)

We argue that many notions from language theory can be described in terms of
this category. Our point of departure is based on a result of Courcelle and Engel-
friet [8, Theorem 2.6], which characterizes treewidth and cliquewidth purely in terms
of mso transductions. This characterization says that a class of graphs has bounded
treewidth if and only if it is contained in the set of outputs of some tree-to-graph mso
transduction. For cliquewidth, the characterization is the same, only with a different
representation of graphs as logical structures. Motivated by this result, we propose
the following notion of width.

Bounded width. A class of structures has bounded mso width if it is contained in the
image of an mso transduction that inputs trees.

The characterizations of Courcelle and Engelfriet show that this notion of width cap-
tures treewidth and cliquewidth for graphs; we show that it also captures branchwidth
for matroids representable over finite fields, as well as other notions of recognisabil-
ity, including strings, trees and Mazurkiewicz traces. The essential idea behind the
definition is that we do not fix any pre-defined semantics for a tree decomposition,
but allow instead any semantics that can be formalized by an mso transduction (as
is the case for known kinds of tree decompositions). This level of generality greatly
simplifies notation, while retaining all applications of tree decompositions that are
related to mso.

The logical definition of bounded width described above is the obvious general-
ization of the characterizations of Courcelle and Engelfriet [8], and not a new idea on
its own. However, the transduction approach can also capture other concepts, such
as recognizability or having definable tree decompositions. Finally, we propose a new
order on classes of structures, called mso encodings, which is meant to play the same
role as reductions in complexity theory. The paper is available at arxiv [3].
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Enumerating Error Bounded Polytime Algorithms

Through Arithmetical Theories∗

Ugo Dal Lago

The study of complexity classes through mathematical logic dates back to the seventies [15, 9],
but grew in scope especially from in the eighties and nineties [4, 17, 3, 21, 23]. The logical charac-
terization of several crucial classes has made it possible to consider them from a new viewpoint, less
dependent on concrete machine models and explicit resource bounds. Characterizing complexity
classes by way of simple enough proof-or-recursion theoretical systems also means being able to
enumerate the problems belonging to them, and thus to devise sound and complete languages for
the class, from which type systems and static analysis methodologies can be derived [19].

Among the various classes of problems with which computational complexity has been con-
cerned, those defined on the basis of randomized algorithms [26] have appeared difficult to capture
with the tools of logic. These include important and well-studied classes like BPP or ZPP. The
former, in particular, is often considered as the class of feasible problems, and most complexity
theorists conjecture that it actually coincides with P. However, by simply looking at its defini-
tion, BPP looks pretty different from P. Notably, the former, but not the latter, is an example of
what is usually called a semantic class: the definition of BPP relies on algorithms which are both
efficient and not too erratic; in other words, once an input is fixed, one of the two possible outputs
must clearly prevail over the other, i.e. it must occur with some probability, strictly greater than
one half, independent from the input. By their very nature, semantic classes, like BPP, are more
challenging to be logically captured with respect to other (syntactic) classes, like P or PP: indeed,
enumerating them through the underlying machines is harder. Currently, it is simply not known
whether an effective enumeration of the aforementioned randomized classes is possible. Indeed,
the sparse contributions along these lines are either themselves semantic, i.e. do not capture the
limitations on the probability of error within the logical system [14, 13] (an interesting exception
being [22]), or deal with classes, as PP, which are not classifiable as semantic [11, 12].

In this work, we make a step towards a logical characterization of randomized classes by
considering a language in which the probability of error can be kept under control from within the
logic. We introduce a language, called RL, inspired by the one presented in Ferreira’s [16], but in
which formulas can access a source of randomness through a distinguished unary predicate Flip,
this way naturally capturing randomized algorithms.

We define a bounded theory of arithmetic, called RΣb
1−NIA, as the randomized analogue of

Buss’ S1
2 [4] and Ferreira’s Σb

1-NIA [16], and show that the functions which can be proved total in
RΣb

1−NIA are precisely the polytime random functions [27], i.e. those functions from strings to
distributions of strings which can be computed by polytime probabilistic Turing machines (PTM,
for short). Using this result, we provide two characterizations of the problems in BPP: one relies
on measure quantifiers [25, 24, 1], i.e. well-studied second-order quantifiers capable of measuring
the extent to which a formula is true; the other consists in showing that these quantifiers, when
applied to bounded formulas, can be encoded via standard first-order quantification.

Both these approaches provide precise characterizations of BPP but are still semantic in
nature: the entropy check is translated into conditions which are not based on provability in
some formal system, but rather on the truth of some formula in the standard model of first-
order arithmetic. Our arithmetization of BPP, however, naturally leads to the introduction of
a family of new syntactic subclasses of BPP, namely BPPT, made of languages for which the

∗The talk is based on a joint work with Melissa Antonelli, Davide Davoli, Isabel Oitavem, and Paolo Pistone
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error-bounding condition is provable in a (non necessarily bounded) theory T. We show that full
first-order Peano Arithmetic (PA, for short) provides an interesting candidate theory, as BPPPA

includes polynomial identity testing (PIT), which is one of the few problems in BPP currently
not known to be in P. This fact seems very promising, suggestingan avenue towards a new form
of reverse computational complexity in the framework of first-order arithmetic.

The main technical contributions of our work can then be summarized as follows:

• We introduce the arithmetical theory RΣb
1−NIA and prove that the functions which are Σb

1-
representable in it are precisely the random functions which can be computed in polynomial
time. The proof of the correspondence goes through the definition of a class of oracle
recursive functions, called POR, which is shown equivalent to that of functions which are
Σb

1-representable in RΣb
1−NIA and, then, to the class of probabilistic polytime random

functions.

• Then, we use the aforementioned result to obtain a new syntactic characterization of PP
and, more interestingly, two semantic characterizations of BPP, the first based on measure
quantifiers and the second relying on standard, first-order quantification.

• Finally, we introduce a family of syntactic subclasses BPPT ⊆ BPP, parametrically on
a theory T. The core idea is to consider a (sound) theory T in which error-bound checks
can be syntactically considered, this way potentially restricting the class of problems to be
captured. We then prove that PIT is in BPPPA, thus identifying a nontrivial effectively
enumerable subclass of BPP. We believe this to be the most interesting and potentially
impactful of the presented results. We conclude by showing how our approach relates to the
literature on capturing BPP languages in bounded arithmetic [22].
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Higher-dimensional rewriting [2, 3] is founded on a duality of rewrite systems and cell complexes,
connecting computational mathematics to higher categories and homotopy theory: the two sides of a
rewrite rule are two halves of the boundary of an (n+ 1)-cell, which are (pasting) diagrams of n-cells.
Proofs by diagrammatic rewriting can be used in the formalisation of homotopical algebra and higher
category theory, provided that one has a topologically sound formal model, where diagrams admit a
functorial interpretation as homotopies in cell complexes.

Beyond the formalisation of mathematics, it is interesting to look at higher-dimensional diagram re-
writing as a model of computation in itself. String diagram rewriting, a form of 3-dimensional rewriting,
is arguably the characteristic computational mechanism of applied category theory. It has been sugges-
ted [1] that even “classical” forms of rewriting are more faithfully represented as diagram rewriting:
for example, term rewriting implemented as rewriting in monoidal categories with cartesian structure
explicitates the “hidden costs” of copying and deleting terms.

We continue the work started in [5] studying higher-dimensional rewriting as a mechanism of compu-
tation, and try to answer the question: given a machine that operates by higher-dimensional rewriting, is
the obvious cost model that attributes constant cost to each rewrite step a “reasonable” cost model?

The basic computational step of any such machine may be described as follows. The machine has a
list (ri)

m
i=1 of rewrite rules, which are (n+ 1)-cells, and whose input boundaries (∂−ri)

m
i=1 and output

boundaries (∂+ri)
m
i=1 are n-dimensional diagrams. Given an n-dimensional diagram t as input, the ma-

chine tries to match one of the input boundaries with a rewritable subdiagram of t. If it finds a match
with ∂−ri for some i ∈ {1, . . . ,m}, it substitutes ∂+ri for the match in t; otherwise it stops.

Evidently, our question is answered in the affirmative for such a machine if and only if the subdiagram
matching problem admits a (preferably low-degree) polynomial-time algorithm with respect to a reas-
onable size measure for diagrams. Since a cognate problem such as subgraph matching is notoriously
NP-complete, it is not at all obvious that this should be true.

We study the higher-dimensional subdiagram matching problem in the “topologically sound” dia-
grammatic sets model [4]. Our main contribution is an algorithm for subdiagram matching in arbitrary
dimension. On top of this, we are also giving an improved running-time for the traversal algorithm
presented in [5].

In the first part of the talk, I will introduce the framework in which we are working and the first part of
the algorithm. In the theory of diagrammatic sets, we represent the shape of a diagram with its face poset
which records whether an (n− 1)-dimensional cell is in the input or output half of the boundary of an
n-dimensional cell. We call this structure an oriented graded poset and represent it as a Hasse diagram
with oriented edges. The well-formed shapes of diagrams form an inductive subclass of oriented graded
posets called regular molecules. A diagram, in our setting, is then a labelling t : U → V of a regular
molecule U into a set of variables.
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2 Higher-dimensional subdiagram matching

Given diagrams s : V → V and t : U → V, the subdiagram matching problem can be split into three
subproblems:

1. find, if any, the inclusions of the shape of s into the shape of t;
2. decide if an inclusion is a subdiagram inclusion;
3. check that the labelling is preserved.

The subdiagram inclusions are those corresponding to portions of a diagram that can be rewritten pro-
ducing another well-formed diagram; these are a proper subclass of all inclusions. The third problem is
easy, so we focus on the first two.

For a fixed regular molecule, U , we let Un be the subset of n-dimensional elements in U , |U | be the
number of elements in U , |Un| the number of n-dimensional elements in U , |EnU | the number of edges
between n and (n−1)-dimensional elements in the Hasse diagram of U , and |E∨U | the maximum of the
|EnU | if non-zero, 1 otherwise.

For the first problem, we obtain an algorithm with the following polynomial time bound.
Theorem 1 — The problem of finding all inclusions in dimension n can be solved in time

O(|Un| |Vn| |V | |E∨V | log |E∨V |).

The second problem turns out to be highly non-trivial. Our best general solution has the following
worst-case time complexity upper bound.
Theorem 2 — The problem of deciding if an inclusion is a subdiagram inclusion in dimension n can be
solved in time

O

(
∏
k≤n

|Uk|! |Uk|
)
.

The algorithm relies on new combinatorial results on layerings of diagrams, which are decompositions
into layers containing each a single cell of the highest dimension. One can associate to each n-dimen-
sional diagram a directed acyclic graph whose vertex set is Un, such that each layering induces a distinct
topological sort, which we call an ordering. The factorial factors come from the fact that our algorithm
searches for a valid layering by trying out different orderings, which are as many as topological sorts of
the graph, which are factorial in the number of vertices in the worst case of a discrete graph.

On the other hand, if we restrict our attention to a special class of diagrams that we call stably-frame
acyclic, then there is a perfect correspondence between layerings and orderings, and we can avoid this
iteration.
Theorem 3 — If a diagram is guaranteed to be stably frame-acyclic, the problem of deciding if an
inclusion is a subdiagram inclusion can be solved in linear time in the size of its Hasse diagram.

Fortunately, the following holds.
Theorem 4 — Every diagram of dimension ≤ 3 is stably frame-acyclic.

We conclude that subdiagram matching is feasible up to dimension 3.
In the 4-dimensional case, not every shape of diagram is stably frame-acyclic and the main problem

to overcome is the expensive iteration on orderings. The problem seems to arise from the possibility
of rewrites causing non-local obstructions which may prevent other “disjoint” rewrites to be applied.
This behaviour may hint to a potential gap in complexity between the 3-dimensional and 4-dimensional
cases. We leave the existence of a polynomial time algorithm for subdiagram matching in dimension 4
or higher as an open problem and we hope that a deeper understanding of such cases will either lead to
an improved algorithm or a proof of NP-completeness.
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FINITELY ACCESSIBLE ARBOREAL ADJUNCTIONS
AND HINTIKKA FORMULAE

COLIN RIBA (J.W.W. LUCA REGGIO)

Abstract. Arboreal categories provide an axiomatic framework in which abstract no-
tions of bisimilarity and back-and-forth games can be defined. They act on extensional
categories, typically consisting of relational structures, via arboreal adjunctions. In the
examples, equivalence of structures in various fragments of infinitary first-order logic
can be captured by transferring bisimilarity along the adjunction.

In most applications, the categories involved are locally finitely presentable and the
adjunctions finitely accessible. Drawing on this insight, we identify the expressive power
of this class of adjunctions. We show that the ranks of back-and-forth games in the
arboreal category are definable by formulae à la Hintikka. Thus, the relation between
extensional objects induced by bisimilarity is always coarser than equivalence in infin-
itary first-order logic. Our approach relies on Gabriel-Ulmer duality for locally finitely
presentable categories, and Hodges’ word-constructions.

This extended abstract is based on the preprint [27].

Introduction. Model comparison games are one of the few tools of model theory which
is still available in finite model theory, see e.g. [19, 14, 26]. Important examples include
Ehrenfeucht-Fräıssé games for first-order equivalence (possibly with bounded quantifier
rank), pebble games for the finite-variable fragments, and modal bisimulation games for
the modal fragment.

Game comonads. We are interested in abstract notions of model comparison games
provided by arboreal categories [6, 5], an axiomatic framework for games comonads. Game
comonads were introduced in [2] as a categorical syntax-free approach to (finite) model
theory, in which coalgebras encode important combinatorial parameters of structures
(see [1] for a recent survey). A crucial step for their development was taken in [7, 8],
where various back-and-forth games (such as Ehrenfeucht-Fräıssé, pebble, and modal
bisimulation games) were captured by means of a refinement of Joyal, Nielsen and Win-
skel’s notion of bisimulation via open maps [22, 23, 24].

Arboreal adjunctions. The framework of arboreal categories takes as input a class
M of monomorphisms, called embeddings, and provides concrete notions of bisimilarity
and back-and-forth games. An arboreal category A acts on an extensional category E

(typically consisting of relational structures) via an arboreal adjunction:

A E

L

⊥
R

(1)

Transferring the bisimilarity relation along the adjunction, one recovers relevant logical
equivalences of structures in E. In many applications, the categories involved are locally
finitely presentable, the arboreal adjunctions are finitely accessible and the logics are
fragments of infinitary first-order logic L∞,ω. In fact, the full logic L∞,ω is captured by
an arboreal adjunction.
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Hintikka formulae for finitely accessible arboreal adjunctions. Our main result
yields a converse to this for finitely accessible arboreal adjunctions. Under mild assump-
tions, we show that for each M ∈ E, the ranks of the back-and-forth games played
in RM are definable in L∞,ω. Hence, arboreal bisimilarity cannot distinguish between
L∞,ω-equivalent models. This identifies the expressive power of finitely accessible arboreal
adjunctions. Note that while the isomorphism type of a finite structure is definable in
finitary first-order logic, Corollary 8 in [2] (for pebble games) forces E to contain infinite
objects in general, on which L∞,ω is strictly more expressive.

Our approach relies on Gabriel-Ulmer duality for locally finitely presentable categor-
ies [16] (cf. also [10, 9]): each locally finitely presentable category is equivalent to the
category of models of a theory written using only finite conjunctions and provably unique
existential quantifiers. The back-and-forth games in A are closed in the usual sense, and
are equipped with a customary notion of ordinal rank of positions (cf. e.g. [19, §3.4] or [25,
§20B]). Working with Coste’s syntactic categories [13] (cf. also [21, §§D1–2]), we devise
“Hintikka formulae” for RM for each ordinal rank, along the usual pattern (cf. e.g. [19,
§3.5] or [14, §3]). These formulae are then translated to formulae for M in E along an
interpretation induced by the right adjoint R.

In most applications, the class M of embeddings in A is determined by the class of
substructure embeddings in E. The Hintikka formulae for RM in A then depend on
formulae over LRM in E. To translate the infinitary theory of LRM to the infinitary
theory of RM , we use a slight generalization of Hodges’ word-constructions [17, 18] (cf.
also [19, §9.3]). This yields the following result. A path is an object P of A whose
M-subobjects form a finite chain.

Theorem ([27]). Assume (1) is a finitely accessible arboreal adjunction in which E is the
category of models of a theory of signature Σ, and such that the paths of A are finitely
presentable. Assume further that a morphism f : P → a of A is an embedding if and
only if Lf is a substructure embedding in E. Given models M,N ∈ E, if M and N are
L∞,ω(Σ)-equivalent, then RM and RN are bisimilar in A.

Our assumptions are satisfied by the comonadic approach to Ehrenfeucht-Fräıssé games.
This applies also to pebble and modal bisimulation games [8, 5], and we expect that the
same methodology will extend to guarded fragments [3] and hybrid logic [4]. On the
other hand, our results show that game comonads for MSO [20] cannot lead to finitely
accessible arboreal adjunctions with the obvious choice of embeddings.

Future work. Our results suggest that in order to handle stronger logics, one would have
to consider κ-accessible arboreal adjunctions for uncountable regular cardinals κ. We
believe this is a natural line for future investigation. In particular, games for generalized
Lindström quantifiers [11, 12] may be instrumental in developing a systematic study.
Other interesting examples to look at include [15].

In a different direction, having provided in [27] novel examples of arboreal categories
based on presheaves, we intend to carry out a thorough comparison with bisimulation via
open maps [24].
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Profinite λ-terms and parametricity

Vincent Moreau

Université Paris Cité, IRIF, Inria Paris

The aim of this work is to combine profinite methods and models of the λ-calculus to obtain
a notion of profinite λ-term. First steps in that direction were already presented at Structure
meets Power 2022, although they were mainly focused on the relation between profinite words
and Reynolds parametricity. This abstract presents new work relating profinite λ-terms to
Salvati’s notion of regular language of λ-terms, through Stone duality.

This is joint work with Sam van Gool and Paul-André Melliès [2].

Languages of finite words and profiniteness. Automata theory has a central role in
theoretical computer science. In its most basic form, it deals with regular languages of finite
words. If M is a finite monoid and φ : Σ∗ → M is a monoid homomorphism, then each subset
S of M induces the regular language

LS := {w ∈ Σ∗ | φ(w) ∈ S} ,

that is the set of words which, when interpreted in the monoid M with the morphism φ, yield
an element of S. We recover all the regular languages in this way:

Reg⟨Σ⟩ = {LS | M a finite monoid, S ⊆ M} .

Two finite words can be given a distance measuring the minimal cardinality of a finite monoid
in which their behaviors are different. The monoid of finite words Σ∗ can then be completed
into a topological monoid Σ̂∗ called the free profinite monoid. Its points, known as profinite
words, provide a way to speak about limiting behavior of finite words with respect to finite
monoids [4].

Regular languages are closed under union, intersection and complement, which means that the
set Reg⟨Σ⟩, ordered under the inclusion, is a Boolean algebra. By Stone duality, it has an

associated space of ultrafilters which is in fact homeomorphic to Σ̂∗. The monoid structure on
Σ̂∗ can be seen as the dual of residual operations on Reg⟨Σ⟩, see [1]. In summary,

Σ̂∗ is the Stone dual of Reg⟨Σ⟩ . (1)

From words to λ-terms: the Church encoding. We consider the simply-typed λ-calculus
with one base type o. For any simple type A, we denote by Λ⟨A⟩ the set of closed λ-terms of
type A, taken modulo βη-conversion. To any finite alphabet Σ, we associate the simple type

ChurchΣ := (o → o) → . . . → (o → o)︸ ︷︷ ︸
|Σ| times

→ o → o

and we encode finite words over Σ = {a1, . . . , an} as terms of this type in the following way:

w = aw1
. . . awk

is encoded as λ(a1 : o → o) . . . λ(an : o → o)λ(c : o). awk
(. . . (aw1

c)) .
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We use the finite standard model of the simply-typed λ-calculus, that is we interpret it in the
cartesian closed category FinSet. This means that, for any simple type A and finite set Q, we
obtain a finite set JAKQ and a function

J−KQ : Λ⟨A⟩ −→ JAKQ .

In particular, a word w ∈ Σ∗ encoded as a simply-typed λ-term of type ChurchΣ will be
interpreted as a function

JwKQ ∈ (Q ⇒ Q) ⇒ . . . ⇒ (Q ⇒ Q) ⇒ Q ⇒ Q

taking as inputs a deterministic transition function for each letter of the alphabet Σ and an
initial state and giving as output the state the automaton arrives at after reading the word w.
This shows that the semantics in FinSet generalize at any type the usual notion of run into an
automaton; see also [3].

Recognizable languages of λ-terms. In analogy with the monoid case, we define regular
languages of λ-terms as sets of λ-terms interpreted as certain semantic elements. Following [6],
for any simple type A, finite set Q and subset F of JAKQ, we define the language LF as

LF := {M ∈ Λ⟨A⟩ | JMKQ ∈ F} .

We can therefore define the set Reg⟨A⟩ of all regular languages of λ-terms of type A as

Reg⟨A⟩ := {LF | Q a finite set, F ⊆ JAKQ} .

Using logical relations, we can prove again that Reg⟨A⟩ is a Boolean algebra and then, in

analogy with (1), we define the space Λ̂⟨A⟩ of profinite λ-terms of type A such that

Λ̂⟨A⟩ is the Stone dual of Reg⟨A⟩ . (2)

There is a natural map Λ⟨A⟩ → Λ̂⟨A⟩, which we prove is injective using [7].

Profinite λ-terms and parametricity. As FinSet is a cartesian closed category, we can
use logical relations. For any relation R ⊆ P × Q, we have a relation JAKR ⊆ JAKP × JAKQ.
Following [5], we say that a family θ of elements θQ ∈ JAKQ, where Q ranges over finite sets,
is parametric if for any relation R ⊆ P ×Q, the elements θP and θQ are related by JAKR. We
denote by Para⟨A⟩ the set of all parametric families associated to a simple type A.

Parametricity can be thought of as the notion of naturality, adapted to the higher-order setting.
The fundamental lemma of λ-calculus states that the interpretation of a λ-term is a parametric
family. Each profinite λ-term can be thought as a family θ verifying certain properties, see
Definition 9 in [2]. We first show the more general result that profinite λ-terms are in particular
parametric.

Theorem 1. For any simple type A, we have Λ̂⟨A⟩ ⊆ Para⟨A⟩ i.e. for any profinite λ-term θ
of type A and relation R ⊆ P ×Q, the points θP and θQ are related by JAKR.

Our main contribution is a parametricity theorem for Church types, which amounts to saying
that any parametric family of type ChurchΣ is the interpretation of a profinite λ-term.

Theorem 2. For any finite set Σ, we have Λ̂⟨ChurchΣ⟩ = Para⟨ChurchΣ⟩.
As future work, we would like to investigate the status of this equality for other higher-order
types. We are also interested in studying the possibly different notions of profinite λ-term that
we obtain when using other cartesian closed categories as models.
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On Conway’s proof of undecidability in elementary arithmetic

(extended abstract)

Peter M. Hines – University of York

Historical Background

Although undecidability in mathematics has long been a theoretical possibility, in the early 1970s, John Conway
demonstrated [5] that even simple iterated arithmetic problems could exhibit undecidable behaviour1. A common
route to proving undecidability is via a reduction to the Halting Problem for a computationally universal system.
Conway’s result was no exception : he demonstrated an encoding of Universal Register Machines as iterative problems
on simple piecewise-linear arithmetic functions (his well-known ‘congruential functions’).

This was subsequently given an interpretation as a simple imperative programming language, similar to a low-level
assembler, that he called FRACTRAN (the ‘fraction translator’; an obvious pun on the somewhat better-known FORTRAN,

the ‘formula translator’), which could compute k.22
n 7→ 22

f(n)

, for constant k and arbitrary partial recursive f . Other
computationally universal systems based on the same family of arithmetic primitives include S. Burckel’s encoding of
Minsky Machines [3], and Sergei Maslov’s representation of Post Production Systems [18].

The number theorists’ loss is then our gain: undecidability is simply a natural side-effect of the ability to express
universal computation – and universal computability in elementary arithmetic is ultimately much more interesting
than questions of whether natural numbers have finite or infinite orbits under seemingly arbitrary functions.

Conway’s motivating example

There is an unfortunate disconnect between the universal computational systems used to demonstrate undecidability
(e.g. FRACTRAN or Universal Register Machines), and the arithmetic problems that motivated Conway.

Although Collatz’s notorious 3x + 1 problem is often claimed to have inspired Conway, he explicitly mentioned a
distinct, albeit rather similar conjecture2 as his motivation. He further claimed it to be (probabilistically) ‘obviously
true but also probably undecidable’. Somewhat provocatively, he coined the term ‘probvious’ for this property, and
pointed out that the probability of this conjecture being false is significantly less than the probability of an error being
found in any given mathematical proof.

It is natural to wonder how this motivating conjecture interprets computationally as, for example, a FRACTRAN

program. Although this would not help in the slightest to resolve the actual conjecture (even assuming Conway’s
unprovable claim of undecidability is incorrect!), it would nevertheless provide a computational perspective on a
significant arithmetic problem that raises important foundational questions.

Unfortunately, Conway’s motivation cannot be expressed as such a program; the subset of congruential functions
that may be interpreted as FRACTRAN programs is in fact remarkably restrictive. This talk fills this gap, and gives a
structural interpretation, based on categorical logic and coherence, of a more general range of congruential functions –
including his motivating example as a very important special case.

The amusing musical permutation, and the original Collatz conjecture

Conway’s claimed motivation was the Original Collatz Conjecture (O.C.C.). This is based on a bijection that
he named the amusical permutation. The somewhat idiosyncratic terminology arises from a very close connection
between this conjecture and long-established musical theory : precisely, the Circle of Fifths, and the Pythagorean
Comma. We briefly describe this, with suitable accommodations for a potentially non-musically minded audience, and
give justification for his claim that, ‘there really is a connection with music’ [4].

However, our primary interest is in understanding it as Theoretical Computer Science. To this end, we point out
where it, and closely related congruential functions, occur in category theory & logic.

1In the Cold War era, many results were simultaneously and independently discovered on either side of the Iron curtain. Conway’s result
was no exception; Sergei Maslov’s 1968 paper [18] gave a very similar result.

2also considered by L. Collatz, as demonstrated by his unpublished notebooks [14].

1

36



Congruential functions in (categorical) logic

Both J. Conway’s demonstration of computational universality in elementary arithmetic, and Collatz’s infuriating prob-
lems, concern congruential functions. The starting point for these is P. Erdös’s notion of an ‘exact covering system’
– a dissection of the natural numbers into (disjoint) congruence classes {AjN + Bj}j∈J , so N =

⋃
j∈J AjN + Bj and

(AiN + Bi) ∩ (AjN + Bj) = ∅ for i ̸= j (i.e. a disjoint finite open cover of (N,+) w.r.t. the profinite topology). A
congruential function is given by applying a linear map conditioned on the congruence class to which the argument be-
longs. The overall effect is as the union of partial linear maps with disjoint domains, of the form AjN+Bj 7→ CjN+Dj .

In [12, 15], it is demonstrated how dissections of a countably infinite set into k infinite subsets correspond to
concrete realisations of Nivat & Perot’s polycyclic monoids [19] Pk. Such realisations occur in models of logics and
lambda calculii as the dynamical algebras (e.g. [6, 8, 9]), and a significant class of congruential functions (including
those considered by Collatz and Conway) occur as ‘mappings between dynamical algebras’.

A motivating example from logical models

We see these in a model of linear logic that has long been known to have connections with iteration on the natural
numbers. It was independently discovered by many authors [12, 1, 11, 2] that J.-Y. Girard’s Geometry of Interaction
series of papers [8, 9, 10] interpret propositions within the ‘symmetric inverse monoid’ of partial injective functions on
the natural numbers. The model of (multiplicative) conjunction used then a (semi-)monoidal tensor on this monoid. In
[13], it is demonstrated – as a generalisation of J. Isbell’s argument as quoted in [17] – that no such tensor on a monoid
can be strictly associative3 unless the monoid in question is highly degenerate (i.e. a monoid of abstract scalars, and
hence abelian, with tensor and composition coinciding).

Although Girard’s conjunction is not strictly associative, it is nevertheless associative up to canonical isomorphism;
there exists some fixed bijection α : N → N satisfying both naturality and MacLane’s pentagon condition.

Naturality ⊗(f ⊗ (g ⊗ h)) = ((f ⊗ g)⊗ h)α

MacLane’s pentagon condition α2 = (α⊗ Id)α(Id⊗ α)

The ‘naturality’ property allows us to perform arbitrary re-bracketings, and the ‘pentagon’, or ‘coherence’ condition
ensures that any two ways of performing the same bracketing are identical.

The canonical associativity isomorphism or associator for Girard’s conjunction is then precisely a congruential
function, although Collatz-like problems based on it are disappointingly trivial! However, it does illustrate that
congruential functions occur in logical / categorical models. This is not at the level of propositions, connectives, or
operators, but rather as the structural morphisms that mediate properties such as associativity.

As a preliminary step, we give an efficient decision procedure for deciding whether a given natural number has
a finite or infinite orbit under this congruential function. We then use the above naturality property, and the well-
known [7] connection between associativity laws and Thompson’s group F to give a presentation of F as a group of
congruential functions.

Collatz on the associahedron

Our next step is to generalise Girard’s conjunction in a natural way to an N+-indexed coherent family of ‘unbiased
tensors’ on the symmetric inverse monoid of partial injections on the natural numbers. We treat these operadically, and
give a 1:1 correspondence with the operad of rooted planar trees (and thus arbitrary facets of Stasheff’s associahedra).

We then exhibit natural isomorphisms between these unbiased tensors, giving a notion of coherence based on
natural isomorphisms whose components are congruential functions. We describe the simplest possible case explicitly;
this results in the canonical associativity isomorphism for Girard’s conjunction factoring into two distinct ways of
expressing the Original Collatz Conjecture4 – putting Conway’s motivating example firmly within the realm of coherence
for categorical logic.

The 1:1 correspondence between (operadic composites of) unbiased tensors, and rooted planar trees, allows us to
consider Stasheff’s associahedra as commuting categorical diagrams of congruential functions – with arrows between
arbitrary facets, rather than simply the 1-skeleton of vertices and edges. We give the diagram arising from the fourth
associahedron explicitly (containing, of course, MacLane’s pentagon as a sub-diagram). Finally, we demonstrate that
Conway’s motivation — the amusical permutation, from the Original Collatz Conjecture — occurs in the commuting
diagrams derived from arbitrary-dimensional associahedra.

3We emphasise that this does not contradict MacLane’s well-known theorem; his strictification procedure results in a (monoidally)
equivalent category, and the property of being a monoid (i.e. only having a single object) is certainly not a categorical property of the type
that would be preserved by such an equivalence.

4and thus factoring an almost trivial problem into two different ways of expressing the same undecided, and possibly undecidable,
problem.
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Additional considerations

It is - by far - more common to study categories with a single (binary) monoidal tensor, rather than those equipped
with an entire N+–indexed family of unbiased tensors. A significant reason for this is given by T. Leinster in [16], where
is is shown that MacLane’s strictification procedure is similarly applicable in the unbiased setting. This, of course,
reduces everything to the usual and well-understood case of a category with a single strictly associative (binary)
(semi-)monoidal tensor.

If time permits, we will briefly discuss the ‘strictified’ version of the above framework.
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