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Shortest paths example, sp = (N*°, min, +)

The adjacency matrix
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Shortest paths example, continued

/(?\ The routing matrix
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Matrix R solves this global

Bold arrows indicate the optimality problem:
shortest-path tree rooted at 1.
R(i, )= min w(p),
peP(i, )
where P(i, j) is the set of all
paths from i to j.



Semirings (see [Car79, GM84, GM08])

A few semirings

name S ® ® 0 1 possiblerouting use
sp Ne° min  + oo 0 minimum-weight routing
bw N>~ max min 0 oo greatest-capacity routing
rel [0, 1] max X 0 1 most-reliable routing
use {0,1} max min 0 1 usable-path routing
2w U n {} W shared link attributes?
2w N U W {} shared path attributes?

A wee bit of notation!
Symbol Interpretation

Natural numbers (starting with zero)
Natural numbers, plus infinity
Identity for &

Identity for ®
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What algebraic properties are associated with global
optimality?

Distributivity

LD : a®(b®c)
RD : (aeb)®c

(a® b)® (a® c),
(a®c)d (bc).

What is this in sp = (N*°, min, +)?

L.DIST : a + (b min ¢)
R.DIST : (amin b) + ¢

(a + b) min(a + c),
(a + ¢) min(b + c).



Local Optimality?

Say that R is a locally optimal solution when

R=(A®R)al

That is, for i # j we have

= PAl. g)@R(a. )= @ wii, 9) @R, )),

qeVv qeN(i)

where N(i) = {q | (i, q) € E} is the set of neighbors of .

In other words, R(/, j) is the best possible value given the
values R(q, j), for all neighbors g of i.



With Distributivity

A is an adjacency matrix over semiring S.

For Semirings, the following two problems are essentially the
same — locally optimal solutions are globally optimal solutions.

Global Optimality | Local Optimality

Find R such that Find R such that
®

R(i, )= Y w() | R=(AzR)al
peP(i, j)




Without Distributivity

When ® does not distribute over @, the following two problems

are distinct.
Global Optimality Local Optimality
Find R such that Find R such that
D
Ri.)= Y. w(p)| R=(AxR)al
peP(i, j)

Global Optimality

This has been studied, for example [LT91b,LT91a] in the
context of circuit layout. | do not know of any application of this

problem to network routing. (Yet!)

Local Optimality

At a very high level, this is the type of problem that BGP

attempts to solve!!



From (S, @, ®, 0, 1)to (S, @, F, 0, 1)

» Replace ® with F C S — S,
» Replace

LD : a®(bec) = (avb)s(a®c)
with
D : f(lboc) = f(b)®f(c)
» Path weight is now

w(p) w(vo, vi)(w(vy, va)--- (W(Vk—1, vk)(1)---))

(W(Vo Vi) o W(vy, Vz)o---ow(Vk_t, vk))(T)



What are the conditions needed to guarantee
existence of local optima?

For a non-distributed structure S = (S, @, F, 0, 1), can be
used to find local optima when the following property holds.

Strictly Inflationary

SINFL:Vae S, FeF : a#0 = a< f(a)

where a< bmeansa=ag b.



Important properties for algebraic structures of the
form (S, @, F, 0, 1)

property | definition
D Va,be S, fe F : fla®b)=f(a) @ f(b)
INFL |Vae$§, feF : a<f(a)
SINFL |Vac S, FEF :a#0 = a<f(a)
K Vabe S, feF : flay=1f(b) = a=0>b
Ks Va,be S, feF : fla)=f(b) = (a=bVf(a)=0)
C Va,be S, fe F : f(a) = f(b)
Cs; |VabeS feF : fla)#f(b) = (f(a)=0Vf(b)=0)



Stratified Shortest-Paths Metrics

Metrics
(s, d) or oo
» s # oo is a stratum levelin {0,1, 2,..., m—1},

» d is a “shortest-paths” distance,
» Routing metrics are compared lexicographically

(81, di) < (82, o) <= (51 <82)V(sS1=8ANd; <d)



Stratified Shortest-Paths Policies

Policy has form (f, d)

(f, d)(s, d') (f(s), d+d')
(f, d)(0) = o0

where (f )
o0 ITS =00
(s, 1) :{ (s, t) (otherwise)



Constraint on Policies

(f, d)

» Either f is inflationary and 0 < d,
» or fis strictly inflationary and 0 < d.

Why?

(S.INFL(S) V (INFL(S) A S.INFL(T))) = S.INFL(S x5 T).



All Inflationary Policy Functions for Three Strata
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Almost shortest paths

0 1 2| D K interpretation

al0 1 2| % 40

j| 1 2 oof x x  +1

ri2 oo ooflx x +2
X|oo oo ocofx * +3
b0 1 oof x « filter2

e 0 oo 2 *  filter 1

f|l 0 o0 oof x « filter1, 2
S|oco 1 2 * filter O
t|lo 1 o *  filter 0, 2
W| oo oo 2 *  filter 0, 1




Shortest paths with filters, over INF3

A @

(a, 10) (a, 10) (s, 1)

e
(1) (. 1) \@: (3,1)4\@

Note that the path 5, 4,2, 1 with weight (1, 3) would be the
globally best path from node 5 to node 1. But in this case, poor
node 5 is left with no path! The locally optimal solution has
R(5, 1) = cc.




Both D and Kj

This makes combined algebra distributive!

X = —m— =0 T
883888388 MM

¥ M= =00 o0olo
88EMNE N ==

Why?

(D(S) AD(T) AK§(S)) = D(Sx5T)



Example 1



Example 2

(a 1)
2, 4 >@ 2, 3)
(f, 1)
r, 1) (i, 1)
'
2, 3) <@<(d, 1)>@P (1, 2)
(f, 1) (b, 1)




BGP : standard view

» 0 is the type of a downstream route,
» 1 is the type of a peer route, and
» 2 is the type of an upstream route.

N = OO

Ny BN

y
f 0
| o0
o 2



“Autonomous” policies
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Open Problems

» Complexity
» Applications
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