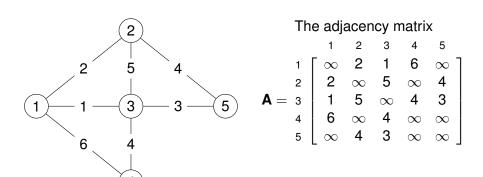
The Stratified Shortest-Paths Problem (Invited Paper)

Timothy G. Griffin

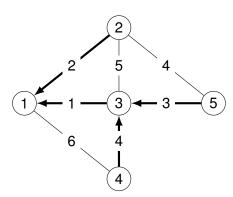
timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK

> COMSNETS 8 January, 2010

Shortest paths example, $sp = (\mathbb{N}^{\infty}, \min, +)$



Shortest paths example, continued



Bold arrows indicate the shortest-path tree rooted at 1.

The routing matrix

$$\mathbf{R} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 2 & 1 & 5 & 4 \\ 2 & 0 & 3 & 7 & 4 \\ 2 & 0 & 3 & 7 & 4 \\ 1 & 3 & 0 & 4 & 3 \\ 5 & 7 & 4 & 0 & 7 \\ 5 & 4 & 4 & 3 & 7 & 0 \end{bmatrix}$$

Matrix **R** solves this global optimality problem:

$$\mathbf{R}(i, j) = \min_{p \in P(i, j)} w(p),$$

where P(i, j) is the set of all paths from i to j.

Semirings (see [Car79, GM84, GM08])

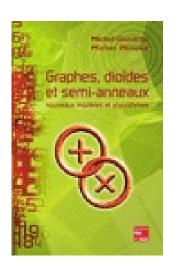
A few semi	rı	na	C
A ICW SCIIII		пu	J

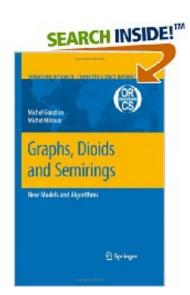
name	S	\oplus ,	\otimes	0	1	possible routing use
sp	\mathbb{N}_{∞}	min	+	∞	0	minimum-weight routing
bw	\mathbb{N}_{∞}	max	min	0	∞	greatest-capacity routing
rel	[0, 1]	max	×	0	1	most-reliable routing
use	$\{0, 1\}$	max	min	0	1	usable-path routing
	2^W	\cup	\cap	{}	W	shared link attributes?
	2^W	\cap	\cup	W	{}	shared path attributes?

A wee bit of notation!

Symbol	Interpretation
\mathbb{N}	Natural numbers (starting with zero)
\mathbb{N}_{∞}	Natural numbers, plus infinity
0	Identity for ⊕
<u>1</u>	Identity for ⊗

Recomended Reading





What algebraic properties are associated with global optimality?

Distributivity

```
L.D : a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c),
R.D : (a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c).
```

What is this in $sp = (\mathbb{N}^{\infty}, \min, +)$?

```
L.DIST : a + (b \min c) = (a + b) \min (a + c),
R.DIST : (a \min b) + c = (a + c) \min (b + c).
```

Local Optimality?

Say that **R** is a locally optimal solution when

$$\mathbf{R} = (\mathbf{A} \otimes \mathbf{R}) \oplus \mathbf{I}$$
.

That is, for $i \neq j$ we have

$$\mathbf{R}(i, j) = \bigoplus_{q \in V} \mathbf{A}(i, q) \otimes \mathbf{R}(q, j) = \bigoplus_{q \in N(i)} w(i, q) \otimes \mathbf{R}(q, j),$$

where $N(i) = \{q \mid (i, q) \in E\}$ is the set of neighbors of i. In other words, $\mathbf{R}(i, j)$ is the best possible value given the values $\mathbf{R}(q, j)$, for all neighbors q of i.

With Distributivity

A is an adjacency matrix over semiring *S*.

For Semirings, the following two problems are essentially the same — locally optimal solutions are globally optimal solutions.

Global Optimality	Local Optimality
Find R such that	Find R such that
$R(i,j) = \sum_{\rho \in P(i,j)}^{\oplus} w(\rho)$	$oldsymbol{R} = (oldsymbol{A} \otimes oldsymbol{R}) \oplus oldsymbol{I}$

Without Distributivity

When \otimes does not distribute over \oplus , the following two problems are distinct.

Global Optimality	Local Optimality		
Find R such that	Find R such that		
$R(i,j) = \sum_{\rho \in P(i,j)}^{\oplus} w(\rho)$	$R = (A \otimes R) \oplus I$		

Global Optimality

This has been studied, for example [LT91b, LT91a] in the context of circuit layout. I do not know of any application of this problem to network routing. (Yet!)

Local Optimality

At a very high level, this is the type of problem that BGP attempts to solve!!

From
$$(S, \oplus, \otimes, \overline{0}, \overline{1})$$
 to $(S, \oplus, F, \overline{0}, \overline{1})$

- ▶ Replace \otimes with $F \subseteq S \rightarrow S$,
- Replace

$$\mathsf{L.D} \ : \ a \otimes (b \oplus c) \ = \ (a \otimes b) \oplus (a \otimes c)$$

with

$$\mathsf{D} \quad : \quad f(b \oplus c) \quad = \quad f(b) \oplus f(c)$$

Path weight is now

$$w(p) = w(v_0, v_1)(w(v_1, v_2) \cdots (w(v_{k-1}, v_k)(\overline{1}) \cdots))$$

= $(w(v_0, v_1) \circ w(v_1, v_2) \circ \cdots \circ w(v_{k-1}, v_k))(\overline{1})$

What are the conditions needed to guarantee existence of local optima?

For a non-distributed structure $S = (S, \oplus, F, \overline{0}, \overline{1})$, can be used to find local optima when the following property holds.

Strictly Inflationary

S.INFL:
$$\forall a \in S, F \in F : a \neq \overline{0} \implies a < f(a)$$

where $a \le b$ means $a = a \oplus b$.

Important properties for algebraic structures of the form $(S, \oplus, F, \overline{0}, \overline{1})$

property | definition

property	dennition
D	$\forall a,b \in S, \ f \in F : \ f(a \oplus b) = f(a) \oplus f(b)$
INFL	$\forall a \in S, f \in F : a \leq f(a)$
S.INFL	$\forall a \in S, \ F \in F : \ a \neq \overline{0} \implies a < f(a)$
K	$\forall a,b \in S, f \in F : f(a) = f(b) \implies a = b$
$K_{\overline{0}}$	$\forall a,b \in S, f \in F : f(a) = f(b) \implies (a = b \lor f(a) = \overline{0})$
С	$\forall a,b \in S, \ f \in F : \ f(a) = f(b)$
$C_{\overline{0}}$	$\forall a,b \in S, \ f \in F : \ f(a) \neq f(b) \implies (f(a) = \overline{0} \lor f(b) = \overline{0})$

Stratified Shortest-Paths Metrics

Metrics

$$(s, d)$$
 or ∞

- ▶ $s \neq \infty$ is a *stratum level* in $\{0, 1, 2, ..., m-1\}$,
- ▶ d is a "shortest-paths" distance,
- Routing metrics are compared lexicographically

$$(s_1, d_1) < (s_2, d_2) \iff (s_1 < s_2) \lor (s_1 = s_2 \land d_1 < d_2)$$

Stratified Shortest-Paths Policies

Policy has form (f, d)

$$(f, d)(s, d') = \langle f(s), d + d' \rangle$$

 $(f, d)(\infty) = \infty$

where

$$\langle s, t \rangle = \left\{ egin{array}{ll} \infty & (ext{if } s = \infty) \\ (s, t) & (ext{otherwise}) \end{array} \right.$$

Constraint on Policies

- ► Either *f* is inflationary and 0 < *d*,
- or f is strictly inflationary and $0 \le d$.

Why?

$$(\mathtt{S.INFL}(S) \lor (\mathtt{INFL}(S) \land \mathtt{S.INFL}(T))) \implies \mathtt{S.INFL}(S \overset{\rightarrow}{\times}_{\overline{0}} T).$$

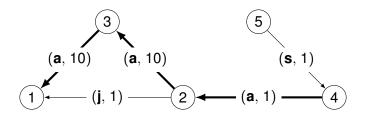
All Inflationary Policy Functions for Three Strata

	0	1	2	D	K_{∞}	C_{∞}		0	1	2	D	K_∞	C_∞
а	0	1	2	*	*		m	2	1	2			
b	0	1	∞	*	*		n	2	1	∞		*	
С	0	2	2	*			0	2	2	2	*		*
d	0	2	∞	*	*		р	2	2	∞	*		*
е	0	∞	2		*		q	2	∞	2			*
f	0	∞	∞	*	*	*	r	2	∞	∞	*	*	*
g	1	1	2	*			s	∞	1	2		*	
h	1	1	∞	*		*	t	∞	1	∞		*	*
i	1	2	2	*			u	∞	2	2			*
j	1	2	∞	*	*		V	∞	2	∞		*	*
k	1	∞	2		*		w	∞	∞	2		*	*
I	1	∞	∞	*	*	*	x	∞	∞	∞	*	*	*

Almost shortest paths

	0	1	2	D	K_∞	interpretation
а	0	1	2	*	*	+0
j	1	2	∞	*	*	+1
r	2	∞	∞	*	*	+2
X	∞	∞	∞	*	*	+3
b	0	1	∞	*	*	filter 2
е	0	∞	2		*	filter 1
f	0	∞	∞	*	*	filter 1, 2
s	∞	1	2		*	filter 0
t	∞	1	∞		*	filter 0, 2
W	∞	∞	2		*	filter 0, 1

Shortest paths with filters, over **INF**₃



Note that the path 5, 4, 2, 1 with weight (1, 3) would be the globally best path from node 5 to node 1. But in this case, poor node 5 is left with no path! The locally optimal solution has $\mathbf{R}(5, 1) = \infty$.

Both D and $K_{\overline{0}}$

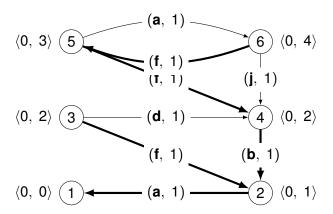
This makes combined algebra distributive!

	0	1	2
а	0	1	2
b	0	1	∞
d	0	2	∞
f	0	∞	∞
j	1	2	∞
I	1	∞	∞
r	2	∞	∞
X	∞	∞	∞

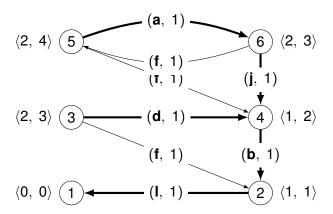
Why?

$$(\mathsf{D}(S) \land \mathsf{D}(T) \land \mathsf{K}_{\overline{0}}(S)) \implies \mathsf{D}(S \,\vec{\times}_{\overline{0}} \, T)$$

Example 1



Example 2



BGP: standard view

- ▶ 0 is the type of a *downstream* route,
- ▶ 1 is the type of a *peer* route, and
- ▶ 2 is the type of an *upstream* route.

	0	1	2
f	0	∞	∞
1	1	∞	∞
0	2	2	2

"Autonomous" policies

	0	1	2	D	K_∞
f	0	∞	∞	*	*
h	1	1	∞	*	
I	1	∞	∞	*	*
0	2	2	2	*	
р	2	2	∞	*	
q r	2	∞	∞ 2		
r	2	∞	∞	*	*
t	∞	1	∞		*
u	∞	2	∞ 2		
V	∞	2	∞		*
W	∞	∞	2		*
X	∞	∞	∞	*	*

Open Problems

- Complexity
- Applications

Bibliography I

[Car79] Bernard Carré.
Graphs and Networks.
Oxford University Press, 1979.

[GM84] M. Gondran and M. Minoux. Graphs and Algorithms. Wiley, 1984.

[GM08] M. Gondran and M. Minoux.

Graphs, Dioids, and Semirings: New Models and Algorithms.

Springer, 2008.

[LT91a] T. Lengauer and D. Theune.

Efficient algorithms for path problems with gene

Efficient algorithms for path problems with general cost criteria.

Lecture Notes in Computer Science, 510:314–326, 1991.

Bibliography II

1991.

[LT91b] T. Lengauer and D. Theune.
Unstructured path problems and the making of semirings.

Lecture Notes in Computer Science, 519:189–200,