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Abstract. Current Internet routing protocols exhibit several types of anomalies
that can reduce network reliability. In order to design more robust protocols we
need better formal models to capture the complexities of Internet routing. In this
paper we develop an algebraic model that clarifies the distinction between routing
tables and forwarding tables. We hope that this suggests new approaches to the
design of routing protocols.

1 Introduction

Internet data traffic traverses a sequence of links and routers as it travels from source to
destination. Routers employ forwarding tables to control traffic at each step. Typically,
forwarding tables are constructed automatically from routing tables, which in turn are
generated by routing protocols that dynamically discover network paths.

We attempt to clarify the distinction between forwarding and routing from a high-
level perspective, ignoring implementation details. To model routing, we use an algeb-
raic approach based on idempotent semirings (see for example [1]). For this paper, a
(network-wide) routing table is simply a matrix R that satisfies an equation

R = (A⊗R)⊕ I,

where A is an adjacency matrix associated with a graph weighted over a (well-behaved)
semiring S. Various algorithms, distributed or not, can be used to compute a routing
table R = A∗ from the adjacency matrix. Each entry R(i, j) is (implicitly) associated
with a set of optimal paths from node i to node j.

In Section 2 we model a forwarding table as a matrix F where each entry F(i, d) is
(implicitly) associated with a set of paths from node i to destination d. Here destinations
are assumed to be in a namespace disjoint from nodes. We then treat the construction
of a forwarding table F as the process of solving an equation

F = (A B F) � M,

where F and M contain entries in a semi-module (�, B) over the semiring S. Entries
in the mapping table M(i, d) contain metrics associated with the attachment of external
destination d to infrastructure node i.

The solution F = R B M tells us how to combine routing and mapping to produce
forwarding. We present several semi-module constructions that model common Inter-
net forwarding idioms such as hot- and cold-potato forwarding. Section 3 shows how



mapping tables can themselves be generated from forwarding tables. This provides a
model of one simple type of route redistribution between distinct routing protocols.

In Section 4 we discuss how this model is related to current rethinking of the In-
ternet’s addressing architecture (see for example John Day’s book [2]), and to exist-
ing problems with route redistribution [3,4,5]. For completeness, Appendix A supplies
definitions of semirings and semi-modules.

2 Routing versus forwarding

With Internet technologies we can make a distiction between routing and forwarding.
We will consider routing to be a function that establishes and maintains available paths
within a specified routing domain. How such paths are actually used to carry traffic is
for us a question of forwarding.

Of course, routing and forwarding are intimately related, and in practice the two
terms are often used as if they were synonyms. Indeed, in the simplest case the distinc-
tion may seem pointless: when the forwarding function causes traffic to flow on exactly
the paths provided by the routing function. However, even in this simple case the dis-
tinction must be made because of the possibility of multiple equal cost paths within a
network. There are many possible choices for forwarding with equal cost paths, such as
randomly choosing a path or dynamically balancing load between paths.

In this section we model a network’s infrastructure as a directed graph G = (V,E).
Given a pair of nodes i, j ∈ V , routing computes a set of paths in G that can be used
to transit data from i to j. We model routing with a V × V routing matrix R. Entry
R(i, j) in fact corresponds to the minimal-cost path weight from i to j, although under
certain assumptions (see later) it is straightforward to recover the associated paths.

In addition, we suppose that there is a set of external destinations D that are inde-
pendent of the network. Destinations can be directly attached to any number of nodes
in the network. We model the attachment information using a V ×D mapping matrix
M. Forwarding then consists of finding minimal-cost paths from nodes i ∈ V to des-
tinations d ∈ D. We model forwarding using a V ×D forwarding matrix F. We shall
see that there are several different ways to combine routing and mapping matrices to
produce a forwarding matrix, with each such method potentially leading to a different
set of forwarding paths; the examples in this section all share the same routing matrix,
yet have distinct forwarding paths.

2.1 Algebraic routing

In this section we provide a basic overview of algebraic routing with semirings. Let S =
(S, ⊕, ⊗) be an idempotent semiring (Appendix A.1). Associate arcs with elements of
the semiring using a weight function w ∈ E → S. Let A be the V ×V adjacency matrix
induced by w. Denote the set of all paths in G from node i to node j by P (G, i, j).
Given a path µ = 〈u0, u1, · · · , un〉 ∈ P (G, i, j) with u0 = i and un = j, define the
weight of µ as w(µ) = w(u0, u1) ⊗ w(u1, u2) ⊗ · · ·w(un−1, un). For paths µ, ν ∈
P (G, i, j), summarise their weights as w(µ) ⊕ w(ν). Define the shortest-path weight



from i to j as

δ(i, j) =
⊕∑

p∈P (G, i, j)

w(p).

We seek to find a V × V -matrix R satisfying R(i, j) = δ(i, j). We term this
matrix a routing solution because it models the shortest-path weights across a network’s
infrastructure. How might we compute the value of this matrix? It is straightforward to
show that such a matrix R also satisfies the routing equation

R = (A⊗R)⊕ I. (1)

Now, define the closure of A as A∗ = I ⊕ A ⊕ A2 ⊕ · · · . It is well-known that if
this closure exits, then it satisfies equation 1 (see the classic reference [6], or the recent
survey of the area [1]). Various sufficient conditions can be assumed to hold on the
semiring S which imply that A∗ will always exist (and so the set of adjacency matrices
becomes a Kleene algebra), but we will not explore these conditions here.

Note that we use the standard notation of identifying the operators from the semir-
ing S with those from the same semiring lifted to operate over (square) matrices with
elements from S. The additive operator for the lifted semiring is defined as

(X⊕Y)(i, j) = X(i, j)⊕Y(i, j),

whilst the multiplicative operator is defined as

(X⊗Y)(i, j) =
⊕∑

k∈V

X(i, k)⊗Y(k, j).

Hence we see that the latter operator in fact uses both the underlying⊕ and⊗ operators
from S. This distinction will become more significant when we consider lifting certain
semi-modules to operate over matrices.

The example in Figure 1 illustrates the algebraic approach. Figure 1(a) presents a
simple five node graph with integer labels and Figure 1(b) shows the associated adja-
cency matrix. We assume that arc weights are symmetric. We wish to compute shortest-
distances between each pair of nodes and therefore we compute the closure using the
semiring MinPlus = (N∞, min, +), where N∞ = N ∪ {∞}. The resulting matrix is
given in Figure 1(c). It is straight-forward to recover the corresponding paths because
MinPlus is selective. That is, for all x, y ∈ S we have x⊕y ∈ {x, y}. Hence the com-
puted weights actually correspond to the weights of individual paths. The bold arrows
in Figure 1(a) denote the shortest-paths tree rooted at node 1; the corresponding path
weights are given in the first row of the matrix in Figure 1(c).

2.2 Importing external destinations

As before, suppose that our network is represented by the graph G = (V, E), labelled
with elements from the semiring S. Let the external nodes be chosen from some set
D, satisfying V ∩ D = ∅. Attach external nodes to G using the attachment edges
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1 ∞ 2 1 6 ∞
2 2 ∞ 5 ∞ 4
3 1 5 ∞ 4 3
4 6 ∞ 4 ∞ ∞
5 ∞ 4 3 ∞ ∞

377775
(b) Adjacency matrix

R = A∗ =

266664

1 2 3 4 5

1 0 2 1 5 4
2 2 0 3 7 4
3 1 3 0 4 3
4 5 7 4 0 7
5 4 4 3 7 0

377775
(a) Labelled graph (c) Routing matrix

Fig. 1. Algebraic routing example using the MinPlus semiring

E′ ⊆ V × D. In the simplest case, the edges in E′ have weights from S, although in
the next section we show how to relax this assumption. Let the V ×D mapping matrix
M represent the attachment edges.

We now wish to compute the V ×D matrix F of shortest-path weights from nodes in
V to nodes in D. We term F a forwarding solution because it comprises the information
required to reach destinations, instead of other infrastructure nodes. We compute F by
post-multiplying the routing solution R by the mapping matrix M. That is, for i ∈ V
and d ∈ D, we have

F(i, d) = (R⊗M)(i, d) =
⊕∑

k∈V

R(i, k)⊗M(k, d) =
⊕∑

k∈V

δ(i, k)⊗M(k, d).

Hence we see that F(i, d) corresponds to the shortest total path length from i to d. In
other words, F solves the forwarding equation

F = (A⊗ F)⊕M. (2)

Note that we are able to change the value of M and recompute F without recomputing
R. From an Internet routing perspective this is an important property; if the external
information is dynamically computed (by another routing protocol, for example) then
it may frequently change, and in such instances it is desirable to avoid recomputing
routing solutions.

We illustrate this model of forwarding in Figure 2. The labelled graph of Figure 2(a)
is based upon that in Figure 1(a), with the addition of two external nodes: d1 and d2.
The adjacency matrix A remains as before, whilst the mapping matrix M, given in
Figure 2(b), contains the attachment information for d1 and d2. The forwarding solution
F that results from multiplying R by M is given in Figure 2(c). Again, it is easy to
verify that the elements of F do indeed correspond to the weights of the shortest paths
from nodes in V to nodes in D.
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(b) Mapping matrix

R⊗M =

266664

d1 d2

1 5 6
2 3 7
3 5 5
4 9 1
5 2 3

377775
(a) Graph with external information (c) Forwarding matrix

Fig. 2. Example of combining routing and mapping to create forwarding

2.3 A general import model using semi-modules

Within Internet routing, it is common for the entries in routing and forwarding tables to
have distinct types, and for these types to be associated with distinct order relations. We
therefore generalise the import model of the previous section to allow this possibility.
In particular, we show how to solve this problem using algebraic structures known as
semi-modules (Appendix A.2).

Assume that we are using the semiring S = (S, ⊕, ⊗) and suppose that we wish to
construct forwarding matrices with elements from the idempotent, commutative semig-
roup N = (N, �). Furthermore, suppose that the mapping matrix M contains entries
over N . In order to compute forwarding entries, it is necessary to combine routing
entries with mapping entries, as before. However, we can no longer use the multiplic-
ative operator from S because the mapping entries are of a different type. Therefore
we introduce an operator B ∈ (S × N) → N for this purpose. We can now construct
forwarding entries as

F(i, d) = (R B M)(i, d) =
�∑

k∈V

R(i, k) B M(k, d). (3)

It is also possible to equationally characterize the resulting forwarding entries, as
before. Assume that R is a routing solution i.e. it satisfies Equation 1. Then, providing
that the algebraic structure N = (N, �, B) is a semi-module, F = RBM is a solution
to the forwarding equation

F = (A B F) � M.

In other words, we can solve for F with F = A∗BM. Significantly, we are able to use
semi-modules to model the mapping information whilst still retaining a semiring model
of routing.

We now develop two important semi-module constructions that model the most
common manner in which routing and mapping are combined: the hot-potato and cold-
potato semi-modules. First define an egress node for a destination d as a node k within



the routing domain that is directly attached to d. Hot-potato forwarding to d first selects
paths to the closest egress nodes for d and then breaks ties using the mapping informa-
tion. In contrast, cold-potato forwarding first selects paths to the egress nodes for d with
the most preferred mapping values, and then breaks ties using the routing distances.

We now formally define the hot-potato semi-module. Let S = (S, ⊕S , ⊗S) be an
idempotent semiring with (S, ⊕S) selective and let T = (T, ⊕T ) be a monoid. The
hot-potato semi-module over S is defined as

Hot(S, T ) = ((S × T ) ∪ {∞}, ~⊕, Bfst),

where s1 Bfst (s, t) = (s1⊗S s, t) and s1 Bfst∞ = ∞. The left lexicographic product
semigroup ((S × T ) ∪ {∞}, ~⊕) is defined in Appendix A.3. In common with semir-
ings, we can lift semi-modules to operate over (non-square) matrices. When lifting the
hot-potato semi-module, we rename the multiplicative operator from Bfst to Bhp. This
is because the lifted multiplicative operator no longer simply applies its left argument to
the first component of its right argument. In fact, we shall shortly see that the cold-potato
semi-module uses the same underlying multiplicative operator but with a different ad-
ditive operator, and therefore has a different lifted multiplicative operator.

The behaviour of the hot-potato semi-module can be algebraically characterised as
follows. Suppose that for all j ∈ V and d ∈ D, M(j, d) ∈ {(1S , t), ∞T } where 1S

is the multiplicative identity for S and t is some element of T . Then from Equation 3 it
is easy to check that

(R Bhp M)(i, d) =
~⊕∑

j∈V
M(j, d)=(1S , t)

(R(i, j), t).

That is, as desired, the mapping metric is simply used to tie-break over otherwise
minimal-weight paths to the edge of the routing domain.

We illustrate the hot-potato model of forwarding in Figure 3. This example uses
the semi-module Hot(MinPlus, Min), where Min = (N∞, min). The graph of Fig-
ure 3(a) is identical to that of Figure 2(a), but now the attachment arcs of d1 and d2 are
weighted with elements of the hot-potato semi-module. The associated mapping matrix
is given in Figure 3(b), whilst the resulting forwarding table is shown in Figure 3(c).
Note that 0 is the multiplicative identity of the (min, +) semiring. Comparing this ex-
ample to Figure 2, we see that node 1 reaches d2 via egress node 5 instead of node 4.
This is because the mapping information is only used for tie-breaking, instead of being
directly combined with the routing distance. Also, in this particular example, it is never
the case that there are multiple paths of minimum cost to egress nodes, and therefore no
tie-breaking is performed by the mapping information.

Turning to cold-potato forwarding, the associated semi-module again combines
routing and attachment information using the lexicographic product, but with priority
now given to the attachment component. As before, let S = (S, ⊕S , ⊗S) be a semir-
ing and T = (T, ⊕T ) be a monoid, but now with T idempotent and selective. The
cold-potato semi-module over S is defined as

Cold(S, T ) = ((S × T ) ∪ {∞}, ~⊕, Bfst).
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(b) Mapping matrix

R Bhp M =

266664

d1 d2

1 (2, 3) (4, 3)
2 (0, 3) (4, 3)
3 (3, 2) (3, 3)
4 (7, 2) (0, 1)
5 (0, 2) (0, 3)

377775
(a) Graph with external information (c) Forwarding matrix

Fig. 3. Example of hot-potato forwarding

Note that the right lexicographic product semigroup (S × T, ~⊕) is defined in Ap-
pendix A.3. Again, when lifting the cold-potato semi-module to operate over matrices
we rename the multiplicative operator from Bfst to Bcp.

Figure 4 illustrates the cold-potato model of forwarding. This example uses the
cold-potato semi-module Cold(MinPlus, Min), but is otherwise identical to Figure 3.
It is easy to verify that priority is now given to the mapping information when selecting
egress nodes.
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(b) Mapping matrix

R Bcp M =

266664

d1 d2

1 (4, 2) (5, 1)
2 (4, 2) (9, 1)
3 (3, 2) (4, 1)
4 (7, 2) (0, 1)
5 (0, 2) (7, 1)

377775
(a) Graph with external information (c) Forwarding matrix

Fig. 4. Example of cold-potato forwarding

Within Internet routing, hot-potato forwarding corresponds to choosing the closest
egress point from a given routing domain. This is the default behaviour for the Border
Gateway Protocol (BGP) routing protocol [7] because it tends to minimise resource us-



age for outbound traffic within the domain. In contrast, cold-potato forwarding allows
the mapping facility to select egress nodes, and hence can lead to longer paths being
chosen within the domain. As a result, cold-potato forwarding is less commonly ob-
served in general on the Internet. However, one specific use is within client-provider
peering relations in order to minimise the use of the client’s network resources for in-
bound traffic (at the possible expense of increased resource usage on the provider’s
network).

2.4 Idealized OSPF: an example of combined mappings

We now present a highly-idealized account that attempts to tease out an algebraic de-
scription of the construction of forwarding tables in the OSPF routing protocol [8].
The specification of this protocol [9] runs for 244 pages and is primarily focused on
implementation details. For simplicity we ignore OSPF areas.

Destinations are attached in three different ways in OSPF. Type 0 (our termino-
logy) destinations are directly attached to a node, while Type 1 and Type 2 destinations
(terminology of [9]) represent two ways of attaching external destinations. These may
be statically-configured or learned via other routing protocols. The OSPF specification
defines the relative preference for destination types to be used in constructing a for-
warding table: Type 0 are preferred over Type 1, and Type 1 are preferred over Type
2.
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d1 d2

1 ∞ ∞
2 ((1, ∞), 3) ∞
3 ∞ ∞
4 ∞ ((2, 10), 0)
5 ((0, ∞), 2) ((2, 20), 0)

377775 R Bcp M =

266664

d1 d2

1 ((0, ∞), 6) ((2, 20), 4)
2 ((0, ∞), 6) ((2, 20), 8)
3 ((0, ∞), 5) ((2, 20), 3)
4 ((0, ∞), 9) ((2, 20), 7)
5 ((0, ∞), 2) ((2, 20), 0)

377775
(b) Mapping matrix (c) Forwarding matrix

Fig. 5. Example of idealized-OSPF forwarding



In addition, Type 2 destinations are associated with a metric that is to be inspected
before the internal routing metric In other words, cold-potato forwarding is used for
Type 2 destinations. We generalize OSPF and assume that Type 2 metrics come from
a commutative, idempotent monoid. U = (U, ⊕U ). We use the network in Figure 5(a)
as an ongoing example; here we have U = (N∞, max), and we think of this as a
bandwidth metric (note that here ∞U = 0).

We use the following set into which we embed each destination type,

W = (({0, 1, 2} × U)× N∞) ∪ {∞}.

Each destination type is embedded into W as follows:

Type Metric Embedding
0 m 6= ∞ ((0, ∞U ), m)
1 m 6= ∞ ((1, ∞U ), m)
2 u 6= ∞U ((2, u), 0)

The elements of W are then ordered using the (right) lexicographic product (see Ap-
pendix A.3),

~⊕ = ({1, 2, 3},min) ~× (U,⊕U ) ~× (N∞, min).

Hence the order amongst metrics of the same destination type remains unchanged,
whilst the order between different destination types respects the ordering defined within
the OSPF specification.

Assume we start with one mapping matrix for each type of destination (how these
matrices might actually be produced is ignored),

M0 M1 M2

d1 d2

1 ∞ ∞
2 ∞ ∞
3 ∞ ∞
4 ∞ ∞
5 ((0, ∞), 2) ∞




d1 d2

1 ∞ ∞
2 ((1, ∞), 3) ∞
3 ∞ ∞
4 ∞ ∞
5 ((1, ∞), 17) ∞




d1 d2

1 ∞ ∞
2 ((2, 40), 0) ∞
3 ∞ ∞
4 ∞ ((2, 10), 0)
5 ((2, 10), 0) ((2, 20), 0)


We then construct a combined mapping matrix M by summing the individual matrices
as M = M0 ~⊕M1 ~⊕M2. The resulting mapping matrix is shown in Figure 5(b).

We define the OSPF semi-module as

OSPF(U) = (W, ~⊕, Bsnd)

where
m Bsnd ((l, u), m′) = ((l, u), m + m′)

m Bsnd ∞ = ∞.

The OSPF semi-module is a variant of the cold-potato semi-module; here, instead of
combining routing data with the first component of the mapping information and using
the right lexicographic order, we instead combine it with the second component and use
the left lexicographic order. Hence we refer to the lifted multiplicative operator as Bcp.

Figure 5(c) illustrates the resulting forwarding matrix, F = R Bcp M. For d1, we
see that the Type 0 route is given priority over the Type 1 route. In contrast, there are
two Type 2 routes for d2, and hence the bandwidth component is used as a tie-breaker.



3 Simple route redistribution

In this section we show how to allow forwarding between multiple domains by gen-
eralizing the import model from Section 2 (here, we limit ourselves to modelling the
case where there are two routing domains, although it is possible to generalize to a
greater number). In particular, we show how the forwarding matrix from one domain
can be used within the mapping matrix of another. This models redistribution, where
a routing solution from one routing protocol is used within another. Additionally, we
demonstrate that it is possible for each routing/forwarding domain to use a different
semiring/semi-module pair.

Begin by assuming that there are two routing domains, G1 = (V1, E1) and G2 =
(V2, E2). Also, assume that there is a set of destinations, D, with V1, V2 and D pair-
wise disjoint. Let G1 be connected to G2 with the attachment arcs E1,2 ⊆ V1 × V2,
represented as the V1 × V2 bridging matrix B1,2. Similarly, let G2 be connected to
D with the attachment arcs E2,d ⊆ V2 × D, represented as the V2 × D attachment
matrix M2. Let F2 be the forwarding matrix for G2. We demonstrate how to construct
a forwarding matrix from V1 to D.

We shall use Figure 6 as a running example. Figure 6(a) illustrates two graphs,
G1 and G2. The second graph, G2, is directly connected to destinations d1 and d2

and therefore we are able to compute the forwarding matrix for G2 using the method
from Section 2. We model the routing in G2 using the bandwidth semiring MaxMin =
(N∞, max, min) and the forwarding using the cold-potato semi-module Cold(MaxMin,Min),
where Min = (N∞, min). The mapping matrix is given in Figure 6(b), whilst the rout-
ing and forwarding matrices are given in Figure 6(c) and Figure 6(d) respectively.

In order to compute a forwarding matrix from V1 to D, we must first construct
a mapping matrix M1 from V1 to D by combining the forwarding matrix F2 from
G2 with the bridging matrix B1,2. Let the forwarding in G2 be modelled using the
semi-module N2 = (N2, �2,B2), and that the bridging matrix is modelled using the
semigroup (N1, �1). We construct a right semi-module (N1, �1, C1) over N2 i.e.
with C1 ∈ (N2 × N1) → N1. Then we compute the mapping matrix from G1 as
M1 = B1,2 C1 F2.

Returning to Figure 6, the bridging matrix B1,2 is illustrated in Figure 6(e). We
combine the forwarding matrix F2 with B1,2 using the right version of the semi-module

Hot(MinPlus, Cold(MaxMin,Min)).

The resulting mapping matrix M1 is illustrated in Figure 6(f).
Finally, we must combine the mapping matrix M1 with the routing solution R1.

Suppose that R1 has been computed using the semiring S. Then we construct a left
semi-module (N1, �1, B1) over S. Compute the forwarding matrix for G1 as

F1 = R1 B1 M1 = R1 B1 (B1,2 C1 F2)

Hence we see that we have in fact used a pair of semi-modules with identical addit-
ive components: a left semi-module (N1, �1, C1) over N2 and a right semi-module
(N1, �1, B1) over S.
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B1,2 =

266664

6 7 8 9

1 ∞ ∞ ∞ ∞
2 ∞ ∞ ∞ ∞
3 ∞ ∞ ∞ ∞
4 (0, (∞, 0)) ∞ ∞ ∞
5 ∞ (0, (∞, 0)) ∞ ∞

377775

M1 = B1,2 Chp F2

=

266664

d1 d2

1 ∞ ∞
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4 (0, (30, 2)) (0, (30, 1))
5 (0, (20, 2)) (0, (40, 1))

377775
(e) G1 to G2 bridging matrix (f) G1 mapping matrix

R1 =

266664

1 2 3 4 5

1 0 3 1 5 5
2 3 0 2 2 3
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4 5 2 4 0 3
5 5 3 4 3 0

377775

F1 = R1 Bhp M1

=

266664

d1 d2

1 (5, (30, 2)) (5, (40, 1)
2 (2, (30, 2)) (2, (30, 1)
3 (4, (30, 2)) (4, (40, 1)
4 (0, (30, 2)) (0, (30, 1)
5 (0, (20, 2)) (0, (40, 1)

377775
(g) G1 routing matrix (h) G1 forwarding matrix

Fig. 6. Example of simple route redistribution



Completing the example of Figure 6, the routing matrix for G1 is computed using
the semiring MinPlus. The resulting matrix R1 is shown in Figure 6(g). We combine
R1 with the mapping matrix M1 using the left version of the semi-module

Hot(MinPlus, Cold(MaxMin,Min)).

The resulting forwarding table F1 is given in Figure 6(h). The bold arrows in Figure 6(a)
denote the forwarding paths from node 1 to destinations d1 and d2. Note that the two
egress nodes (4 and 5) from G1 are at identical distances from 1, and therefore the
bandwidth components from G2 are used as tie-breakers. This results in a different
egress point for each destination.

This model is significant because it is the first algebraic account of route redistribu-
tion – an area that is currently treated as a ‘black art’ even within the Internet routing
community (for example, there are only informal guidelines on how to avoid redistri-
bution anomalies such as loops and oscillations). We hope that our approach can be
generalized to provide a basis for understanding existing redistribution techniques, and
also for developing new approaches to protocol inter-operations.

4 Related work and open problems

4.1 Locators and identifiers

Our term mapping table has been borrowed (slightly loosely) from recent work at-
tempting to differentiate between infrastructure addresses (called locators) and end-user
addresses (called identifiers), as with the Locator/ID Separation Protocol (LISP) [10].
This effort has been motivated by a perceived need to reduce the size of routing and
forwarding tables in the Internet’s backbone (the world of inter-domain routing [11]).

Restated in our abstract setting, the essential problem that LISP is attempting to
solve is that a mapping table M may be many orders of magnitude larger than the rout-
ing table R, leading to a very large forwarding table F = R B M. Since there is no
separation between mapping and routing today, such table growth is in fact becoming a
real operational problem. (Note that we are using the terms routing table and forward-
ing table in a rather unconventional, network-wide, sense. In a distributed setting, the
entries F(i, _) make up the forwarding table at node i.)

LISP proposes that forwarding tables F be only partially constructed using an on-
demand approach – an entry F(i, d) is not constructed until router i receives traffic
destined for d. This in turn requires some type of distributed mapping service, for which
there are several proposals currently under consideration.

In this paper we have used the separation of locators and identifiers to provide an
algebraic view of the distinction between routing and forwarding tables. This model
suggests that the Locator/ID split might be usefully applied to intra-domain routing.

4.2 Route redistribution

Examples of somewhat ad hoc mechanisms and techniques added to routing are route
redistribution for distributing routes between distinct routing protocols (as already dis-
cussed), and administrative distance (discussed below). Recent research has documented



their widespread use and illustrated routing anomalies that can arise as a result [3,4,5].
From our point of view, that work represents a bottom-up approach that starts with the
complex implementation details of current legacy software. We hope that we have ini-
tiated a complementary, top-down, approach. The algebraic model has the advantage
of making clear what problem is being solved, as distinct from what algorithm is being
implemented to solve a problem. We assert that the Internet routing literature is severely
hobbled by the way that these distinct issues are often hopelessly tangled together.

Our model suggests that new protocols should be designed with a clear distinction
between routing, mapping, and forwarding. Furthermore, mechanisms for constructing
mapping tables and forwarding tables should be elevated from proprietary implement-
ations to first-class status and standardized.

4.3 Loss of distributivity

We may attempt to solve the equation F = (A B F) � M using an iterative method,

F[0] = M,
F[k+1] = (A B F[k]) � M.

When A∗ exists, and (N, �, B) is a semi-module over S, then it is not too hard to see
that lim

k→∞
F[k] = A∗BM. However, when modeling current Internet routing protocols

several problems may be encountered.
The first is that S may not in fact be a semiring due to violations of the distributivity

laws. The situation may not be as hopeless at it might seem. Recent research [12] has
pointed out that distributivity that is so essential to semiring theory may have to be aban-
doned to model some types of Internet routing. Even without distributivity, it may be
possible to use an iterative method to arrive at a (locally optimal) routing solution [13] .

On the other hand, it may be that S is a well-behaved semiring, but that the structure
(N, �, B) is not a semi-module over S. Again, this seems to arise with violations of
semi-module distributivity. We conjecture that it would be straightforward to extend the
results of [13] to iterations of F[k]. That is, that if (1) the natural order is a total order, (2)
m < ∞N =⇒ m < aBm and (3) only simple paths are considered, then the iterative
method will converge to a (locally optimal) solution to the equation F = (ABF)�M.

The lack of a global notion of optimality may in fact be perfectly reasonable in
the wide Internet where competing Internet Service Providers need to share routes but
their local commercial relationships prevent agreement as to what represents a best
route. However, we suspect that a less obvious source of this type of routing may have
evolved with administrative distance.

4.4 Administrative distance

Administrative distance [3,4,5] is used for determining which entries are placed in a
forwarding table when distinct protocols running on the same router have routes to
common destinations. Algebraic modeling of administrative distance remains open for
a careful formal treatment.



One fundamental problem seems to be that capturing the way routers currently im-
plement administrative distance leads to algebraic structures that are not distributive. In
fact, we conjecture that the technique is inherently non-distributive in some sense.

If this is the case, then we can model current routing as implementing an iterative
method attempting to find a fixed-point over a non-distributive structure. Perhaps the
way forward is again to elevate this procedure from proprietary code to the level of a
first class protocol and design constraints sufficient to guarantee convergence.
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A Basic definitions

Our definitions of semirings and semi-modules are fairly standard, taken from [1]. The
definitions of lexicographic operations are from [14].

A.1 Semirings

A semiring is a structure S = (S, ⊕, ⊗) where (S, ⊕) is a commutative semigroup,
(S, ⊗) is semigroup, and the following conditions hold: (1) ⊗ distributes over ⊕,

x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z), (y ⊕ z)⊗ x = (y ⊗ x)⊕ (z ⊗ x),

(2) there exists an identity for ⊕, 0S ∈ S, and an identity for ⊗, 1S ∈ S, and (3) it is
assumed that 0S is an annihilator for ⊗ i.e. 0S ⊗ x = x⊗ 0S = 0S .

For routing, we are normally working with idempotent semirings where x⊕x = x.
In this case (S, ⊕) is a semi-lattice, and we use one of the natural orders – x ≤L

⊕ y ≡
x = x ⊕ y and x ≤R

⊕ y ≡ y = x ⊕ y. For routing, we will stick with the order ≤L
⊕

since it corresponds well with the notion of least cost paths. For this reason we use ∞S

rather than 0S , since x ≤L
⊕ ∞S for all x ∈ S.

A.2 Semi-modules

Let S = (S, ⊕, ⊗) be a semiring. A (left) semi-module over S is a structure N =
(N, �, B), where (N, �) is a commutative semigroup and B is a function B ∈ (S ×
N) → N that satisfies the following distributivity laws,

x B (m � n) = (x B m) � (x B n), (x⊕ y) B m = (x B m) � (y B m).

In addition, we assume that the identity for � exists, 0N , and that 0S B m = 0N ,
x B 0N = 0N , and 1S B m = m. Again, in our applications � is often idempotent, and
we use the notation ∞N rather than 0N .

A.3 Lexicographic product

Suppose that we have two semigroups S = (S,⊕S) and T = (T,⊕T ), with S selective
(i.e. for all s1, s2 ∈ S we have s1⊕s2 ∈ {s1, s2}). Then the left lexicographic product
of S and T is defined to be the semigroup S ~× T = ((S × T ) ∪ {∞}, ~⊕), where for
(s1, t1), (s2, t2) ∈ S × T we have

(s1, t1) ~⊕ (s2, t2) =

 (s1, t1 ⊕T t2) s1 = s1 ⊕S s2 = s2

(s1, t1) s1 = s1 ⊕S s2 6= s2

(s2, t2) s1 6= s1 ⊕S s2 = s2.

The right lexicographic product ~×is similar, except that the semigroup T is assumed to
be selective and the order of comparison is reversed.


