
Rate of convergence of increasing path-vector
routing protocols

Matthew L. Daggitt
Department of Computer Science & Technology

University of Cambridge
mld46@cam.ac.uk

Timothy G. Griffin
Department of Computer Science & Technology

University of Cambridge
tgg22@cam.ac.uk

Abstract—A good measure of the rate of convergence of
path-vector protocols is the number of synchronous iterations
required for convergence in the worst case. From an algebraic
perspective, the rate of convergence depends on the expressive
power of the routing algebra associated with the protocol. For
example in a network of n nodes, shortest-path protocols are
guaranteed to converge in O(n) iterations. In contrast the algebra
underlying the Border Gateway Protocol (BGP) is in some sense
too expressive and the protocol is not guaranteed to converge.
There is significant interest in finding well-behaved algebras that
still have enough expressive power to satisfy network operators.

Recent theoretical results have shown that by constraining
routing algebras to those that are “strictly increasing” we can
guarantee the convergence of path-vector protocols. Currently
the best theoretical worst-case upper bound for the convergence
of such algebras is O(n!) iterations. However in practice it is
difficult to find examples that do not converge in n iterations. In
this paper we close this gap. We first present a family of network
configurations that converges in Θ(n2) iterations, demonstrating
that the worst case is Ω(n2) iterations. We then prove that path-
vector protocols with a strictly increasing algebra are guaranteed
to converge in O(n2) iterations. Together these results establish
a tight Θ(n2) bound. This is another piece of the puzzle in
showing that “strictly increasing” is, at least on a technical level,
a reasonable constraint for practical policy-rich protocols.

In memory of Abha Ahuja.

I. INTRODUCTION

Complex path-vector protocols such as the Border Gate-
way Protocol (BGP) [1] provide extremely powerful tools
to fine-tune routing configurations. However the very power
of the policy language gives rise to anomalies such as non-
convergence, non-deterministic convergence and other prob-
lems [2], [3], [4].

One of the more successful frameworks for reasoning about
these problems is the algebraic approach [5], [6]. This frame-
work untangles the routing problem being solved from the
algorithm being used to solve it. A protocol can therefore be
decomposed as protocol = algebra+algorithm. For instance
all distance and path-vector protocols use some variant of dis-
tributed version of the Bellman-Ford algorithm. However each
protocol instantiates the algorithm with a different algebra.
For instance RIP’s algebra measures shortest paths, whereas
BGP’s algebra is far more complicated and includes complex
conditional policy.

The main advantage of the algebraic approach is that,
by considering an abstract algebra, the convergence of all

distance/path-vector protocols can be reasoned about within
a single framework. Hence, although much of the more recent
work in the area is motivated by BGP, it equally applies
to many other path-vector protocols. The model does not
yet include protocols that route around congestion or other
transient traffic metrics. However protocols such as BGP do
not route around congestion.

Recent work has demonstrated that if the underlying algebra
is strictly increasing then distance/path-vector protocols are
guaranteed to converge in a well-behaved manner [5], [7].

In this paper we address the open question of how quickly
convergence occurs for path-vectors protocols with strictly
increasing algebras. Existing results [5], [7], [8] have focused
on convergence rather than the rate of convergence. When
examined closely the convergence proofs suggest a worst-
case bound of O(n!) synchronous iterations. Clearly there is
potentially a problem here. If increasing algebras can take
an exponential number of iterations to converge, then for
all practical purposes they might as well not converge at all
for networks of any reasonable size. However in practice it
appears non-trivial to construct examples that take more than
n iterations to converge.

We entirely close this gap by demonstrating an example of
a strictly increasing path-vector algebra and a family of graphs
Qn that require Θ(n2) synchronous iterations to converge.
We then prove that in the worst case strictly increasing path
algebras converge in O(n2) iterations. Together these results
show that the worst-case is Θ(n2).

The O(n2) proof of convergence has been verified in the
theorem prover Agda [9]. Our library, available online [10],
also contains the formalised results of [7]. We hope others will
be able to use and extend this library to reason about specific
routing protocols.

II. PREVIOUS WORK ON CONVERGENCE

A. Algebraic work on convergence

The origins of the algebraic approach stems from early
work on semiring best-path problems [6]. This approach
successfully modelled many simple algebras such as hop-
count and shortest-path. However the proofs of correctness
of the best-path algorithms all relied on the fact that these
algebras were distributive. However work investigating the
non-convergence of BGP showed that BGP’s algebra violated

this “distributivity” property [11]. Furthermore as distributivity
equates to all participants in the network sharing a common
preference order over routes, it is unlikely that BGP’s algebra
could ever be made distributive.

An alternative algebraic property “strict increasingness”1

was proposed by Sobrinho [5]. BGP does not obey such a
property, but it is much more natural to suppose that it could
as the property only says that the extension of a route must
be strictly less preferred than the route itself.

In the original paper Sobrinho showed that if the algebra
is strictly increasing then path-vector protocols are guaranteed
to converge and reconverge even after arbitrary changes to the
network. A more recent paper by Daggitt et al. [7] built upon
this and showed strictly increasing algebras are guaranteed to
converge to a unique solution even under considerably weaker
asynchronous assumptions.

The strictly increasing property therefore looks to be a
promising algebraic theory on which to build the next gen-
eration of safe-by-design routing protocols. However the rate
of convergence of these algebras is still an open question.

B. Rate of convergence
Measuring the rate of convergence of asynchronous pro-

cesses is inherently tricky. One obvious approach might be
to measure the number of “events” that occur (messages
sent/received, table entries updated etc.), however this runs
into several problems. Firstly, many of these events happen
in parallel and therefore it is not clear that this is an accurate
proxy for the actual time required. Secondly, it has been shown
that even a simple shortest-paths path-vector protocol may
require an exponential number of events to occur in the worst
case [12].

Instead we will measure the number of iterations required
for the convergence of a synchronous iterative model of path-
vector protocols (see Section III-E). This assumes that all
nodes propagate their changes instantaneously to each other at
the same time. Furthermore given upper bounds on the number
of synchronous iterations, the link latency and the loss rate, an
upper bound for the time taken for asynchronous convergence
can be recovered using the notion of pseudoperiods from [13].

Note that when we talk about the convergence time with re-
spect to the number of synchronous iterations, we are ignoring
the O(n3) work required to compute each iteration. However
this work is in some sense uninteresting as it is constant with
respect to the algebra and is the portion of work parallelised
in the asynchronous version of the protocol. In contrast the
iterative component of the work cannot be parallelised and
indeed may be adversely affected by the parallelisation.

Labovitz et al. [14] demonstrated through a combination of
theory and experimentation that is possible in real life to get
BGP to explore all n! paths. We should note that BGP does not
use an increasing algebra, and therefore this does not affect
the theoretical bounds we seek.

The worst-case convergence time for semiring algebras with
paths over networks with n nodes has long been known to

1Sobrinho refers to this property as “monotonicity”.

be Θ(n) iterations [15]. As mentioned in Section I, current
proofs [5], [8], [7] only suggest a worst-case upper bound of
O(n!) for the convergence of strictly increasing algebras with
paths. These bounds are derived from the number of simple
paths in the network.

III. AN ALGEBRAIC MODEL OF ROUTING

In this section we present our abstract algebraic model of
distance-vector routing. The model we describe is taken from
[7], which in turn is a refinement of the model proposed by [5].
Section IV presents concrete examples to help the reader to
understand the scope and flexibility of this model.

A. Routing algebras
Definition 1. A routing algebra is a tuple (S, ⊕, F, 0, ∞)
where:
• S is the set of weights with 0 ∈ S and ∞ ∈ S,
• ⊕ : S × S → S is the choice operator,
• F is a set of functions from S → S.

such that:
R1) ⊕ is associative – ∀x, y, z : x⊕ (y ⊕ z) = (x⊕ y)⊕ z.
R2) ⊕ is commutative – ∀x, y : x⊕ y = y ⊕ x.
R3) ⊕ is selective – ∀x, y : x⊕ y ∈ {x, y}.
R4) 0 is an annihilator for ⊕ – ∀x : x⊕ 0 = 0⊕ x = 0.
R5) ∞ is an identity for ⊕ – ∀x : x⊕∞ =∞⊕ x = x.
R6) ∞ is a fixed point for all f – ∀f ∈ F : f(∞) =∞.

The operator ⊕ is the decision procedure used by the
protocol to choose between two possible weights. Selectivity
implies ⊕ always returns one of its two arguments. Hence it is
possible to define a total order, ≤, over the weights as follows:

x ≤ y , x⊕ y = x x < y , x ≤ y ∧ x 6= y

i.e. x ≤ y if and only if x is chosen over y.
The weights 0 and∞ represent the weight of the empty path

and the weight of an invalid path respectively. Assumptions
R4) and R5) imply that ∀x ∈ S : 0 ≤ x ≤ ∞.

Each function in F represents a procedure to transform a
route’s weight when that route is extended along an edge.
Hence elements of F will be used to label edges in the
network (see the following section). Readers may be more
familiar with arc weights rather than arc functions. However
functions are a strictly more expressive model and can capture
conditional routing policies such as BGP route maps. Such
complex policies are not easily expressible as edge weights.
See Section IV for concrete examples of F .

We additionally define the three additional properties. The
algebra is distributive if:

∀f, x, y : f(x⊕ y) = f(x)⊕ f(y) (1)

and is increasing if:

∀f, x : x ≤ f(x) (2)

and is strictly increasing if:

∀f, x : x 6=∞⇒ x < f(x) (3)

These properties are optional and may or may not be satisfied
by a particular routing algebra.

B. Network configuration, paths, and routes
The network is modelled as a directed graph G = (V, E),

where V is a set of n nodes V = {0, 1, · · · , n − 1} and
E is a set of arcs. A configuration of G with respect to a
routing algebra (S, ⊕, F, 0, ∞) is a mapping from E to
F . Such mappings will be represented by an n×n adjacency
matrix A where Aij ∈ F . We assume there exists the constant
function f∞ ∈ F that always returns the invalid weight (i.e.
∀x ∈ S : f∞(x) =∞). This function can be used to represent
missing edges.

After changes to the network topology (see Section III-E),
nodes may be exchanging routes that contain paths that
no longer exist in the current configuration. Therefore our
definition of a path must be independent of the current graph
G and hence is somewhat non-standard.

A path p = [(v1, v
′
1), · · · , (vm, v

′
m)] is a (possibly empty)

sequence of arcs such that v′i = vi+1 for all 0 ≤ i < m.
However, for the reasons outlined above, the arcs are not
members of E but are instead arbitrary members of N× N.

For notational convenience we will write p as [] when
m = 0 and as (v1, v

′
1) :: q when 0 ≤ i < m where

q = [(v2, v
′
2), · · · , (vk, v

′
k)]. A path is simple if it never

visits a vertex more than once. We also consider a special
additional path ⊥ which represents the invalid path. We will
refer to the set of paths as P and the length of a path p as |p|.

C. Path algebras
Our definition of a routing algebra so far models general

distance-vector protocols. However we are interested in the
strict subset of path-vector protocols, which track the path
that routes are generated along and remove any looping paths.

Given an routing algebra A = (S, ⊕, F, 0, ∞) one way
to add paths to A is as follows:

PA(A) = (((S −{∞})×P)∪ {∞′}, ⊕′, F ′, (0, []), ∞′).

In the augmented algebra, PA(A), weights are of the form∞′
or (s, p) where s ∈ S − {∞} and p is a path. For all (s, p)
we have (s, p)⊕′∞′ =∞′⊕′ (s, p) = (s, p). Non-∞′ routes
are compared lexicographically:

(s1, p1)⊕ (s2 p2) ,

(s1, p1) if s1 = (s1 ⊕ s2) 6= s2

(s2, p2) if s1 6= (s1 ⊕ s2) = s2

(s1, p1⊕̂p2) if s1 = s2

where

p1⊕̂p2 ,

p1 if |p1| < |p2|
p2 if |p2| < |p1|
dict(p1, p2) otherwise

where dict(p1, p2) returns the smallest path in dictionary order.
We define the concatenation operator :̂: that takes an arc

and a path. The result of (i, j) :̂: p is the invalid path ⊥ if i is
already in the path or if the first node of p is not j, otherwise
it returns (i, j) :: p. For example:

(5, 3) :̂: [(3, 4), (4, 5)] = ⊥
(2, 1) :̂: [(3, 4), (4, 5)] = ⊥
(2, 3) :̂: [(3, 4), (4, 5)] = [(2, 3), (3, 4), (4, 5)]

The F ′ for the path-algebra is the collection of the policy
functions gf,u,v which are defined as:

gf,u,v(∞′) =∞′

gf,u,v(s, p) ,

∞′ if f(s) =∞
∞′ if (u, v) :̂: p = ⊥
(f(s), (u, v) :̂: p) otherwise

However PA is just one of many possible methods of
adding paths to a routing algebra. For example in BGP’s
algebra, the path is not the last attribute inspected in a lengthy
lexicographic best route selection process. Therefore in order
to reason about all path-vector protocols, we need to abstract
away the exact method of tracking and removing paths.

Definition 2. A path algebra is a tuple (S, ⊕, F, 0, ∞, path)
where:
• (S, ⊕, F, 0, ∞) is a routing algebra
• path : S → P is a function that returns the path the

weight was generated along.
such that:
P1) path(x) = ⊥ ⇔ x =∞
P2) path(x) = []⇐ x = 0

P3) path(Aij(x)) =

⊥ if i ∈ path(x)

⊥ if j 6= src(path(x))

(i, j) :: path(x) otherwise

Note that P3) implies that if a path algebra is increasing it is
automatically strictly increasing. As expected PA(A) is a path
algebra for any A. Its path function is defined as path(∞′) =
⊥ and path((s, p)) = p.

D. What problem are we solving?

Let Mn(S) be the set of n×n matrices over S. Each matrix
X ∈Mn(S) represents one possible global state of the routing
protocol. The row Xi represents the current routing table of
node i and Xij is node i’s current route to node j.

Going forwards we will often refer to Xij as a route from
i to j. This is a minor abuse of terminology, as Xij is a
weight in S rather than a path in G. The intuition behind this
terminology is that every valid route Xij in a path algebra
will contain the path it was generated along.

The aim of distance-vector routing protocols is to find an
assignment of routes such that each node’s route is the best
possible extension of the routes offered to it by each of its
neighbours. Concretely, in our algebraic model, we are looking
for a state X such that:

∀i, j : Xij =

{
0 if i = j⊕

kAik(Xkj) otherwise
(4)

We will now represent this series of equations as a single
matrix equation by defining some analogues to traditional
matrix addition and multiplication in the standard way [11].

If X, Y ∈Mn(S) we define their sum as

(X⊕Y)ij , Xij ⊕Yij .

If A is an adjacency matrix and X ∈ Mn(S) we define the
application of A to X as:

A(X)ij ,
⊕

0≤k<n

Aik(Xkj)

and the identity matrix I as:

Iij =

{
0 if i = j,

∞ otherwise.

Using this notation it is easy to verify that:

X = A(X)⊕ I

is equivalent to Equation 4.

E. An iterative solution to the routing problem

The operation of distance-vector and path-vector protocols
is closely modelled by the right-hand side of Equation 4. Each
node chooses the best route broadcast from routes to all of its
neighbours. We therefore define the matrix function σ as:

σ(X) , A(X)⊕ I

The result of σ(X) is the state resulting from every node
synchronously choosing the best extension of its neighbours’
routes in state X. A synchronous version of distance-vector
protocols can therefore be modelled as repeatedly applying σ
to the current state. We use σt(X) to represent σ applied t
times to X. That is, σ0(X) = X and σt+1(X) = σ(σt(X)).
The state σt(X) is therefore the state at time t.

See [7] for an asynchronous version of σ as well as a proof
that if the algebra is strictly increasing, then the synchronous
and asynchronous version of σ compute the same unique
routing solution.

We say σ converges from X if there exists a k such that:

σk(X) = σk+1(X) (5)

and we say σ converges if it converges from every X. If
Equation 5 holds, then σk(X) is a routing solution since:

σk(X) = σk+1(X) = σ(σk(X)) = A(σk(X))⊕ I.

Why does our model allow arbitrary starting states? The
network topology, as described by A, is fixed in the model
just described. However in real networks A changes over time
as new nodes/links are added, old nodes/links are removed,
and policies on links are changed. Obviously if such events
continue to occur, then talking about convergence is meaning-
less. The protocol will only converge if there is a sufficiently
long period with no changes to the network. Whenever there
is a change to the network, our theory will treat that as an
entirely new instance of the routing problem. However old
information from the previous configuration is still present in
the network and therefore we need to talk about convergence
from arbitrary states rather than the initial state, the identity
matrix I. These arbitrary states may contain routes that are
inconsistent with the new network topology.

IV. ROUTING ALGEBRA EXAMPLES

We now present some example routing algebras to demon-
strate the flexibility of the model and for use in Section V.

A. Shortest-path algebras

The most familiar examples can be constructed around
shortest-path algebras of the form

(N ∪ {∞}, min, F,∞, 0)

where F is a collection of additive functions. We will use
the notation fn to denote the function fn(x) = x + n. Both
min and + are extended in the natural way handle ∞, so for
example f∞(x) = x+∞ =∞. Here are few sets of functions
that result in useful routing algebras:

F1 , {fn | n ∈ N ∪ {∞}} (increasing)
F2 , {fn | n ∈ N ∪ {∞}, 0 < n} (strictly increasing)
F3 , {f1, f∞} (hop-count)

Suppose that P is some predicate over the weights in
N ∪ {∞}. Then gn will denote the function gn(x) =
if P (x) then fn(x) else ∞.

F4 , {g1, f∞} (hop-count with filtering)

Such conditional policies violate distributivity.
Any of these algebras could be transformed into a path-

algebra using the PA construction.

B. Shortest-widest path algebra

Conditional policies (such as F4 above) are not the only
way to violate distributivity. This is illustrated by the shortest-
widest paths algebra, SWP.

The weights of SWP are of the form (b, d) where b is
bandwidth and d is length. Thus, 0 , (∞, 0) is the best
possible route, while ∞ , (0,∞) is the worst possible
route (i.e. the weight of the non-existent paths). Weights are
compared lexicographically:

(a, b)⊕ (c, d) ,

(a, b) if a = max(a, c) 6= c

(c, d) if a 6= max(a, c) = c

(a,min(b, d)) else if a = c

That is, routes with higher bandwidth are preferred. If two
routes have equal bandwidth, then ties are broken by distance.

Policy functions on arcs, fc,w, are defined as

fc,w(b, d) = (min(c, b), w + d).

Here c can be interpreted as the capacity of an arc and w its
length. Note that the first component min(c, b) represents the
bandwidth of the bottleneck link.

To see that this algebra is not distributive, suppose 1 < k.
Note that f1,1((1, 1)⊕(2, k)) 6= f1,1(1, 1)⊕f1,1(2, k) since

f1,1((1, 1)⊕ (2, k)) = f1,1(2, k) = (1, k + 1)

f1,1(1, 1)⊕ f1,1(2, k) = (1, 2)⊕ (1, k + 1) = (1, 2).

C. Stratified shortest paths

We now describe a variant of the Stratified Shortest Path
(SSP) algebra (see [16]). We start with the increasing routing
algebra:

INC , (N ∪ {∞}, min, {f | ∀x : x ≤ f(x)}, 0, ∞),

The weights of INC are referred to as levels and policy
functions by definition cannot decrease the level.

In this paper we will only use policy functions that can be
represented as vectors over N ∪ {∞}. The application of the
function f = 〈s0, s1, . . . , sk〉 is defined as:

f(i) ,

si if i ≤ k
∞ if i > k

∞ if i =∞

For example:

〈0,∞, 17, 3〉(i) =

0 if i = 0

∞ if i = 1

17 if i = 2

3 if i = 3

∞ if i > 3

∞ if i =∞

This algebra can implement the customer/provider/peer
policies described in [17] & [18]. Imagine that the level 0
represents routes from customers, 1 represents routes from
peers, and 2 represents routes from providers. Then [5] shows
that the standard customer/provider/peer policy functions can
be represented as:

〈0, ∞, ∞〉 (towards customers)
〈1, ∞, ∞〉 (towards peers)
〈2, 2, 2〉 (towards providers)

We can then use PA to add paths to INC:

SPP , PA(INC).

We will use SPP to construct an example of quadratic con-
vergence time in Section V-C.

V. A FAMILY OF NON-LINEAR CONFIGURATIONS

We will now explore a strictly increasing path algebra
and a family of network configurations Qn that take Θ(n2)
iterations to converge. This demonstrates that the worst-case
is Ω(n2). In this section we only consider routing towards a
fixed destination, node 0, and therefore ignore all other parts
of the global routing state. Also, for notational brevity, we
represent paths as sequences of nodes, rather the sequences of
edges used elsewhere in the paper.

A. Review: the classic count-to-convergence problem

The count-to-convergence/infinity problem is a well-known
problem that afflicts distance-vector routing protocols [19]. It
arises when the weight on a link increases or the link fails.
Consider the example in Figure 1 where nodes 1 and 2 seek to
find a shortest path route to node 0. Functions fn are defined
as fn(x) = n + x. In the top part of the figure the network
first converges, then after link (1, 0) goes down nodes 1 and 2
still have what is now a “junk route” to 0 and they continually
swap this route between them. If the domain is finite (RIP [19]
defines ∞ as 16), then this example will converge.

0 1 2
f1 f1

Nodes
Time 0 1 2

0 0 ∞ ∞
1 - 1 ∞
2 - - 2

⇓ – link (1, 0) goes down

0 1 2
f∞ f1

Nodes
Time 0 1 2

0 0 1 2
1 - 3 2
2 - 3 4
3 - 5 4
4 - 5 6
...

...
...

...

Fig. 1. Count-to-convergence with the shortest-paths algebra from an arbitrary
state. Green cells indicate that the route has improved. Red cells indicate that
the route has got worse. Bold indicates that the node has converged.

B. Count-to-convergence induced by non-distributivity

The underlying cause of the count-to-convergence is that
nodes are exchanging “junk routes” that are not consis-
tent with the current network configuration. Using the non-
distributive shortest-widest paths algebra (SWP) described in
Section IV-B, we now show that junk routes can also arise
simply from violations of distributivity (Equation 1).

Figure 2 illustrates how the violation of distributivity de-
scribed in Section IV-B can generate junk routes and hence
count-to-convergence, even in the absence of changes to the
network topology. We assume that k is some large even
number. Nodes 1 and 2 form what we call a latch. At time 1
node 1 opens the latch by adopting the route generated along
the path [1, 0]. At the same time node 2 loads the route
generated along path [2, 0]. Then at time 2 node 2 closes
the latch by adopting the higher bandwidth route along path

Shortest-widest paths

0

1

2 3 4

f2,k

f1,1

f2,1

f1,1f1,1 f1,1

Time 0 1 2 3 4

0 (∞,0) (0,∞) (0,∞) (0,∞) (0,∞)
1 - (2,k) (1, 1) (0,∞) (0,∞)
2 - - (2,k+1) (1, 2) (0,∞)
3 - - - (1, k+2) (1, 3)
4 - - - (1, 4) (1, k+3)
5 - - - (1, k+2) (1, 5)
6 - - - (1, 6) (1, k+3)
...

...
...

...
...

...
k - - - (1, k) (1, k+3)
k+1 - - - (1,k+2) (1, k+1)
k+2 - - - (1, k+2) (1,k+3)

Fig. 2. Count-to-convergence with the shortest-widest-paths algebra from the
initial state, using a distributivity violation. Red cells indicate that the route
has got worse. Bold indicates that the node has converged.

[2, 1, 0]. But at the same time node 3 adopts the junk route
through [3, 2, 0] that it prefers due to the previously described
distributivity violation. After time 2 the junk route (and its
extensions) are exchanged back-and-forth between nodes 3 and
4. Finally, convergence is reached at time k + 2.

Path-vector protocols are designed to solve the count-to-
convergence problem by prohibiting nodes from adopting
routes with a path containing themselves. For example at time
4 the algebra PA(SWP) would prevent node 3 from extending
node 4’s junk route as the resulting path [3, 4, 3, 2, 1, 0] would
have a loop in it. Therefore whereas SWP requires k+ 2 iter-
ations to converge in this example, PA(SWP) would require
only 4 iterations.

C. An example of O(n2) convergence

We now describe a family of network configurations Qn
for n ≥ 3 designed specifically to repeatedly generate and
circulate junk routes as long as possible. Qn has n nodes,
labelled 0 through n− 1. The network Qn has m latches and
m − 1 loops, where m = bn−12 c. The ith latch contains the
nodes {2i− 1, 2i} and the ith loop contains the nodes {2i+
1, · · · , n−1}. Figure 3 illustrates the ith gadget comprised of
latch i and loop i.

Why does Qn require Θ(n2) iterations to converge? The
distributivity violation of latch i generates junk routes which
propagate around loop i for O(n) iterations. When these junk
routes are finally flushed from loop i, they trigger latch i+ 1.
As there are O(n) gadgets we then obtain the required bounds.

We will now describe the operation of gadget i in detail.
Let time t be the activation time of gadget i. At this time all
nodes in latches 1 through i − 1 have converged and latch
i has just been opened and loaded. That is node 2i − 1 has
opened latch i by accepting the route generated along the path

0

2i−1

2i

2i+1

2i+2

2i+3

n− 1

Latch i Loop i

Fig. 3. The ith gadget in Qn. Junk routes are generated by the latch and
then continue to circulate for n− 2i− 1 iterations in the loop.

[2i − 1, 0] and node 2i has loaded the latch by accepting the
route generated along the path [2i, 0]. Epoch i then continues:

• At time t + 1 node 2i closes the latch by adopting the
path [2i, 2i−1, 0]. At the same time all the nodes in loop
i extend node 2i’s route with the path [2i, 0].

• At time t + 2 latch i is closed. Node 2i is offering the
route generated along the path [2i, 2i − 1, 0] but due to
a distributivity violation, all the nodes in loop i prefer
the extensions of the junk route of the path [2i, 0] that
was advertised at time t + 1. Each node in loop i will
accept the extension of the junk route through its counter-
clockwise neighbour. For example, node 2i+ 1 takes the
path [2i+1, 2i+2, 2i, 0], while node n−1 takes the path
[n− 1, 2i+ 1, 2k, 0].

• This process continues with each node in loop i repeat-
edly accepting the junk routes offered by its counter-
clockwise neighbour.

• At time t+n− 2i− 1, it is no longer possible for this to
continue as the path of the junk routes will contain every
node in loop i. For example, node 2i+ 1 takes the path
[2i + 1, 2i + 2, 2i + 3, · · · , n − 1, 2k, 0], while node
n−1 takes the path [n−1, 2i+1, 2i+2, · · ·n−2, 2k, 0].

• Therefore at time t + n − 2i, these junk routes will be
discarded and i+ 1th gadget will be initialised.

Let T (n) be the convergence time of Qn. Consider the
general case for Qn+2, and the time taken for the 1st gadget
to finish executing. It takes 1 iteration for the junk route to
escape the 1st latch, and n− 1 iterations for the junk route to
then be flushed from the 1st loop, giving a total of n iterations.
Nodes 1 & 2 will then have converged. If we take these nodes
out of the graph, and relabel then we are left with exactly Qn.
Hence we can formulate a recurrence relation for T (n) as

T (3) = 2, T (4) = 3, T (n+ 2) = n+ T (n).

This is clearly quadratic by inspection. Due to parity issues,

solving it is messy, but it can be simplified to:

T (n) =
1

4
n2 − 1

2
n+ c

where c = 1 if n is even and c = 5
4 when n is odd.

i j Policy Implements

1 0 〈0〉 latch 1 open

2 0 〈1〉 latch 1 load
2 1 〈0〉 latch 1 close

3 0 〈2〉 latch 2 open
3 2 〈∞, 1〉 violation 1
3 4 〈∞, 1〉 loop 1

4 0 〈3〉 latch 2 load
4 2 〈∞, 1〉 violation 1
4 3 〈∞,∞, 2〉 latch 2 close
4 5 〈∞, 1〉 loop 1

5 0 〈4〉 latch 3 open
5 2 〈∞, 1〉 violation 1
5 4 〈∞,∞,∞, 3〉 violation 2
5 6 〈∞, 1,∞, 3〉 loops 1, 2

6 0 〈5〉 latch 3 load
6 2 〈∞, 1〉 violation 1
6 4 〈∞,∞,∞, 3〉 violation 2
6 5 〈∞,∞,∞,∞, 4〉 latch 3 close
6 7 〈∞, 1,∞, 3〉 loops 1, 2

7 0 〈6〉 latch 4 open
7 2 〈∞, 1〉 violation 1
7 4 〈∞,∞,∞, 3〉 violation 2
7 6 〈∞,∞,∞,∞,∞, 5〉 violation 3
7 8 〈∞, 1,∞, 3,∞, 5〉 loops 1,2,3

8 0 〈7〉 latch 4 load
8 2 〈∞, 1〉 violation 1
8 3 〈∞, 1〉 loop 1
8 4 〈∞,∞,∞, 3〉 violation 2
8 5 〈∞,∞,∞, 3〉 loop 2
8 6 〈∞,∞,∞,∞,∞, 5〉 violation 3
8 7 〈∞,∞,∞,∞,∞, 5, 6〉 loop 3 and latch 4 close

Fig. 4. Constructing the adjacency matrix of Q9. This lists the entries of
Bij . If Bij is not listed, then Aij = f∞′ . Otherwise, if f = Bij then
Aij = gf,i,j as defined in Section IV-C. The annotation “violation i” means
that the policy implements one of the distributivity violations in gadget i and
“loop i” means that the policy implements the loop in gadget i.

To implement this scheme, we will use the strictly increas-
ing path algebra SSP defined in Section IV-C.

We now describe the construction of an adjacency matrix
that implements the execution described above. From Figure 4
we can construct the adjacency matrix Aij of Q9. Other
instances of Qn are constructed in a similar way.

The figure lists the entries of a matrix Bij . If Figure 4 does
not contain an entry for Bij , then Aij = f∞′ . Otherwise, if
f = Bij then Aij = gf,i,j as defined in Section IV-C. Note

that for all edges (i, 0) the policy Bi0 = 〈i− 1〉 ensures that
the latch of the next gadget cannot activate before the previous
gadget has finished executing.

Figure 5 presents an execution trace of the 17 iterations
required for the convergence of Q9.

VI. TIGHT UPPER BOUNDS

In the previous section we explored an example of a strictly
increasing path algebra which converged in Θ(n2) iterations.
Do there exist even more pathological algebras?

We will now answer in the negative by proving that every
strictly increasing path algebra converges in at most n2 itera-
tions. The proof technique is as follows. Consider the nodes
that have already converged. For any node with the best route
into this set, we show that this node will itself converge after
a further O(n) iterations.

In most proofs of convergence for distributive algebras [20]
this next node only takes a single additional iteration to
converge. However in an increasing, non-distributive algebra
this may take significantly longer due to junk routes generated
by distributivity violations (as described in Figure 2). The
key insight is that junk routes capable of interfering with
the convergence of this next node can persist for at most n
iterations before necessarily containing a loop and hence being
flushed.

A. Some core definitions and lemmas

We now rigorously define some of the terms used informally
in previous sections. Every claim in this section has been
formalised in the theorem-proving language Agda [9], but we
have not included some of the simpler proofs here due to space
constraints. Interested readers may consult the Agda code [10].

Let (S, ⊕, F, 0, ∞, path) be a strictly increasing path
algebra and consider a network of n nodes represented by an
adjacency matrix A. Let X be the initial state and without
loss of generality let j be the destination node.

Lemma 1. ∀i : σ(X)ii = Iii. Omitted.

First we need a notion of an individual node converging.
Our initial attempt is as follows:

Definition 3. A node i is fixed at time t iff

∀s : t ≤ s⇒ σs(X)ij = σt(X)ij

with Ft being the set of fixed nodes at time t.

Lemma 2. s ≤ t⇒ Fs ⊆ Ft. Omitted.

Lemma 3. j ∈ F1. Omitted.

Lemma 4. If path(σt(X)ij) = (i, k) :: p and i ∈ Ft then
σt(X)ij = Aik((σt(X)kj) and p = path(σt(X)kj).

Proof. As i ∈ Ft we have that σt(X)ij = σt+1(X)ij and so
path(σt+1(X)ij) = (i, k) :: p. The path algebra assumption
P3) therefore implies that σt+1(X)ij = Aik(σt(X)kj) and
that p = path(σt(X)kj). Again as i ∈ Ft we have that
σt(X)ij = Aik(σt(X)kj).

Time Node Level Path Event
1 1 0 1, 0 open latch 1
1 2 1 2, 0 load latch 1
1 3 2 3, 0
1 4 3 4, 0
1 5 4 5, 0
1 6 5 6, 0
1 7 6 7, 0
1 8 7 8, 0
2 2 0 2, 1, 0 close latch 1
2 3 1 3, 2, 0 violation 1
2 4 1 4, 2, 0 violation 1
2 5 1 5, 2, 0 violation 1
2 6 1 6, 2, 0 violation 1
2 7 1 7, 2, 0 violation 1
2 8 1 8, 2, 0 violation 1
3 3 1 3, 4, 2, 0
3 4 1 4, 5, 2, 0
3 5 1 5, 6, 2, 0 junk circulates
3 6 1 6, 7, 2, 0 in loop 1
3 7 1 7, 8, 2, 0
3 8 1 8, 3, 2, 0
4 3 1 3, 4, 5, 2, 0
4 4 1 4, 5, 6, 2, 0
4 5 1 5, 6, 7, 2, 0 junk circulates
4 6 1 6, 7, 8, 2, 0 in loop 1
4 7 1 7, 8, 3, 2, 0
4 8 1 8, 3, 4, 2, 0
5 3 1 3, 4, 5, 6, 2, 0
5 4 1 4, 5, 6, 7, 2, 0
5 5 1 5, 6, 7, 8, 2, 0 junk circulates
5 6 1 6, 7, 8, 3, 2, 0 in loop 1
5 7 1 7, 8, 3, 4, 2, 0
5 8 1 8, 3, 4, 5, 2, 0
6 3 1 3, 4, 5, 6, 7, 2, 0
6 4 1 4, 5, 6, 7, 8, 2, 0
6 5 1 5, 6, 7, 8, 3, 2, 0 junk circulates
6 6 1 6, 7, 8, 3, 4, 2, 0 in loop 1
6 7 1 7, 8, 3, 4, 5, 2, 0
6 8 1 8, 3, 4, 5, 6, 2, 0

Time Node Level Path Event
7 3 1 3, 4, 5, 6, 7, 8, 2, 0
7 4 1 4, 5, 6, 7, 8, 3, 2, 0
7 5 1 5, 6, 7, 8, 3, 4, 2, 0 junk circulates
7 6 1 6, 7, 8, 3, 4, 5, 2, 0 in loop 1
7 7 1 7, 8, 3, 4, 5, 6, 2, 0
7 8 1 8, 3, 4, 5, 6, 7, 2, 0
8 3 2 3,0 open latch 2
8 4 3 4, 0 load latch 2
8 5 4 5, 0
8 6 5 6, 0
8 7 6 7, 0
8 8 7 8, 0
9 4 2 4,3,0 close latch 2
9 5 3 5, 4, 0 violation 2
9 6 3 6, 4, 0 violation 2
9 7 3 7, 4, 0 violation 2
9 8 3 8, 4, 0 violation 2
10 5 3 5, 6, 4, 0
10 6 3 6, 7, 4, 0 junk circulates
10 7 3 7, 8, 4, 0 in loop 2
10 8 3 8, 5, 4, 0
11 5 3 5, 6, 7, 4, 0
11 6 3 6, 7, 8, 4, 0 junk circulates
11 7 3 7, 8, 5, 4, 0 in loop 2
11 8 3 8, 5, 6, 4, 0
12 5 3 5, 6, 7, 8, 4, 0
12 6 3 6, 7, 8, 5, 4, 0 junk circulates
12 7 3 7, 8, 5, 6, 4, 0 in loop 2
12 8 3 8, 5, 6, 7, 4, 0
13 5 4 5,0 open latch 3
13 6 5 6, 0 load latch 3
13 7 6 7, 0
13 8 7 8, 0
14 6 4 6,5,0 close latch 3
14 7 5 7, 6, 0 violation 3
14 8 5 8, 6, 0 violation 3
15 7 5 7, 8, 6, 0 junk circulates
15 8 5 8, 7, 6, 0 in loop 3
16 7 6 7,0 open latch 4
16 8 7 8, 0 load latch 4
17 8 6 8,7,0 close latch 4

Fig. 5. A trace for the iteration of Q9. Green cells indicate that the route has improved. Red cells indicate the route has gotten worse. The step in which a
node has converged is shown in bold, and after that the node’s state is no longer listed. In the initial state at time 0 (not listed) only node 0 has converged
and all other nodes have routes ∞′. The notation “violation” stands for distributivity violation.

Perhaps counter-intuitively, if i ∈ Ft and l ∈ path(σt(X)ij)
then it is not guaranteed that l ∈ Ft. This is a direct result
of starting the algorithm from an arbitrary state X rather than
from the initial state I.

0 1 2
f1,1 f1,1

Time Node 0 Node 1 Node 2

0 (∞, 0, []) (2, 1, [(1, 0)]) (1, 2, [(2, 1), (1, 0)])
1 (∞, 0, []) (1, 1, [(1, 0)]) (1, 2, [(2, 1), (1, 0)])
2 (∞, 0, []) (1, 1, [(1, 0)]) (1, 2, [(2, 1), (1, 0)])

Fig. 6. Example of an unfixed node on the path of a fixed node for the
shortest-widest-paths algebra. The weight of the (1, 0) arc has just changed
from f2,1 to f1,1.

For example consider Fig. 6 where the bandwidth of arc
(1, 0) has decreased from 2 to 1. Node 1 initially contains
an inconsistent route, but then adopts the new valid route at
time 1. Hence node 1 is not in F0. However the bandwidth of
the arc (2, 1) acts as a bottleneck, and therefore node 2 never
notices the change in the bandwidth of node 1’s route. Hence
node 2 is in F0 but node 1 is not.

Consequently the set Ft does not necessarily form a tree
rooted at j and therefore to make the proof to go through (in
particular Lemma 10) we need a stronger notion of a node
having converged.

Definition 4. A node i has converged at time t iff:

∀k ∈ path(σt(X)ij) : k ∈ Ft

with Ct being the set of converged nodes at time t.

Lemma 5. s ≤ t⇒ Cs ⊆ Ct. Omitted.

Lemma 6. j ∈ C1. Omitted.

Lemma 7. If i ∈ Ct and l ∈ path(σtXij) then l ∈ Ct. That
is, the set Ct forms a tree routed at j.

Proof. We prove this by induction over the path of i’s route
at time t.

Cases 1 & 2: path(σt(X)ij) = ⊥ or path(σt(X)ij) = []
Then there cannot exist a node l ∈ path(σtXij) and so the
statement is vacuously true.

Case 3: path(σt(X)ij) = (i, k) :: p
If l ∈ path(σt(X)ij) then either l = i or l ∈ p. In the

former case we know i ∈ Ct and so l ∈ Ct. In the latter case
we use Lemma 4 to get that path(σt(X)kj) = p. Therefore
as i ∈ Ct we have that all nodes in p are in Ft and therefore
we have k ∈ Ct. Hence, as l ∈ path(σt(X)kj), we can apply
the induction hypothesis to prove l ∈ Ct.

In Section V we talked informally about junk routes. These
are routes that exist in the graph but conflict with the current
routing choices made by the nodes along the route’s path.
Consider latch 1 in the trace of Q9 in Figure 5. At time 2,

node 3’s route is junk because node 3 thinks that its message
will travel along the path (3, 2, 0). However this conflicts with
the routing choice of node 2 and in reality next-hop forwarding
will ensure that the message travels along the path (3, 2, 1, 0).

In practice it’s easier to define when a route is not junk.
Intuitively a route is real at time t if all the routing decisions
of nodes along its path are consistent with one another.

Definition 5. A node i is real at time t if

∀(k, l) ∈ path(σt(X)ij) : σt(X)kj = Akl(σ
t(X)lj)

with Rt being the set of real nodes at time t.

Lemma 8. j ∈ R1. Omitted.

Lemma 9. i ∈ Rt and l ∈ path(σt(X)ij) implies l ∈ Rt.
Omitted.

Lemma 10. Ct ⊆ Rt.

Proof. Assume i ∈ Ct, then prove i ∈ Rt by induction over
the path of σt(X)ij (using Lemma 4).

If we started in the initial state I then we could prove a
stronger version of this lemma: Ft ⊆ Rt. However this is
not true when starting in arbitrary states. Figure 6 provides
a counterexample as at time 2, node 2 is fixed but it is not
real.

Unlike F and C, the family of sets R does not necessarily
grow monotonically over time as distributivity violations can
repeatedly generate fresh junk routes.

To assist with notation we define a time-indexed family of
orderings over arcs as follows:

(i, k) �t (l,m) , Aik(σt(X)kj) ≤ Alm(σt(X)mj)

Later on in Lemma 15 we will need to prove that some node
l permanently adopts the route through one of its neighbour
m. Intuitively if (i, k) �t (l,m) then the route Aik(σtXkj)
and some of its extensions may be capable of threatening l’s
adoption of the route through m at some point in the future.

B. The inductive step of the proof

The thrust of the proof is to keep track of P (t), the set
of nodes that we can prove have converged at time t. This is
a (possibly strict) subset of Ct the nodes that have actually
converged at time t. We will then show that while there exist
nodes not in P (t), then we can prove that at least one of those
nodes will have converged by time t+n. This node can then be
added to P (t+n), the set of nodes proven to have converged
at time t+n. The whole process can then be repeated and this
forms the crux of the inductive argument for convergence.

Consider a time τ ≥ 1 and assume j ∈ P (τ). Denote P (τ)’s
complement as P (τ). Let E(τ) be the set of all arcs going
from P (τ) to P (τ) (i.e. the in-cutset of P (τ)) and emin(τ) =
(imin(τ), kmin(τ)) be a minimal arc in E(τ) with respect to
�τ (see Figure 7). We will now prove that imin(τ) ∈ Cτ+n
and therefore imin(τ) can added as a member of P (τ + n).

j

kmin

imin

P (τ)

P (τ)
emin

Fig. 7. Construction of the arc emin(τ) = (imin, kmin). P (τ) is the set of
nodes we can prove have converged at time τ . Dashed arcs are members of
E(τ), the cutset of P (τ). The arc emin is a minimal member of E(τ) with
respect to �τ .

In order to improve readability, we will now drop emin(τ),
imin(τ) and kmin(τ)’s dependencies on τ and just write emin,
imin and kmin.

What can stop node imin from routing through kmin? In the
distributive world nothing. The node imin uses a route from
either P (τ) or P (τ). The route through kmin is by definition
the best route from P (τ), and any route from P (τ) must
go through P (τ). Hence distributivity ensures that the route
through P (τ) cannot be better than the route through kmin.

However non-distributive algebras can generate junk routes
before time τ , that can continue to persist in P (τ) after time
τ . These junk routes can prevent the adoption of emin. We
now prove that a real node in P (τ) can never threaten emin.

Lemma 11. For all t ≥ τ if k ∈ Rt and k ∈ P (τ) then for
all nodes i we have emin �t (i, k).

Proof. We proceed by induction over the path of σt(X)kj .

Case 1: path(σt(X)kj) = []

If the path is empty then we must have that k = j, and so we
have j /∈ P (τ). This contradicts the assumption at the start of
Section VI-B that j ∈ P (τ).

Case 2: path(σt(X)kj) = ⊥
Then we have the required inequality as follows:

Aiminkmin(σt(X)kminj) ≤ (by R5))
∞ = (by R6))
Aik(∞) = (by P1) and case assumption)
Aik(σt(X)kj)

Case 3: path(σt(X)kj) = (k, l) :: p

If l ∈ P (τ) then (k, l) is an element of the cutset E and so we
have that emin �t (k, l) as emin is a minimal member of E.
If l /∈ P (τ) then we have that emin �t (k, l) by applying the
inductive hypothesis as l ∈ Rt (from Lemma 9). Therefore
either way emin �t (k, l).

Using this we can then show that the required inequality
holds as follows:

Aiminkmin
(σt(X)kminj) ≤ (by emin �t (k, l))

Akl(σ
t(X)lj) = (by k ∈ Rt)

σt(X)kj ≤ (by F increasing)
Aik(σt(X)kj)

Therefore the nodes that are capable of blocking imin from
routing through emin, are those that are not real and that have
an extension that threatens emin.

Definition 6. A node k’s route is dangerous at time t ≥ τ if:

k /∈ Rt ∧ ∃i : (i, k) ≺t emin

where Dτt is the set of dangerous nodes at time t ≥ τ .

It is important to note that routes are labelled as dangerous
relative to the current minimal arc. We will now prove that
after time τ all dangerous routes must be an extension of some
other dangerous route. Hence new dangerous routes cannot be
generated after time τ .

Lemma 12. For all t ≥ τ and k ∈ Dτt+1 then there exists l
such that σt+1(X)kj = Akl(σ

t(X)lj) and l ∈ Dτt .

Proof. From the definition of Dτt+1 we know that k /∈ Rt+1.
As the routes ∞ and 0 are trivially real, k’s route cannot be
either∞ or 0. Therefore σt+1(X)kj = Akl(σ

t(X)lj) for some
l. We now need to show that l ∈ Dτt by proving (k, l) ≺t emin

and l /∈ Rt.
As k ∈ Dτt+1 we know there exists a node i such that

(i, k) ≺t+1 emin. We therefore have the following chain of
reasoning to prove that (k, l) ≺t emin:

Akl(σ
t(X)lj) = (by prev. reasoning)

σt+1(X)kj ≤ (by F increasing)
Aik(σt+1(X)kj) < (by (i, k) ≺t+1 emin)
Aiminkmin(σt+1(X)kminj) = (by kmin ∈ Ct)
Aiminkmin(σt(X)kminj)

It remains to show that l /∈ Rt. Clearly k /∈ P (τ) as that would
contradict k /∈ Rt+1 by Lemma 10. If l ∈ P (τ) then (k, l)
is an element of the cutset E and so we have that emin �t+1

(k, l) as emin is a minimal member of E. If l /∈ P (τ) then we
have that emin �t+1 (k, l) by applying Lemma 11. Therefore
either way emin �t+1 (k, l).

Assume l ∈ Rt. Then we have a contradiction as we have
assumed that (i, k) ≺t+1 emin but we can show emin �t+1

(i, k) as follows:

Aiminkmin(σt+1(X)kminj) = (by kmin ∈ Ct)
Aiminkmin(σt(X)kminj) ≤ (by emin �t+1 (k, l))
Akl(σ

t(X)lj) = (by prev. reasoning)
σt+1(X)kj ≤ (by F increasing)
Aik(σt+1(X)kj)

Hence l /∈ Rt and so l ∈ Dτt .

We now prove that all dangerous routes must have been
flushed by time t+ n.

Lemma 13. Dττ+n = {}

Proof. By Lemma 12 we have that the length of the paths
of the dangerous routes must increase by 1 each iteration. As
routes formed along looping paths are removed, then after n
iterations all such dangerous routes must have been eliminated
from the routing state. Hence there can no longer be any
dangerous junk routes at time τ + n.

We now prove that at any time after τ+n the route through
kmin is guaranteed to be the best route available to imin.

Lemma 14. For every node k and time s ≥ τ + n then:

(imin, kmin) �s (imin, k)

Proof. Consider an arbitrary k. If k ∈ P (τ) then we have the
required inequality by the fact that emin is a minimal arc into
P (τ). If k /∈ Rs then we must have the required inequality
otherwise there would exist a dangerous route which would
contradict Lemma 13.

Finally if k /∈ P (τ) and k ∈ Rs then we have the required
inequality by Lemma 11.

Hence we can now show that at any time s ≥ τ + n then
imin routes through kmin.

Lemma 15. For every time s ≥ τ + n then :

σs(X)iminj = Aiminkmin(σs−1(X)kminj)

Proof. As imin /∈ P (τ) and j ∈ P (τ) then clearly imin 6= j.
Hence we have as follows:

σs(X)iminj = (by definition of σ)⊕
kAimink(σs−1(X)kj)⊕ Iiminj = (by definition of I)⊕
kAimink(σs−1(X)kj)⊕∞ = (by R5))⊕
kAimink(σs−1(X)kj) = (by Lemma 14)

Aiminkmin
(σs−1(X)kminj)

Lemma 16. imin ∈ Cτ+n
Proof. We first prove that imin ∈ Fτ+n. Consider an arbitrary
s ≥ τ + n. then:

στ+n(X)iminj = (by Lemma 15)
Aiminkmin

(στ+n−1(X)kminj) = (by kmin ∈ Cτ)
Aiminkmin

(σs−1(X)kminj) = (by Lemma 15)
σs(X)iminj

For any s ≥ τ + n we know that imin routes through kmin
which is in C. As C ⊆ Cτ ⊆ Cτ+n ⊆ Fτ+n, we therefore
know that all nodes in the path of k are in Fτ+n. Hence all
nodes in the path of i are in Fτ+n, and so i ∈ Cτ+n.

Theorem 1. For any strictly increasing path algebra
(S, ⊕, F, 0, ∞) and network of n nodes then σ converges
in at most n2 iterations from every starting state X.

Proof. Let P (t) be the set of nodes we can prove have
converged at time t. Clearly P (0) = ∅. At time 1 we know
by Lemma 6 that j has converged and so let P (1) = {j}.

By fixing the current time as τ , we can repeatedly generate
a new node imin(τ) not yet in P (τ) via the process described
in Section VI-B. Lemma 16 proves that imin(τ) will have
converged at time τ + n, thus P (τ + n) = P (τ)∪ {imin(τ)}.

By repeating the process above n−1 times we get that after
time then P (n(n− 1) + 1) will contain every node and so the
network is guaranteed to have converged.

VII. OPEN QUESTIONS

Not all strictly increasing path algebras converge in Θ(n2).
For example the shortest-widest paths algebra is not distribu-
tive, yet it appears to always to converge in 2n−2 iterations. It
seems likely there are sub-families of strictly increasing path
algebras that have distinct worst-case convergence bounds. In
some cases it might be feasible to further constrain the policies
in order to ensure faster convergence.

ACKNOWLEDGMENT

Matthew Daggitt is supported by an EPSRC Doctoral Train-
ing grant. The authors thank the anonymous reviewers and our
shepherd, Lachlan Andrew, for their helpful feedback.

REFERENCES

[1] Y. Rekhter, T. Li, and S. Hares, “A border gateway protocol 4 (BGP-4),”
RFC 4271, 2006.

[2] T. G. Griffin and G. Huston, “BGP wedgies,” RFC 4264, 2005.
[3] D. McPherson, V. Gill, D. Walton, and A. Retana, “Border gateway

protocol (BGP) persistent route oscillation condition,” RFC 3345, 2002.
[4] K. Varadhan, R. Govindan, and D. Estrin, “Persistent route oscillations

in inter-domain routing,” Comp. Networks, vol. 32, no. 1, pp. 1–16,
2000.

[5] J. L. Sobrinho, “An algebraic theory of dynamic network routing,”
Transactions on Networking (TON), vol. 13, no. 5, pp. 1160–1173, 2005.

[6] M. Gondran and M. Minoux, Graphs, dioids and semirings: new models
and algorithms, vol. 41. Springer Science & Business Media, 2008.

[7] M. L. Daggitt, A. J. T. Gurney, and T. G. Griffin, “Asynchronous
convergence of policy-rich distributed bellman-ford routing protocols,”
in SIGCOMM proceedings, ACM, 2018.

[8] T. G. Griffin, F. B. Shepherd, and G. Wilfong, “The stable paths prob-
lem and interdomain routing,” IEEE/ACM Transactions on Networking
(ToN), vol. 10, no. 2, pp. 232–243, 2002.

[9] A. Bove, P. Dybjer, and U. Norell, “A brief overview of agda – a
functional language with dependent types,” in Theorem Proving in
Higher Order Logics, pp. 73–78, Springer Berlin Heidelberg, 2009.

[10] M. L. Daggitt, R. Zmigrod, and T. G. Griffin, “Agda
routing library,” 2018. https://github.com/MatthewDaggitt/agda-
routing/tree/sigcomm2018.

[11] J. S. Baras and G. Theodorakopoulos, Path problems in networks.
Morgan & Claypool Publishers, 2010.

[12] H. Karloff, “On the convergence time of a path-vector protocol,” in
ACM-SIAM symposium on Discrete algorithms, pp. 605–614, 2004.

[13] A. Üresin and M. Dubois, “Parallel asynchronous algorithms for discrete
data,” Journal of the ACM (JACM), vol. 37, no. 3, pp. 588–606, 1990.

[14] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed internet
routing convergence,” pp. 175–187, 2000.

[15] D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data networks, vol. 2.
Prentice-Hall International New Jersey, 1992.

[16] T. G. Griffin, “Exploring the stratified shortest-paths problem,” Network-
ing Science, vol. 1, no. 1, pp. 2–14, 2011.

[17] G. Huston, “Interconnection, peering and settlements: Parts I & II,”
Internet Protocol Journal (Cisco), vol. 2, June 1999.

[18] L. Gao and J. Rexford, “Stable internet routing without global coordi-
nation,” IEEE/ACM Transactions on Networking (TON), vol. 9, no. 6,
pp. 681–692, 2001.

[19] C. Hendrick, “Routing information protocol (RIP).” RFC 1058, 1988.
[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms, Third Edition. The MIT Press, 3rd ed., 2009.

