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Abstract—There are several situations in which it would be
advantageous to allow route preferences to be dependent on
which neighbor is to receive the route. This idea could be realised
in many possible ways and could interact differently with other
elements of route choice, such as filtering: not all of these will
have the property that a unique routing solution can always be
found. We develop an algebraic model of route selection to aid in
the analysis of neighbor-specific preferences in multipath routing.
Using this model, we are able to identify a set of such routing
schemes in which convergence is guaranteed.

I. BACKGROUND

A BGP speaker with a route to a given destination can
announce that route to its neighbors. Depending on the con-
figuration, a particular route could be permitted to be sent, or
could be filtered out. Each neighbor can be associated with
a different filter, but there is no possibility for an alternative
route to be sent instead: either the installed route is sent, or
no route at all.

Neighbor-specific BGP (hereafter NS-BGP) is an alteration
to the standard BGP model, allowing outbound route selection
to yield a different outcome for each neighbor [23]. This only
makes sense if a router can have multiple installed routes to the
same destination, and if there is some supported forwarding
mechanism by which the appropriate route can be selected for
incoming traffic.

In this paper, we explore some route selection models
related to those of NS-BGP, in order to establish which
of these schemes can be considered ‘safe’, in the sense of
protocol convergence to an expected optimal state. In so doing,
we are able to isolate ‘neighbor specificity’ as an aspect
of protocol design, which can be associated not just with
BGP but with other protocols as well. We illustrate NS-BGP
ideas with reference to some routing outcomes which are
either impossible to acheive without neighbor specificity, or
for which the consideration of neighbor specificity leads to a
clearer understanding of the routing policy. For correctness,
we demonstrate that convergence to a unique locally-optimal
routing solution can be guaranteed by the same algebraic
condition as in the familiar single-path case. We show that if
correctness has been established for the ‘global’ preferences
on which everybody agrees, then any extension of these
preferences is safe for neighbor-specific use.

The result applies to any situation in which multipath
preferences are present, and where they can be refined on a
per-adjacency basis. This includes the NS-BGP model as a

special case, where multipath is only used within an AS, and
external connections use some neighbor-specific single-path
preference scheme. A merit of NS-BGPis that an AS can adopt
neighbor-specificity without any of those neighbors needing to
know, since the new behaviour is confined to the AS interior.
Our result would also prove convergence for protocols that do
not have this restriction.

There is a long history of related approaches to interdomain
routing, particularly with respect to the possibility of offering
multiple paths. Many of the proposals take the form of
completely new routing architectures [8], [25], [26]. Others
represent additions to the standard BGP control plane, in
which new components allow additional capabilities for mul-
tipath [20], [24]. Meanwhile, contemporary BGP use allows
a limited form of multipath routing already, and in the future
ADD_PATHS may permit a more general capability [18], [21].

On the theoretical side, the possibility of finding multiple
paths in a graph has also been extensively studied [2], [9], [10].
Crucially, correctness conditions for this kind of pathfinding
are ‘inherited’ from correctness conditions for conventional
single-path search. The same mathematical framework is used
in either case. For problems with variable preference (as
opposed to variations on the shortest-path theme such as the
k-shortest paths problem), combinatorial games such as the
stable paths problem [14] allow the consideration of ‘optimal’
paths where the network participants have different ideas about
what ‘optimal’ really means.

However, the general idea of neighbor-specificity has not
been studied. This pattern has been noted as a possible BGP
extension [23], but has not been treated as a problem in itself.
The proof of unique convergence for NS-BGP is not only spe-
cific to BGP, but to a particular family of configurations (the
Gao-Rexford conditions [7]). In this paper, we will provide a
much more general proof. Neighbor-specific preferences are
not limited to BGP, but may arise in many other pathfinding
scenarios. Indeed, we argue that some current practices on
today’s Internet, properly regarded, are already examples of
neighbor-specificity in action. Identification of this pattern
should lead to a clearer understanding of what problem is
actually being solved, and therefore of which alternative
solutions or extensions might be possible.

We would like to emphasize that in this paper, we are not
attempting to make a case for the practical benefits of NS-
BGP or any other neighbor-specific routing protocol. Any such
design must be assessed in terms of routing stability, ease of
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Fig. 1. Neighbor-specificity by neighbor class

management, implementation performance, and other factors
that we do not consider here. We do demonstrate that the
correctness issue is ‘no worse’ for neighbor-specific prefer-
ences as compared to conventional single-path preferences.
We also aim to show some of the variety of neighbor-specific
preference models that might be adopted, and how these relate
to current practice.

II. EXAMPLES OF NEIGHBOR-SPECIFICITY

The current interdomain routing system, based on BGP,
allows a great deal of policy expressivity. Routing participants
are able to exercise considerable control over how their routes
are advertised, and how the recipients should treat them.
Nonetheless, there are some situations where the present model
is limited. Neighbor-specific BGP is one proposed extension
that would enable new policies, based on the capability of an
autonomous system to advertise different routes to different
neighbors, for the same prefix.

A. Class of neighbor

A simplified model of interdomain policy divides the neigh-
bors of an AS into customers, peers, and providers. When
a prefix is available through several neighbors, their classes
are important in determining which route is to be preferred;
customer routes typically being considered the best, followed
by peer routes, and finally provider routes. In addition, the
onward propagation of routes can be controlled through com-
munities. These include well-known communities in which
the further advertisement of a route is prohibited. Many
ASes also implement communities to limit route advertisement
to specific neighbors or classes of neighbor, such as “all
customers” or “European peers”.

Consider the network of Figure 1. AS 400 has (at least) two
routes to AS 1000: a direct route, and another via AS 300.
The direct route would typically be preferred, since it comes
from an immediate customer, and furthermore is shorter. If
this route is tagged with an appropriate community, then its
onward advertisement might be restricted only to the other
customers of AS 400. The adoption of this route prevents any
other route from being used for other neighbors. In particular,
they will not be able to reach AS 1000 through AS 400 and

then AS 300: they will be forced to use some other path, which
could have worse performance characteristics.

In a neighbor-specific implementation, AS 400 could adopt
and offer two different routes to AS 1000. For customers,
there is the direct route; for all others, there is the peering
link to AS 300. To support this possibility, AS 400 must
deploy multipath routing along with multipath forwarding. The
routing must allow the propagation of at least two classes
of route: those available to customers only, and those which
are universal. Best-path selection should be done separately
for these two classes. On external adjacencies, however, at
most one route should be exported. For customer adjacencies,
this could be either the best customer-only route, or the best
universal route; for all others, it will be the best universal
route. Filtering could also take place. Since a BGP route
advertisement is a promise to carry traffic, AS 400 must
forward incoming traffic to the appropriate egress point. The
selection of egress point can be made easily, but some form of
tunnelling will be necessary to carry out the transport correctly.

B. Internet exchanges

Many Internet exchange points (IXes) offer participants the
option to peer via a route server. Conceptually, such a server
carries out the routing function for all participants, based on
their declared policy [6], [11], [12], [17]. The administrative
burden of peering with many parties is then reduced somewhat,
as is the technical overhead of supporting many adjacencies,
or many VLANs. However, this technology is not only for
efficiency’s sake, but is also an implementation of neighbor-
specific routing.

When IX participants operate a multilateral peering agree-
ment, the route server implementation is simple. The server
only has to collate all incoming routes, carry out the BGP
best-path selection process, and then advertise the resulting
routes to all participants.

As policies become even slightly more complex, this simple
model breaks down. The route server, as the center of a star
topology, is only able to select a single best route for each
destination: alternative routes are suppressed. Suppose that
AS 100 has the best route to some destination, but does not
wish AS 200 to be able to use it. If the route server selects
AS 100’s route, and filters out the announcement to AS 200,
then the unfortunate AS 200 is left with no route to that
destination. Without the route server’s intervention, AS 200
might be able to learn an alternative route via another IX
participant.

One way to solve this problem is to set up a route server
with multiple RIBs, each corresponding to some IX partici-
pant, with appropriate import and export rules among them [6].
This amounts to simulating the original partial mesh within the
route server. Path selection and filtering are carried out on a
per-RIB basis. So if AS 100 wants its routes to be hidden from
AS 200, they will not reach the internal AS 200 table—but
some other routes might be present instead, even if they would
normally be knocked out by BGP best-path selection.



In fact, this situation is another example of neighbor-specific
preferences. Imagine the IX route server as a transit AS (after
all, it has an AS number and speaks BGP). The policy it
operates is, internally, to make no decisions about routes
when they come from different neighbors. Only on export are
distinctions made: for each external adjacency, a more specific
preference is imposed, in which certain routes are removed
from consideration, and a conventional BGP best-path process
applies to the remainder.

It should now be obvious that the IX is really no different
from any other AS in terms of its possible routing architecture.
The only point of divergence is that the flavor of BGP
being used is a neighbor-specific one, and that the policies
in question are being determined by participants rather than
by the IX itself. Through a better understanding of neighbor-
specific preferences, we can explore which of these designs
might be useful in future IX operations, or which could be
unsafe.

III. A MODEL OF NEIGHBOR-SPECIFIC PREFERENCES

We now develop a model of route preference that incor-
porates neighbor-specific choice. Appendix A contains defini-
tions of the standard algebraic objects and terminology used
in this section.

The idea behind neighbor-specificity is that within a net-
work, routes are selected according to some relatively lax cri-
teria, whereas on export, more stringent rules are applied—and
these vary according to the adjacency. A modest example along
these lines would be the existence of neighbor-specific filters,
as are used today: on a particular outgoing connection, some
route announcements are forbidden which would otherwise
be acceptable. More radically, one can imagine several ways
in which route preference might vary in a neighbor-specific
manner.

Consider an abstract model of a network as a graph, in
which the nodes are routers and the arcs are connections
between them. Routers select paths according to some order
on the set of all paths. Conventionally, this order is taken
to be total, so that for any two distinct paths, there is a
well-defined best one. In such an environment, equal-cost
multipath routing is the same as ordinary single-path routing;
if multiple paths are desired, then they will be of variable
quality. More liberal preference orders admit the possibility
that two routes might be equivalent in preference, so they could
be equally ‘best’. AS path length comparison is an example:
the length of the path matters, but usually not the contents.
A related notion is that routes might be incomparable, so
that a determination of the best path cannot be made. In
BGP, incomparability occurs in use of the MED attribute.
MED values from different neighbors cannot be compared: the
comparison is only meaningful with MEDs coming from the
same source. Our neighbor-specific model will make heavy
use of incomparability: we have a ‘global’ order in which
many routes will be incomparable, meaning that there is no
overall agreement as to their relative preference; alongside this,

several ‘extended’ orders have the freedom to choose different,
stricter, preferences for these routes.

In order to admit as many models as possible, we will
assume that the underlying route preference order is a preorder
(a reflexive and transitive relation). So we allow routes to be
equivalent or incomparable, as well as strictly ordered. The
various ways in which this order might be extended must all
follow the definition below.

Definition 1: Let � and �R be preorders on a set S. Say
that �R extends � if x � y =⇒ x �R y for all x and y in
S.

An extension is linear if it is a total order.
It can be seen that if one order extends another, then it must

agree with the original order in some respects, but is allowed
to make some further distinctions which were not originally
present. Two routes that were incomparable according to �
are allowed to be strictly ordered one way or the other in
the extended order. However, if two routes are equivalent in
� then they must still be considered equivalent by �R: the
extended order cannot break these ties. Finally, if two routes
x and y are strictly ordered (x ≺ y), then either x ≺R y or
x ∼R y in the extended order. This means that the extension
must also prefer x to y, or at least consider them equivalent:
it cannot prefer y to x.

For a given preorder �, let R(�) denote the set of all of
its extensions. It can be shown that

x � y ⇐⇒ ∀ �R∈ R(�) : x �R y,

so that � is equal to the relational intersection of all of its
extensions. This is a well-known theorem when � is a partial
order [5], and only slightly less well-known for preorders
[4]. If we are provided with some set of orders, then their
intersection is the order that represents the ‘common ground’
between them: the subset of preferences on which all of the
given orders agree. This further motivates the use of preorders:
the intersection of all neighbor-specific orders is unlikely to
be total.

Given any preorder � on a set S, one can define an operator
min� over subsets of S by

min�(A) = {x ∈ A | ∀y ∈ A : ¬(y ≺ x)} .

Thus min�(A) returns the set of �-minimal elements of A:
those which are not dominated by any other element of A. We
can use such an operator to model equal-cost multipath. Given
a set of routes, obtained from neighbors, a router applies the
min operation to find the subset of best routes. If there is a
total order, then the resulting set will contain only a single
path. Otherwise, there will be several elements: and they will
all be equivalent or incomparable to one another.

For neighbor-specificity, we can select paths internally by
using min� for some ‘standard’ preorder �. On external links,
however, the order is extended—if �R is the extension of �
to be used on a particular link, then the required operator
is min�R

. How can this be incorporated into the model? To
answer this question, note that the extended order applies to
the link between two routers. Each router will be choosing



routes according to the conventional best-path process (�);
the scope of the extended order is only relevant to the link.
The router that advertises a set of routes is certainly not being
constrained by any �R in its own selection procedure—after
all, a different extended order could be in use for a different
adjacency. The receiving router is constrained by �R, but
indirectly: the extended order does not apply to all received
routes, but only to those received along the link in question.
So we view the extended order as being attached to the link,
in the same manner as a filter.

This completes the basic picture of neighbor-specific pref-
erence. The preference model on routes is that the router-level
graph is associated with a global preorder together with a
family of extensions of that preorder. Each link in the graph is
associated with one of the extensions. Path selection operates
as follows. Suppose a is a node with in-neighbors b1 through
bk. Refer to the extended orders on each link (a, bi) as �i.
Then if B1 through Bk are the best paths chosen by nodes b1

through bk, let

A = min

(⋃
i

min
�i

{(a, bi)p | p ∈ Bi}

)
.

These are the best routes for a. In other words, the sets of best
routes available through each bi are reduced according to �i;
all of the resulting sets are the joined to give the candidate set
for best-path selection according to the global �.

Note that this algebraic model supports a scheme where
multipath routing only happens within an AS. If we enforce
that all external links use refinements that are total orders,
then we are describing a situation much like that envisaged
for ADD PATHS: within an AS, many routes can be prop-
agated (the order involved is not total), whereas on external
adjacencies we use traditional eBGP.

IV. SOME ORDER EXTENSIONS AND THEIR USES

Let us see a few examples of extensions of orders. These
demonstrate several ways in which neighbor-specific routing
could operate. Not all of these, however, will necessarily be
safe.

a) Example 1: Discrete order: Consider what happens if
� is the discrete order on S, so that x ∼ x for all x in S, but
elements are otherwise unrelated. This order has a great many
possible extensions: in particular, any linear order on S is a
extension. That includes linear orders which are the reverse of
one another.

In routing, this corresponds to a situation where no best-
path selection at all is carried out for internal sessions. Instead,
every possible path is carried along. Only at the borders, on
export, is a choice made.

b) Example 2: Lexicographic order: Let (S × T,�) be
the direct product of (S,≤S) and (T,≤T ), where both are
linear orders. Then

(s1, t1) � (s2, t2) ⇐⇒ (s1 ≤S s2) ∧ (t1 ≤T t2).

Two of the possible extensions are the lexicographic orders on
S × T :

(s1, t1) �1 (s2, t2) ⇐⇒ (s1 <S s2) ∨ (s1 = s2 ∧ t1 ≤T t2)

and

(s1, t1) �1 (s2, t2) ⇐⇒ (t1 <T t2) ∨ (t1 = t2 ∧ s1 ≤S s2).

Call these S~×T and T ~×S respectively [16].
This example can be extended to apply to a larger number

of components. If (Si,�i) are preorders, for i in I =
{1, 2, . . . , k}, then their direct product consists of all vectors

(s1, s2, . . . , sk) ∈ S1 × S2 × · · · × Sk

with
~s � ~t ⇐⇒ ∀i ∈ I : ~si �i ~ti.

We can build an extension of this order by the following
procedure. Let J be a subset of I , and let J ′ be I \J . Choose
some order for the elements of J . Construct two algebras:
• The lexicographic product of all Sj , for j in J , taken in

order.
• The direct product of all Sj′ for j′ in J ′ (in any order).

The direct product of these two algebras is an extension of the
original direct product.

In other words, if we start with a collection of route
attributes Si, an extension is to take a lexicographic order
on some of them, and retain the others. So the extension is
to make a choice about which attributes are more important
than which others. In the simple case, with just S and T , it
could be that some neighbors would prefer to see routes that
are better according to S, using T as a tiebreaker, whereas
others want routes that are better according to T , using S as a
tiebreaker. Within the network, using the direct product, both
of these possibilities can be supported at the border, since the
only routes that are removed internally are those which are
strictly dominated in both S and T components.

c) Example 3: Linear combinations: Consider the direct
product of (N,≤) with itself. For parameters α and β in R+,
we can define another order by

(w, x) ≤α,β (y, z) ⇐⇒ αw + βx ≤ αy + βz.

This is a refinement of the direct product, for if w ≤ y and
x ≤ z, then αw ≤ αy and βx ≤ βz, and the conclusion
follows.

This example extends to arbitrary linear combinations of
numeric attributes. If we have the n-fold product (R+,≤)n

together with a family of vectors ~α, with each component
positive, then we can define orders by

~v �~α ~w ⇐⇒ ~α · ~v ≤ ~α · ~w

where · is the scalar product of the two vectors. For any ~α,
this is a refinement of the product order.

These two examples correspond to a routing model based on
Pareto optimality. Within the network, a route is preferred if
and only if it is better according to all attributes: any resulting



set of best routes will form a Pareto frontier. On export links,
the linear combination allows various possibilities for trading
these attributes off against one another, thereby selecting one
or more points from the frontier.

Route choice based on a linear combination of attribute
values has been considered by many authors, and is included
in the routing protocol EIGRP [3]. In particular, this has been
suggested for interdomain routing, including in the context of
neighbor-specificity [22], [23]

d) Example 4: Direct sum: Let (S,�S) and (T,�T ) be
two preorders, and consider their disjoint union

(S ] T,�)

where

s1 � s2 ⇐⇒ s1 �S s2

t1 � t2 ⇐⇒ t1 �T t2

for all s1, s2 in S and t1, t2 in T . One extension is �1, where
s ≺1 t for all s and t, and its companion �2, where t ≺1 s
for all s and t.

This corresponds to a routing model with two classes of
route, ‘S routes’ and ‘T routes’. They are incomparable
internally, so that any set of best routes will include some S
routes and some T routes. The extensions amount to preferring
one class over the other. This could be used for multi-topology
routing, where external neighbors are offered best routes from
one topology or the other.

The example of Section II-A is related. In that network, the
different kinds of route were ‘customer-only’ and ‘universal’.
Within the AS, these are incomparable, but on external links
the two extensions are
• On customer links, do not distinguish between the classes.

The incomparability has become equivalence (for routes
which are otherwise the same).

• On other links, customer-only routes are less preferred
than universal routes: indeed, they are forbidden. This
is the same as having them being worse than the ‘null’
route.

Other classes can be encoded similarly; for example, we
could imagine an adjacency for which customer routes should
be considered as worse than peer routes. This would be
implemented by an appropriate extension, placing one class
above the other.

V. AN ALGEBRAIC MODEL OF NS-BGP

Before proving correctness properties, we need to have a
proper algebraic model of routes and route selection. Sec-
tion III established neighbor-specific preference; this section
broadens that to a model which incorporates properties about
the extension of routes, and its interaction with preference.

Our foundation is semigroup transforms [15], [16], which
are themselves based on algebras of monoid endomor-
phisms [10]. This provides an algebraic model of choice and
extension, where choice is implemented by a binary operator

and extension by a family of functions. More specifically, a
semigroup transform (S,⊕, F ) consists of a set S, a binary
operator ⊕ on S, and a set of functions F from S to itself. The
operator is required to be associative. For problems on graphs,
S can be a set of paths or path weights, x⊕y yields the ‘better’
path out of x and y, and f(x) represents the extension of path
x by a function f associated with some link.

In the multipath case, we can take the elements of S to
be sets of paths. Specifically, they will be sets A such that
A = min�(A): the paths selected by each node must be of
equivalent (or incomparable) costs. An ⊕ operator is given by

A⊕B = min�(A ∪B)

selecting the best paths out of the combination of A and B.
For the functions, we suppose that we already have some set
F of functions on paths; these can be extended to sets of paths
in the obvious way:

f(A) = min� {f(x) | x ∈ A} .

In summary, if we are given a triple (S,�, F ), then we can
define an algebra (M(S),⊕, F ′) for multipath routing, where
• M(S) is the set of all subsets A of S for which A =

min(A),
• A⊕B = min(A ∪B), and
• F ′ consists of functions f ′(A) = min(f(A)) for each f

in F .
Generalized algorithms can use this structure to find multiple
best paths, provided that the algebra has appropriate properties.
We will call the result of this construction a multipath algebra
(MPA).

The construction applies equally well when S is not a set of
paths, but a set of path weights (and the other data are adapted
appropriately). This allows us to draw conclusions which are
not limited to a specific graph by their dependence on its path
set, but which apply to all graphs whose weights are taken
from S. It should be clear that, if �w is the preorder on paths
defined by a weight function w with values in (S,�), so

p �w q ⇐⇒ w(p) � w(q),

then
min
�w

(P ) =
{

p ∈ P

∣∣∣∣ w(p) ∈ min
�

(w(P ))
}

where w(P ) = {w(p) | p ∈ P}. So it does no harm to consider
minimization with respect to path weights as opposed to the
paths themselves: the same results can be achieved.

Some useful properties of min include:
1) It is idempotent: min(min(A)) = min(A) for all subsets

A of S.
2) It is decomposable: min(A ∪ B) = min(min(A) ∪

min(B)) for all subsets A and B of S.
These two facts mean that there is considerable flexibility
about where and how min might be applied in an algorithm.
Because of idempotence, it is always safe to apply min several
times; equally, multiple applications can be replaced by a sin-
gle one in order to achieve the same outcome more efficiently.



Similar observations can be made about the decomposability
of min. It is always safe to apply min to a subset of the given
set: we never have to worry about losing something that will
be needed later. Conversely, we can get away with using just
one min at the top level, instead of repeatedly applying it to
subsets.

For neighbor-specificity, we can extend the MPA. Given
a (single-path) order transform (S,�, F ), the appropriate
algebra is simply

NS(S,�, F ) = (M(S),⊕, G)

where G consists of functions

g(f,�R)(A) = min�R
({f(x) | x ∈ A})

for all f in F , and all order extensions �R of �. Call this the
neighbor-specific multipath algebra (NSMPA) associated with
(S,�, F ). When NS(S) is used to label a graph, each arc will
now be associated with a function g(f,�R), rather than just f .
This means that a set of routes is transformed by applying f
to each one, and then minimizing with respect to the extended
order �R. Different arcs may use different f functions, or
have different orders, or both.

VI. CORRECTNESS PROOF

One possible desirable property for routing algebras is that
for any appropriately labelled graph, there is a path assignment
that is globally optimal [2]. This means that for every source
node and every destination node, the assigned path is the best
out of all possible such paths. For a semigroup transform
(S,⊕, F ), this means that the weight of each assigned path is
equal to the sum, using ⊕, of the weights of all paths between
the same source and destination.

The key algebraic property which leads to this kind of
optimal solution existing is the distributivity of each function
f over ⊕. This property holds when

f(x⊕ y) = f(x)⊕ f(y) (1)

for all x and y in S, and all f in F .
In the case of (M(S),⊕, F ′), this amounts to the verifica-

tion of whether

min�(f(A)) = min�(f(min�(A)))

for all A (with A = min�(A)) and all f . Whether this is
true or not will depend on the nature of the � order and its
interaction with the functions.

Theorem 1: Let (S,�) be a preorder and F a set of func-
tions over S. Then the semigroup transform (M(S),⊕, F ′)
has property 1 if, for all x and y in S, and all f in F ,

x � y =⇒ f(x) � f(y)

Proof: The desired property is equivalent to

↑(f(A)) = ↑(f(min�(A)))

where
↑(X) = {y ∈ S | ∃x ∈ X : x � y}

We can decompose A as the union of min�(A) and the other
elements. So we are checking whether

↑(f(min�(A))) ∪ ↑(f(A \min�(A))) = ↑(f(min�(A)).

This is true when, if f(a) ≺ x for some x in S and a in
A\min�(A), then there is some a′ in min≺(A) with f(a′) ≺
x. But if a is in A but is non-minimal, then by definition
there is at least one a′ in min�(A) with a′ ≺ a. From the
assumption on f , we then have

f(a′) � f(a) ≺ x

so a′ fulfils the desired property. Therefore, the algebra is
distributive.

That is, we have convergence to a global optimum for equal-
cost multipath whenever the underlying single-path algebra is
monotonic.

Another kind of optimum which might exist—and which
is closer to the operational model of BGP—is a ‘local’
one. This is a path assignment in which the chosen paths
are not necessarily the best; but they are, at least, the best
possible if a node’s choice of path must be consistent with
its neighbors [14]. That is, if p is a path in a locally optimal
assignment, then there can be no path (for the same source
and destination) which is simultaneously better than p, and an
extension of a neighbor’s path in the same assignment.

In the case of multiple path algebras, it has been shown that
convergence to such an optimum is guaranteed if (S,�) and
F satisfy

∀x ∈ S, f ∈ F : x ≺ f(x) ∨ x = f(x) = > (2)

where > denotes the maximal element of S, if any [15].
The main correctness result we will need is the follow-

ing theorem. We are interested in local rather than global
optimization, because we are investigating neighbor-specific
preferences after the example of NS-BGP, in which global
optimality is impossible.

Theorem 2: If x ≺ f(x) for all x in S and f in F , then
NS(S) supports convergence to a local optimum.

Proof: This can be shown using the methods of Sec-
tion 4.2 of [15].

For two path assignments A and B, let A ∆ B denote the
set of paths which is in one of A and B but not the other.
Let σ(A) denote the path assignment obtained from A by
simultaneous myopic best response: that is, each node finds
its set of possible paths—all the paths with are extensions of
the paths selected by neighbors according to A—and makes its
selection from these. Any fixed point of σ is a locally optimal
path assignment.

The original proof hinges on being able to find a pair of
paths (p, q) with q in A ∆ B, p in min�(σ(A) ∆ σ(B)),
and q ≺ p. If this is so, then we can show that σ is a
strict contraction over path assignments, according to a certain
metric d on the space of assignments:

d(σ(A), σ(B)) < d(A,B)



for all distinct path assignments A and B in M . The Banach
fixed point theorem then yields a unique fixed point for σ.

Such a pair (p, q) is shown in [15] to always exist for MPAs
where the underlying order transform (S,�, F ) is strictly
inflationary.

The original argument can be summarized as follows. Let
p be any path in min�(σ(A) ∆ σ(B)). Without loss of
generality, assume that it is in σ(A) but not σ(B). Let q be
its immediate prefix (p must be at least one arc long, or else
the two assignments would agree). Certainly q is in A, or
else p could not have been selected in σ(A). If it were in B,
then p could have been chosen in σ(B) as well, as it was a
candidate path—but it was not. The only reason for this to
happen is that in σ(B), some other path was chosen instead.
This other path would have to be strictly better than p in order
to exclude p from the set. But then p would not be minimal
in σ(A) ∆ σ(B), as we specificed, which is a contradiction.
Hence q cannot be in B. So q is in A ∆ B, and by the strict
inflationary property we have q ≺ p as required.

In the neighbor-specific algebra, there are some more twists
to consider. It is still true that q ≺ p if we have the strict
inflationary property. The problem is with the argument that
the only reasons for σ(B) not to include p are (1) the absence
of q from B, or (2) the presence of some other, better route
than p in σ(B). With neighbor-specific preferences, there is a
third possibility to be accounted for.

It could be that B includes q, but also includes some other
path q′, which is extended to p′ in σ(B), such that p and p′

are incomparable in �, but p′ ≺R p in the extended order. So
the presence of both q and q′ in B means that σ(B) has to
choose between p and p′ according to the extended order, and
p′ is chosen even though according to the original order they
are incomparable and hence could both be chosen.

We can recover the proof by noting that q′ cannot be in A:
if it were, then p′ would be in σ(A) rather than p. So q′ is in
A ∆ B, and we do have q′ ≺ p′ by the strictly inflationary
rule on �. In this case, we can use (p′, q′) as the required
witness pair rather than (p, q).

The condition in the theorem is the same requirement as
for conventional single-path algebra. In moving to a world
with not only multiple paths, but also neighbor-specific path
selection, additional correctness conditions are not necessarily
required. For algebras constructed with NS, proving correct-
ness need not involve any reasoning about neighbor-specificity
or the presence of multiple paths.

In the neighbor-specific setting, an ensemble of different
preorders is used. The correctness of the entire system can be
verified by checking a property of their relational intersection:
the ‘global’ preorder representing the preferences on which
every participant agrees. We suggest that this fact can be
interpreted in two ways:

1) If path selection is being done with several different
orders in a neighbor-specific way, then correctness can
be confirmed by examining their intersection. Thus,
the amount of mathematics we need to do is greatly
decreased: only one order need be examined.

2) If we start by having verified correctness of some pre-
order, then we know that any extension of that preorder
can be used locally without harming correctness. So
once the global preferences have been established, any
extension is safe to use, on any adjacency.

These complementary viewpoints suggest that specific de-
signs for neighbor-specific path selection might be developed
by (1) identifying which preorders might be useful locally,
(2) finding their intersection and proving correctness, then
(3) noting that any extension of that global preorder, including
extensions not already found in step 1, could be deployed
safely. Therefore, we would expect neighbor-specific prefer-
ence schemes to admit wide variation in local practice, beyond
what the original designers might anticipate.

VII. APPLICATION TO BGP

We have developed an algebraic model inspired by the
idea of neighbor-specific preferences in BGP. The original
paper on NS-BGP proved correctness for a particular model
of route selection, in which economic constraints are used to
ensure convergence. This is a variation of the well-known Gao-
Rexford model of routing, in which adjacencies are classified
as customer-provider or peer-peer.

It is certainly possible to object that the Gao-Rexford condi-
tions are not uniformly observed in current practice, although
they do capture a useful pattern of inter-AS interaction. Many
other correct interactions are possible, including those between
entities which are not classifiable in the original scheme, such
as IXes or CDNs [13].

In this section, we develop an algebraic description of a
path selection scheme similar to that of NS-BGP, but with
an explicit connection to the attributes of present-day BGP,
and showing where the neighbor-specificity is able to be
introduced. Crucially, we will be able to prove correctness
of the new scheme.

The BGP route selection process consists of the succes-
sive examination of a series of attributes, each acting as
a tie-breaker for the last. In algebraic terminology, this is
a lexicographic product. According to standard BGP (that
is, disregarding extensions due to communities and so on),
the first step is to compare routes on the basis of their
local preference (LOCAL PREF). This numeric value is, in
principle, completely arbitrary. In consequence, essentially no
guarantees can be made about correctness. The model of Gao-
Rexford is a response to this state of affairs, noting that a
principled usage of local preference, conforming to certain
economic sanity conditions, can be regarded as safe, even
though unrestrained usage cannot.

The next important attribute to consider is the AS path;
shorter paths are preferred. This attribute provides a form of
route optimization, as opposed to the constraints represented
by local preference. The overall procedure, then, even without
taking any other attribute into account, is a kind of constrained
optimization. A decent rule of thumb for constrained optimiza-
tion problems is that it is often NP-complete to tell whether an
optimal solution exists subject to the constraints, and indeed



this is the case for BGP. But again, this is not the case if local
preferences are decided upon according to sufficiently strong
constraints.

Now, let us define some algebras for these two attributes. Of
course, this will only provide us with an extremely simplified
model of eBGP. Even so, it will serve as a reasonable basis
for the introduction of neighbor-specific preferences.

Local preference values range from 0 to 232 − 1, and can
be set arbitrarily. Larger values are better. Let L be the set
{0, 1, . . . , 232 − 1}. We therefore have an order transform

LocalPref = (L,≥,KL)

where KL denotes the set of all constant functions whose
range is L, so it contains functions of the form κ(x) = `,
where ` is in L. While this, as expected, is not inflationary,
there are subsets of KL which are inflationary.

In a (considerably) simplified version of the AS path at-
tribute, we will assume that AS numbers come from a set N
and that the metric value is a simple list of these numbers.
So we are ignoring aggregation, AS sets, confederations,
compatibility between two- and four-byte AS numbers, and
the total size of the attribute. Let ∞ be a special value not
it in N : we will use this when a loop would otherwise be
created. The order transform is

ASPaths = (N? ∪ {∞},�, CN )

where
• N? denotes the set of sequences over N
• � orders sequences by length, so p ≺ q if p is shorter

than q and p ∼ q if they are the same length; and p ≺ ∞
for any p in N?

• CN is the set of all functions cn for n in N , where
cn(p) returns np if n is not in P , and ∞ otherwise. Also,
cn(∞) = ∞.

This algebra is strictly inflationary (despite the presence of
∞—this is accounted for in the definition of the property).

Pick some subset LocalPrefI of LocalPref which is in-
flationary, and form the lexicographic product of this with
ASPaths. The resulting algebra is strictly inflationary.

Now, suppose that we have a series of other attributes S1

through Sk, as in Example 2. We set S to be

(LocalPrefI ~×ASPaths)× S1 × S2 × · · · × Sk.

Now we can form NS(S), the neighbor-specific preference
algebra based on S. This allows certain arcs to choose in
which order the extra attributes Si will be considered, if at all.
Meanwhile, internal arcs can be configured to use the standard
order, so that the iBGP process spreads a multiplicity of routes
around, to be winnowed down later.

We could choose LocalPrefI to be Sobrinho’s algebraic
model of Gao-Rexford. But there are many other possible
choices which would also yield convergence. Equally, we
admit many possible designs for choosing attributes Si, even
before allowing them to be compared in different ways. All
of these are safe.

This demonstrates that an extraordinary variety of neighbor-
specific preferences can be defined in a ‘BGP-like’ routing
system, so long as some global rules are respected. Everyone
has to agree on the economic model and on the preferability
of short paths. Beyond that, arbitrary preferences can be
established without harming the possibility of convergence.

VIII. IMPLEMENTATION OUTLOOK

We have now shown that for a very generous model of
neighbor-specificity, it is possible to prove correctness in
exactly the same way as for conventional path problems. For
NS-BGP in particular, the consequence of the theorem above
is that not only the Gao-Rexford conditions, but any strictly-
inflationary conditions, will suffice for protocol convergence.
This brings our attention to the remaining considerations: what
kind of neighbor-specific preferences shall we adopt, and how
should they be implemented?

The examples of Section II are a starting point at indicating
some of the possible diversity of routing schemes that are
supported in the neighbor-specific model. We believe that we
are not in a position to prescribe any particular one of these
as the one true way to do neighbor-specific routing. It is up
to network operators and researchers to consider their policy
needs and establish some preference model that works for
them; the design space is large, but we hope that our examples
will be suggestive of the kind of schemes that can be made to
work.

Even once a neighbor-specific policy has been determined,
significant questions remain about how the routing and for-
warding are to be implemented. While one answer is the adop-
tion of an entirely new routing protocol, we prefer to consider
these questions from the perspective of current BGP practice,
and the associated technological and other constraints.

A. Similarity to BGP

An ongoing NS-BGP implementation effort envisages a very
general means of providing neighbor-specific routes [19]. This
scheme uses MPLS tunnels to provide a cross-connect service
across an AS, with neighbor-specific BGP deployed in order
to provide neighbors with a choice of tunnels.

In its full generality, the implementation does not necessar-
ily constrain the flexibility of route selection—although some
restriction to safe configurations is envisaged [19], [23]. In
this most extreme setting, we can view the NS-BGP process as
operating at a layer below the conventional BGP computation:
it is there to provide connectivity across a network, and
does not interact with ordinary BGP route selection. This is
analogous to the IX situation, in which forwarding is dealt
with by the layer-2 infrastructure, with the route server being
present only to mediate between BGP speakers that would
otherwise be connected in a mesh.

In practice, this most general capability would be infeasible
to offer due to the combinatorial explosion of routes involved,
and that customized route selection would therefore employ
‘BGP-like’ choice at the routing level. We hope that our



identification of strictly inflationary correctness conditions will
be helpful in marking out possible designs for this feature.

Our Section VII suggested one way of molding BGP into
a neighbor-specific protocol. In this picture, eBGP attributes
are retained in order to ensure protocol convergence to a
local optimum (assuming a valid configuration). Additional
attributes are available for iBGP choices to be made in a
neighbor-specific way. According to the algebra, this limits
the flexibility of neighbor-specificity: a choice can only be
made between routes which have the same preference on the
external attributes. For example, it would not be possible here
for customers to rank routes according to the identity of the
upstream provider: we would always have to favor a route
with better local preference and AS path length, even if it
came from a non-preferred source. This limitation derives
directly from Theorem 2: the intersection of preferences, on
which everybody agrees, must be able to carry the correctness
condition on its own. A tradeoff exists between similarity
to present BGP (with its many tiebreaking attributes) and
degree of neighbor-specific flexibility (where ties are mostly
not broken). An analysis of local preference along the lines
of the stratified shortest-paths problem may reveal further
possibilities for how the externally-agreed attributes could be
structured [13].

B. Topological issues

A surprising feature of the algebraic model NS(S) is that it
does not enforce topological constraints on the network. While
particular choices of S may be associated with conditions
such as valley-freedom, there is no requirement that the graph
labelling conform to the NS-BGP model. It might be expected
that iBGP arcs use the simple � order as opposed to an
extension, but this is not necessary for correctness. This should
make some intuitive sense, since in the situation where each
AS is a single router, we would still anticipate being able to
prove convergence.

Furthermore, while we have used the term ‘neighbor-
specific’, there is no requirement that different arcs between
the same pair of neighbors be labelled consistently. Of course,
this may be important for other reasons than the fact of
convergence, since we are also interested in achieving a
particular routing state—where the paths found should have
additional properties other than stability, or where there are
external factors necessitating a particular choice of preference.
But we can still guarantee convergence if preferences are only
adjacency-specific rather than neighbor-specific.

Similarly, the model does not supply any notion of who
is responsible for choosing a refined order in the case of a
given arc. In BGP, there is no actual concept of ‘arc’! Instead,
the policy applied is the result of actions taken at both ends,
independently. The simple algebraic model, where arc labels
are just functions f from a set F , is an abstraction from the
true reality, wherein ‘f ’ is the composition of export policy,
decided by one AS, and import policy, decided by the other.
For neighbor-specific preferences, a similar split applies. It
would make perfect sense to have the sender, the recipient, or

both, deciding which order extension to use, in just the same
way as they do for their other policies.

In NS-BGP, it is envisioned that the sender is responsible
for the application of preferences, though there is a potential
mechanism for the other party to influence this choice out-
of-band. But even in today’s BGP, the recipient can evaluate
routes differently depending on which neighbor supplied them.
From the point of view of NS(S), there is no distinction—
both mechanisms, and indeed their combination, fit into the
algebraic model.

C. Forwarding

As recognized by other researchers [19], [23], traditional
hop-by-hop forwarding is not sufficient to support this new
means of route selection. An AS can no longer choose the
appropriate egress point for traffic based on the destination
address alone, but must also consider the identity of the
neighboring AS which has sent the traffic. The use of tunnels
across the AS suffices for this, along with logic at the border
for directing traffic down the correct tunnel.

If neighbor-specific multipath were extended to eBGP, then
the forwarding situation would become more complex. There
are some similarities with pathlet routing [8], which envisages
routes being composed by joining tunnels together, even across
AS boundaries (assuming the term ‘AS’ to still be meaningful).
The array of possibilities here is bewildering, including source
routing and telco-style circuits as well as familiar Internet
routing.

We would argue that it is premature to consider interdomain
forwarding issues of this kind before a clearer picture has
emerged of how autonomous systems might actually deploy
neighbor-specific multipath preferences in eBGP. We do not
yet know what business models might be appropriate for this
setting, and what the consequences would be for network
operators’ views on who should be able to use their networks.
Experience with NS-BGP on an internal basis may provide
some clues about the interdomain possibilities.

IX. OPEN PROBLEMS

This paper has explored the idea of neighor-specificity in
path preferences. There is considerable scope for finding spe-
cific designs within this space which will be useful for opera-
tors, or applicable to particular classes of interesting problem.
For NS-BGP, there are many ways in which BGP could
incorporate neighbor-specificity in its attributes—whether by
rewriting routes on export according to a route map, or by
including one or more attributes that have a neighbor-specific
interpretation as an order extension.

The question of performance is very much open. All metrics
of interest (including but not limited to convergence time,
amount of network traffic, and routing table size) will vary
depending on the specific neighbor-specific scheme chosen,
and on the details of the network configuration. It is likely
that these cannot be predicted analytically—although some
quantities, such as the maximal number of possible equivalent
routes, can be—but require experimental determination.



Regarding the theory, it would be useful to find a way
of describing particular order refinements that could be in-
terpreted computationally. This would be a component of an
implementation of neighbor-specific preferences, because at
some point, someone has to tell each router which preferences
it ought to be applying. In the IX scenario, this is done via
routing registries, with the policies encoded in RPSL [1]. Any
neighbor-specific extension of BGP would need to have some
reflection in RPSL, and in other related tools.
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APPENDIX

Various mathematical objects are involved in our modelling
of routing. We summarize their definitions here.

A preorder (S,�) is a set together with a binary relation
that is reflexive (x � x for all x in S) and transitive (if x � y
and y � z then x � z).

A preorder that is antisymmetric (if x � y � x then x = y)
is a partial order. If in addition it is total (for all x and y,
either x � y or y � x) then it is a total order or linear order.

A semigroup (S,⊕) is a set with an associative binary
operation. It may be commutative (x ⊕ y = y ⊕ x for all
x and y) or idempotent (x = x⊕ x for all x) but need not be
either.

If we have a set F of functions over S, then we can combine
this with a preorder or a semigroup to make a preorder
transform (S,�, F ) or a semigroup transform (S,⊕, F ).

A graph G = (V,E) can be weighted over a preorder
transform by providing

1) a function s : V → S, and
2) a function w : E → F .

Then, the weight of a path from node i to node j in G, which
uses the arcs e1 through ek, can be calculated as

(w(ek) ◦ w(ek−1) ◦ · · · ◦ w(e2) ◦ w(e1)) (s(i)).

The s function thus supplies an originated value for each node,
and each arc function alters this value in some way. The path
weight is, however, still a value in S, which can be compared
with other such values via � as expected.

Graph weightings over semigroup transforms are defined in
the same way.

Two orders (indeed, any relations) can be combined via
intersection. The intersection of �1 and �2 is the order �
where

x � y ⇐⇒ x �1 y ∧ x �2 y.

This naturally extends to more than two orders.
A function f over an order (S,�) is said to be inflationary

when
∀x ∈ S : x � f(x).

If S has a greatest element, then f is strictly inflationary when

∀x ∈ S : x ≺ f(x) ∨ x = f(x) = >

Otherwise, the definition of strict inflation only requires that
x ≺ f(x) in all cases. These definitions extend to sets of
functions in the obvious way.


