
Lexicographic products in metarouting
Alexander J. T. Gurney

Computer Laboratory
University of Cambridge

Email: Alexander.Gurney@cl.cam.ac.uk

Timothy G. Griffin
Computer Laboratory

University of Cambridge
Email: Timothy.Griffin@cl.cam.ac.uk

Abstract—

Routing protocols often keep track of multiple route metrics,
where some metrics are more important than others. Route
selection is then based on lexicographic comparison: the most
important attribute of each route is considered first, and if this
does not give enough information to decide which route is better,
the next attribute is considered; and so on.

We investigate protocols that find globally optimal paths and
protocols that find only locally optimal paths. In each case we
characterize exactly when lexicographic products can be used to
define well-behaved routing protocols. We apply our results to
protocols that can partition a network into distinct administrative
regions, such as OSPF areas and BGP autonomous systems. We
show that in some cases this type of local autonomy is fully
compatible with global optimality.

I. INTRODUCTION

We can think of an idealized routing protocol as comprised
of three distinct components,

routing protocol = routing language
+ routing algorithm
+ proof,

where the protocol’s routing language is used to configure a
network and the routing algorithm is used to compute solutions
to network configurations specified using the routing language.

The proof component is some type of argument that the
protocol behaves correctly. Proving correctness for even simple
protocols is often extremely challenging. The very least we
should hope for is that no matter how a network is configured,
a protocol will compute a network routing for that topology
in a finite amount of time, and that routing should not contain
any forwarding loops. The proof component of a protocol may
be informal, or may not exist at all, as is the case with the
provably incorrect Border Gateway Protocol (BGP) [16], [19].

In addition to correctness, there remains the important issue
of what type of routing solutions are computed. Globally
optimal routing seeks to find best paths over all possible paths,
whereas locally optimal routing seeks to find the best paths at
each node given only the best paths of adjacent nodes. João
Sobrinho has shown that path-vector algorithms — such as
BGP’s — can find locally optimal routing solutions even when
no globally optimal solution exists [23]. This requires that the
application of routing policy always increases the cost of a
path. On the other hand, if policy application respects the

preference ordering of paths (that is, it is monotone), then
Sobrinho has shown [22] that globally optimal solutions can
be computed with generalizations of Dijkstra’s algorithm (in
Section III we show that this is closely related to results in
generalized pathfinding with semirings [3], [10], [11]).

Griffin and Sobrinho [14] proposed metarouting as a means
of defining routing protocols in a high-level and declarative
manner. Metarouting is based on using a metalanguage to
specify routing languages. The goal is to design an expressive
metalanguage so that the algebraic properties required by
algorithms can be derived automatically from a metalanguage
specification, in much the same way that types are derived in
programming languages.

A special algebraic construct, scoped product, was intro-
duced in [14] to model BGP’s partitioning of the network
into autonomous systems. In Section II we show how scoped
product can be defined in terms of lexicographic products
together with a few very simple operators. Furthermore, we
generalize the scoped product and use it to model other types
of policy partitioning, including OSPF-like areas. Characteriz-
ing exactly when such partitioning is compatible with global
or local optima reduces to the characterization of lexicographic
products — the main topic of the this paper.

Metarouting as defined in [14] was based on Sobrinho’s
routing algebras [23]. Before turning to our study of lexico-
graphic constructs, we first revisit the mathematical founda-
tions of metarouting in Section III. Here we take a strictly
algebraic approach and base metarouting on what we call
the quadrant model of algebraic routing [13]. This framework
includes Sobrinho’s routing algebras as a special case. We do
this because the new model is more expressive and it firmly
locates metarouting within the context of the literature on
semirings and their extensions [3], [10], [11].

In Section IV we show exactly what properties are required
in order to ensure either global or local optima when using
lexicographic products. In order to carry this out in full
generality, we define and explore a lexicographic product
operator on semigroups.

Section V applies our results to the policy partioning
described in Section II. We show that in some cases this type
of local autonomy is fully compatible with global optimality.



II. A MODEL OF POLICY PARTITIONS

Several existing protocols partition networks into distinct
administrative regions and behave differently within a region
and between regions. OSPF and IS-IS have areas, while
BGP has autonomous systems (ASes). Here we show how
we can use lexicographic constructs, together with a few
other simple operations, to define algebraically various types
of administrative network partitioning. The importance of an
algebraic definition is that the complexity of these operations
is shifted to the routing language so the generic routing
algorithms can be kept as simple as possible.

We will illustrate this using order transforms, which will
be further discussed in Section III. First, we establish a few
basic definitions.

A preorder is a relation that is reflexive and transitive.
Preordered sets will typically be written as (S,.S). Some
additional properties a preorder might have are as follows:

reflexive x .S x
transitive x .S y ∧ y .S z =⇒ x .S z
antisymmetric x .S y ∧ y .S x =⇒ x = y
full x .S y ∨ y .S x

in each case for all x, y and z in S. Special kinds of preorder
include partial orders (which are antisymmetric), preference
relations (which are full) and total orders (which are full and
antisymmetric).

For a preorder ., we use the following symbols for various
useful derived relations:

x ∼ y ⇐⇒ x . y ∧ y . x

x < y ⇐⇒ x . y ∧ ¬(y . x)
x # y ⇐⇒ ¬(x . y) ∧ ¬(y . x)

For ordered sets, the lexicographic product is well under-
stood. Let (S,.S) and (T,.T ) be preordered sets. Then their
lexicographic product is (S × T,.), where

(s1, t1) . (s2, t2) ⇐⇒ s1 <S s2

∨ (s1 ∼S s2 ∧ t1 .T t2).

Note the use of ‘∼S’ rather than ‘=’ on the right hand
side: we respect the ordering of equivalent elements in S.
The lexicographic product models an order where S is more
important than T : the second order is used only to break ties
arising from the first.

Now, order transforms are algebraic structures of the form

(S, .S , FS),

where S is a set of weights, .S is a preorder over S, and FS
is a subset of the functions mapping S to S.

The network topology is modeled by a directed graph, where
each directed arc (i, j) is associated with a function f(i,j) in

F , and a node originates values from S. The weight of a path

p = ((i1, i2), (i2, i3), . . . , (ik−1, ik))

will then be

w(p) =
(
f(i1,i2) ◦ f(i2,i3) ◦ · · · ◦ f(ik−1,ik)

)
(a),

where a is originated by the node ik. We can think of w(p) as
the weight of a route that could carry traffic from source node
i1 to destination node ik. BGP is perhaps the best example
of a protocol whose approach to path weight computation is
‘functional’.

We can now define the lexicographic product of order
transforms as

(S, .S , FS) ~× (T, .T , FT ) := (S × T,., F ),

where . is the lexicographic product of .S and .T , and
F is the set {(f, g) | f ∈ FS , g ∈ FT } of functions over
(S × T )→ (S × T ), where (f, g)(s, t) := (f(s), g(t)).

We define two other constructions on order transforms,

right((S, ., F )) := (S, ., {id}),
left((S, ., F )) := (S, ., {κb | b ∈ S}),

where κb is the constant function κb(a) := b. In terms of
routing, we can see that left(T ) is similar to the local prefer-
ence attribute of BGP — the last link completely determines
the value. On the other hand, right(T ) is similar to the origin
attribute of BGP — once a value is originated it can only be
copied by the identity function.

If we have two order transforms on the same preordered set
we can define their disjoint function union as

(S, ., F ) + (S, ., G) := (S, ., F +G),

where

F +G := ({1} × F ) ∪ ({2} ×G).

The application of these functions is as if the tags did not
exist:

(1, f)(a) := f(a),
(2, g)(a) := g(a).

This disjoint union allows us to combine two distinct sets of
functions that represent very different types of transformations.

We are now ready to define our first partioning operations,
which will model the kind of partitioning seen in BGP.
Suppose we have two order transforms,

S ≡ (S, .S , F ),
T ≡ (T, .T , G).

We define their scoped product as

S � T := (S ~× left(T )) + (right(S) ~× T ).

This structure is similar to the lexicographic product of S and
T — at each node of the graph we have weights of the form
(a, b), and such weights are compared using the lexicographic



order. However, there are two kinds of arcs — inter-region arcs
labelled with functions of the form (1, (f, κc)), and intra-
region arcs labelled with functions of the form (2, (id, g)).
The inter-region functions change the first (most significant)
component of the pair, while originating a new second com-
ponent. The intra-region functions simply copy the “inter-
region information” contained in the first component, while
transforming the second component according to T .

h h(a, b)
(1, (f, κc)) (f(a), c)
(2, (id, g)) (a, g(b))

This is not the only way of combining these operators to
achieve a useful result. The policy partitioning

S ∆ T := (S ~× T ) + (right(S) ~× T ),

results in the table

h h(a, b)
(1, (f, g)) (f(a), g(c))
(2, (id, g)) (a, g(b))

This is similar to the use of areas in OSPF.

Many other partitioning schemes can be described using this
language. Once the interaction of these fundamental operators
with key properties is fully understood, we will automatically
also know when the policy partition operators can be used in
algorithms finding local or global optima.

The properties of interest are well-established, although the
precise definitions have varied depending on the mathematical
model employed. We will describe them as they appear for
order transforms, with a more complete account in Section IV.

Ultimately, we want to know if an order transform is
increasing or monotonic1. The ‘increasing’ property relates
to finding local optima, whereas ‘monotonicity’ allows global
optima to be computed. This is not a distinction between
algorithms: although we could use a Dijkstra-like method for
finding global optima in the monotonic case, other methods
could just as well be used instead.

Let (S,.S , FS) be an order transform. Then define

I(S) ⇐⇒ ∀a ∈ S, f ∈ FS : a 6= > =⇒ a <S f(a)
M(S) ⇐⇒ ∀a, b ∈ S, f ∈ FS : a .S b =⇒ f(a) .S f(b)

to characterise when S is increasing (I) or monotonic (M)
respectively. It can be difficult to prove whether or not these
hold for a given order transform, but by giving a language
for these structures we allow such properties to be inferred
straightforwardly.

1The reader should be alerted to the fact that we have adopted more standard
order-theoretic terminology that is not the same as that used by Sobrinho [14],
[22], [23]. Those works use the term isotonicity for what we are calling
monotonicity, and use the term monotonicity for what we are calling non-
decreasing.

The original metarouting paper only treated locally optimal
routing. The only results were sufficient conditions for local
optimality, specifically (using the new notation):

I(S) ∧ T(S) =⇒ ND(S)
ND(S) ∧ ND(T ) =⇒ ND(S ~× T )

I(S) ∨ (ND(S) ∧ I(T )) =⇒ I(S ~× T )

where ND is a non-strict form of I, given by

ND(S) ⇐⇒ ∀a ∈ S, f ∈ FS : a .S f(a),

and T is
T(S) ⇐⇒ ∀f ∈ FS : f(>) = >.

The second of these conditions was also previously shown by
Gouda and Schneider [12]. They addressed monotonicity as
well, giving a sufficient condition for S ~×T to be monotonic;
we will discuss conditions like this in Section IV.

In this paper we seek an exact characterization of the
properties required of lexicographic products for both globally
and locally optimal routing. This means that our conditions
will be both necessary and sufficient. As such, not only are
we able to capture a wider range of examples than before,
but we also enable reasoning about the absence of important
properties. Then, if an algebra fails to meet the required
standards, we will be able to deduce exactly which components
are at fault, and in what way. We anticipate that this will be
useful in the design of routing languages.

III. THE QUADRANTS MODEL

This section briefly reviews the quadrants model of alge-
braic routing. Further details can be found in [13].

A semigroup is a set together with an associative binary
operation. We will usually write semigroups as (S,⊕S) or
(S,⊗S). The operation may have an identity (which is unique
if it exists), denoted α or α⊕S

, or an absorbing element,
denoted ω or ω⊕S

; these satisfy

α⊕S s = s = s⊕S α ω ⊕S s = ω = s⊕S ω

for all s in S. A semigroup with identity is a monoid.

There are two approaches to weight computation in the
literature, which we will refer to as algebraic and functional.
The functional approach is described in Section II. In the
algebraic approach we use a semigroup, (S,⊗S), and to each
directed arc (i, j) in a network graph we associate an arc
weight w(i, j) in S. The weight of a path p = i1, i2, i3, . . . , ik
is then calculated as

w(p) = w(i1, i2)⊗S w(i2, i3)⊗S · · · ⊗S w(ik−1, ik),

where the empty path is usually given the weight α⊗, the
identity element for ⊗.

Turning to weight summarization (finding ‘best paths’), the
literature again contains two distinct approaches, which we
will refer to as ordered and algebraic. In the ordered approach,



weight summarization
weight
computation algebraic ordered

algebraic
Bisemigroups

(S,⊕S ,⊗S)

Semirings [3], [10], [11]
Nondistributive semirings [17], [18]

Order Semigroups

(S,.S ,⊗S)

Ordered semigroups [1], [9], [15]
QoS algebras [21]

functional
Semigroup Transforms

(S,⊕S , FS)

Monoid endomorphisms [10], [11]

Order Transforms

(S,.S , FS)

Sobrinho structures [14], [23].

Fig. 1. The ‘quadrants model’ of algebraic routing

we are given a pre-ordered set (S,.S), and we use .S to
select minimal (most preferred) elements of S out of some
subset provided to us. In contrast, the algebraic approach uses
a semigroup (S,⊕S), and from two weights a and b in S we
compute the new weight a ⊕S b. This might coincide with a
or b, or it might be a new element entirely. This formulation
is used for path counting and related problems: (S,⊕S) might
for example be (N,+).

Figure 1 presents the four ways we can combine the
algebraic and ordered approaches to weight summarization
with the algebraic and functional approaches to weight com-
putation. We discuss each in more detail.

The upper left quadrant contains bisemigroups, which have
the form (S,⊕S ,⊗S). Semirings [3], [10], [11] are included in
this class: these are bisemigroups in which ⊗S distributes over
⊕S , the ⊕S operation is commutative, and there is an identity
α⊕. Some formulations of the semiring concept also require
that α⊕ should be an absorbing element for ⊗S , or that ⊗S
should have an identity α⊗. We however do not insist on any of
these conditions—they will be inferred as required. Thus, the
class of bisemigroups includes nondistributive semirings [17],
[18]. Sobrinho has shown that On the whole we expect BGP-
like interdomain routing to be non-distributive [23]. However,
some components of interdomain routing can be isolated and
modeled with distributive algebras [2].

Important examples from this quadrant include the bisemi-
groups (N,min,+) and (N,max,min), which can be used for
finding shortest-distance and greatest-bandwidth paths respec-
tively. We also have (N,+,×), for counting the total number
of paths.

Moving to the lower left, we have semigroup transforms,
in which the ⊗S of a bisemigroup is generalized to a set
of functions acting on a semigroup. This means that we can
transform weights in essentially arbitrary ways: rather than
having all weight computations being of the form s1⊗S s2, we
can restrict ourselves to a more limited set of transformations,

or expand to take in any function at all on S. In [11] the
functions are required to be homomorphisms (f(s1 ⊕S s2) =
f(s1) ⊕S f(s2)), a condition which is the equivalent of
requiring an order to be monotonic. Here, we permit our
functions to be other than homomorphisms, but we will infer
whether they are or not.

For every bisemigroup (S,⊕S ,⊗S), there is a correspond-
ing semigroup transform (S,⊕S , FS), where FS is the set
{λy.(x ⊗S y) | x ∈ S}. Other ways of making new
semigroup transforms from old include the local preference,
origin preference, and disjoint function union operators from
Section II.

The upper right quadrant of Figure 1 contains the order
semigroups, which have the form (S,.S ,⊗S). An important
subclass of these are the ordered semigroups, which have been
studied extensively [1], [9], [15]. For ordered semigroups, ⊗S
is required to be monotonic with respect to .S : that is, if
a .S b, then c ⊗S a .S c ⊗S b and a ⊗S c .S b ⊗S c.
Sobrinho [21] studied such structures (with total orders) in the
context of Internet routing. In our framework, we require only
that .S be a preorder. In keeping with our design principle
of not requiring anything which can be inferred, we do not
enforce monotonicity (which is why we call these structures
‘order semigroups’ rather than ‘ordered semigroups’).

Some useful order semigroups are (N,≤,+) for shortest
distances, (N,≥,min) for greatest bandwidths, and for most
reliable paths, ([0, 1],≥,×). Sobrinho showed that

M((N,≤,+)~×(N,≥,min)) and ¬M((N,≥,min)~×(N,≤,+)),

a good illustration of the difficulties involved in constructing
lexicographic products. Simply knowing these facts does not
illuminate why it is that monotonicity fails in the second case,
and so it is unclear how the situation can be resolved if we
intend to select routes by bandwidth first, then delay. In our
approach, monotonicity and other properties of the product are
deduced from properties of the components, and our emphasis



on complete characterisation of properties allows the reasons
for failure to be straightforwardly identified.

In the lower right quadrant of Figure 1, we have order
transforms, structures of the form (S,.S , FS), as previously
discussed in Section II. Order transforms include Sobrinho’s
routing algebras [23] as a special case. Sobrinho algebras (as
defined in [14]) have the form

(S, �, L, •),

where � is a preference relation over S (that is, a full
preorder), L is a set of labels, and • is a function mapping
L × S to S. As an order transform, this is (S,�, FL) with
FL = {gλ | λ ∈ L}, where gλ(a) = λ • a. Thus we can think
of the pair (L, •) as a means of indexing the set of functions
FL. In addition to this slightly higher level of abstraction, we
do not insist that .S be total.

As with semigroup transforms and bisemigroups, we can
construct order transforms from order semigroups via the
‘Cayley’ map: (S,.S ,⊗S) becomes (S,.S , FS) where FS =
{λy.(x⊗S y) | x ∈ S}.

There are also translations between the left and the right
halves of the table: between bisemigroups and order semi-
groups, and between semigroup transforms and order trans-
forms. We do this by synthesising an order from a semigroup
operation, or vice versa. For the former, we use the natural or-
der. Each semigroup has two such associated orders, resulting
from interpreting the semigroup operation as a greatest lower
bound or least upper bound, and deducing from this a partial
order [5]. Given a semigroup (S,⊕S), these orders are given
by

s1 .L
S s2 ⇐⇒ s1 = s1 ⊕S s2

s2 .R
S s2 ⇐⇒ s2 = s1 ⊕S s2.

For idempotent and commutative semigroups, it is straightfor-
ward to deduce that these are always partial orders, and that
they are dual to one another. Using other kinds of semigroup
may not result in orders with such desirable properties.

We can use the natural order concept to define maps
between the quadrants: from bisemigroups to order semi-
groups, and from semigroup transforms to order transforms.
In each case, the mapping acts on the ‘weight summarization’
part of the structure, deducing explicit preferences from the
semigroup summarizing operator:

NOL(S,⊕S ,⊗S) := (S,.L
S ,⊗S)

NOR(S,⊕S ,⊗S) := (S,.R
S ,⊗S)

NOL(S,⊕S , FS) := (S,.L
S , FS)

NOR(S,⊕S , FS) := (S,.R
S , FS).

The reverse direction, synthesising a semigroup operation
from an order, is more subtle. We might choose to define
the operation as taking the least upper bound, or the greatest
lower bound, with respect to the order; but unfortunately not

all orders possess such bounds. So instead we define it over
sets of elements:

⊕ : 2S × 2S → 2S

A⊕B := min .(A ∪B).

There are several ways of extending this order-to-semigroup
map to one involving our quadrants model. For example, we
can turn order transforms into semigroup transforms via the
map

(S,.S , FS) 7→ (S′,⊕, {f ′ | f ∈ FS})

where S′ = {A ∈ 2S | min .(A) = A} and f ′(A) =
min .({f(a) | a ∈ A}).

We can combine this with the Cayley map, to turn or-
der semigroups into semigroup transforms. This capability
is important, because it means we can take results about
semigroup transforms and apply them to order semigroups—in
particular, we know from [11] that for finding global optima
with semigroup transforms, we need all of the functions to be
homomorphisms. This is more general than the results in [22].

IV. EXACT PROPERTY RULES

Our main results in this section are based on a theorem by
Saitô [20]. His theorem is for order semigroups, in the special
case when the order is total. We will extend this to all four
quadrants. In each case, the theorem has substantially the same
structure, but some of the properties needed are different.

Write M(S), N(S) and C(S) to represent the following
properties or an order semigroup (S,.S ,⊗S):

M(S) ⇐⇒ ∀a, b, c ∈ S : a .S b =⇒ c⊗ a .S c⊗ b
N(S) ⇐⇒ ∀a, b, c ∈ S : c⊗S a = c⊗S b =⇒ a = b

C(S) ⇐⇒ ∀a, b, c ∈ S : c⊗S a = c⊗S b.

These are the ‘left’ versions of the assertions that S is
respectively monotonic, cancellative, or condensed; the ‘right’
versions have the operands of ⊗S reversed. We will see
that properties resembling these are relevant for our other
structures.

Theorem 1 (Saitô): Let S and T be order semigroups
whose orders are total. Then

M(S ~× T ) ⇐⇒ M(S) ∧ M(T ) ∧ (N(S) ∨ C(T )) .

Note that we have one property applying to the first operand,
and as an alternative, another property applying to the second.
So monotonic algebras can be built that contain arbitrary
components, as long as there is another component that does
have the appropriate property.

We would like to extend this theorem to cover not only
all order semigroups, but each of the other structures in our
quadrants model. This will mean that we will be able to
construct lexicographic products and prove results about their
monotonicity in any model, not just one. First, we will need
to define a lexicographic product for semigroups, which will



be extended to provide our definition for bisemigroups and
semigroup transforms.

A. Lexicographic products of semigroups

Although the lexicographic product may be a well-known
operation on ordered sets, far less attention has been paid to
how it might be defined over semigroups. As a guide to making
our definition in a way that is analogous to the ordered set
version, we will use the natural orders. That is, if we have two
monoids, take their natural orders, and form the lexicographic
product of those orders, we should get the same order as if
we had taken the natural order of the lexicographic product of
the two monoids. As a diagram, we want

(S,⊕S)× (T,⊕T ) � NOL×NOL
//

_

~×
��

(S,.S)× (T,.T )
_

~×
��

(S × T,⊕) � NOL
// (S × T,.)

to commute. We will investigate the problem keeping the left
natural order in mind, but our definition will turn out to work
with the right version as well. We will carry on using the ‘~×’
symbol to refer to lexicographic products, in all cases.

Let (S,⊕S) and (T,⊕T ) be commutative and idempotent
semigroups, with T having an identity. The requirements of
commutativity and idempotence are not too onerous: they
hold for all of our ‘weight summarization’ examples. To
see why these conditions might be reasonable, consider how
the semigroup operation would be used in an algorithm: to
combine route information from multiple sources into a single
weight. Our conditions enforce that the combining operation
must yield the same result regardless of the order in which
its operands are given, and it must not matter if any of them
are repeated. Another way of thinking about this is that it
means that the expression

⊕
s∈A s is well-defined for a set A

of weights.

Now, the carrier set of S ~×T must be the product S×T ; we
need to define the monoid operation ⊕. If s1⊕S s2 = s1 6= s2,
then we certainly want (s1, t1)⊕ (s2, t2) = (s1, t1), selecting
the first operand. Likewise, if s1⊕S s2 = s2 6= s1 then (s2, t2)
ought to be chosen instead. Suppose that s1⊕S s2 = s1 = s2:
in terms of the left natural order, this means that s1 and s2 are
equivalent, and we should rely on the T component to make
the choice. So we can set

(s1, t1)⊕ (s2, t2) = (s1, t1 ⊕T t2)

in this case. The final case to consider is that the combination
of s1 and s2 might be neither s1 nor s2, but some third element
of S. What should appear in the T component of the result?
None of t1, t2, or t1 ⊕T t2 yields the desired natural order.
In fact, there is a fourth alternative: the identity element of T .

We now have

(s1, t1)⊕ (s2, t2)

=


(s1, t1 ⊕T t2) s1 = s2

(s1, t1) s1 = s1 ⊕S s2 6= s2

(s2, t2) s1 6= s1 ⊕S s2 = s2

(s1 ⊕S s2, αT ) otherwise.

This can be summarised as

(s1, t1)⊕ (s2, t2) := (s, [s = s1]t1 ⊕T [s = s2]t2)

where s = s1 ⊕S s2, and the notation [P ]x for a predicate P
is defined as

[P ]x :=

{
x P is true
αT P is false.

If T is not a monoid, we can still use the case-by-case
definition, provided that the final case does not occur. This
happens when S is selective, meaning that s1⊕S s2 is always
equal to s1 or s2. So S ~× T will be defined whenever S is
selective, or T is a monoid.

The lexicographic product operator ⊕ is associative, com-
mutative, and idempotent (assuming this is true of S and T ).
This helps in building n-ary lexicographic products, as well
as for general utility.

Furthermore, the lexicographic product operator ~× is itself
associative. This is an important property, since it makes the
construction of n-ary products much simpler. We do need to
take account of whether the operands have identities or are
selective, in order for the product to be defined.

Theorem 2: Let S1 through Sn be commutative, idempotent
semigroups. Let 1 ≤ k ≤ n. If the semigroups S1 through
Sk−1 are selective, and the semigroups Sk+1 through Sn are
monoids, then the lexicographic product S1 ~× S2 ~× · · · ~× Sn
is defined, and is commutative and idempotent.

Note that in the above result we are allowed to have
one semigroup, Sk, that is not selective and need not be a
monoid. All those preceding it must be selective, and all those
following must be monoids.

We now show that the defined product does indeed commute
with the natural order, so it is the product that we were seeking.

Theorem 3: Let S and T be commutative and idempotent
semigroups, with T being a monoid. Then NOL(S ~× T ) =
NOL(S) ~× NOL(T ) and NOR(S ~× T ) = NOR(S) ~× NOR(T )

Proof: The left natural order on S ~× T is given by

(s1, t1) ≤ (s2, t2)
⇐⇒ (s1, t1) = (s1, t1)⊕ (s2, t2)
⇐⇒ (s1 = s1 ⊕S s2)

∧ (t1 = [s1 = s1 ⊕S s2]t1 ⊕T [s2 = s1 ⊕S s2]t2)
⇐⇒ (s1 = s1 ⊕S s2 6= s2)

∨ (s1 = s2 ∧ t1 = t1 ⊕T t2).



The last step was reached by splitting the cases s2 = s1⊕S s2
and s2 6= s1 ⊕S s2. So we have

(s1, t1) ≤ (s2, t2)
⇐⇒ (s1 <S s2) ∨ (s1 = s2 ∧ t1 ≤T t2)

as required. The proof for NOR is analogous.

We now know how to define a lexicographic product for
our basic ‘weight summarization’ structures: ordered sets and
semigroups. These definitions can easily be extended to each
of the four quadrants, as follows:

(S,⊕S ,⊗S) ~× (T,⊕T ,⊗T ) := (S × T,⊕,⊗)

(S,⊕S , FS) ~× (T,⊕T , FT ) := (S × T,⊕, F )

(S,.S ,⊗S) ~× (T,.T ,⊗T ) := (S × T,.,⊗)

(S,.S , FS) ~× (T,.T , FT ) := (S × T,., F )

where

• ⊕ is the lexicographic product of ⊕S and ⊗S ,
• . is the lexicographic product of .S and .T ,
• (s1, t1)⊗ (s2, t2) = (s1 ⊗S s2, t1 ⊗T t2), and
• F is the set {(fS , fT ) | fS ∈ FS , fT ∈ FT } with

(fS , fT )(s, t) = (fS(s), fT (t)).

B. Global optima

Now, the general theorem is:

Theorem 4: If S and T come from one of the four quad-
rants, then

M(S ~× T ) ⇐⇒ M(S) ∧ M(T ) ∧ (N(S) ∨ C(T ))

where the properties M, N and C are as in Figure 2.

For each structure, there is a different family of properties,
but these are parallel to one another. They are not just ‘moral
equivalents’, but formal equivalents, because they relate to the
standard translations between the four quadrants.

The combination of M and N yields ‘strict monotonicity’, the
requirement that if a < b then c⊗a < c⊗ b. It has previously
been shown [12] that if SM(S) and M(T ), then M(S ~× T ),
where SM is strict monotonicity. In contrast, our theorem gives
necessary and sufficient conditions, and so also addresses the
case when S is not strictly monotonic, but property C holds
for T .

We can combine the left and right versions of this theorem
(if they are different) to obtain a result about two-sided mono-
tonicity. This demonstrates the wide variety of possibilities for
constructing monotonic structures, and the different patterns of
requirements that might be placed on the operands.

Corollary 1: If S and T are both bisemigroups or both
order semigroups, then S ~× T is left- and right-monotonic
if and only if both S and T are left- and right-monotonic, and
at least one of the following is true:

• NL(S) ∧ NR(S),

• NL(S) ∧ CR(T ),
• NR(S) ∧ CL(T ), or
• CL(T ) ∧ CR(T ).

Here, NL refers to the left version of N for the appropriate
structure, NR refers to the right version, and so on.

The same corollary in the case of order semigroups with a
total order was also proved by Saitô.

We will first show that our generalization of Saitô’s result
to all order semigroups is valid. Because we are working
with preorders rather than total orders, we need to take
account of some new possibilities for the ordering of elements:
they may be equivalent, although not equal, or they may
be incomparable. So the new C condition requires only that
c ⊗ a always be equivalent to c ⊗ b, rather than that they
should be equal, as required by the original C. Similarly, the
N property has changed to allow cancelling when c ⊗ a is
equivalent to c ⊗ b: then it must be that a is equivalent to b,
or that they are incomparable. The effect of this is to rule out
the possibility that c ⊗ a ∼ c ⊗ b, but a and b are strictly
ordered, a state of affairs which would result in monotonicity
being violated for the lexicographic product. Suppose that
s1 <S s2 and s3 ⊗S s1 ∼S s3 ⊗S s2. Then (s1, t1) < (s2, t2)
lexicographically, but in order to have (s3 ⊗S s1, t3 ⊗T t1) .
(s3 ⊗S s2, t3 ⊗T t2) we need t3 ⊗T t1 .T t3 ⊗T t2. This
will not be true for all t1, t2 and t3 (unless C(T ) holds), so
monotonicity fails.

We will carry out the proof for the left-monotonicity case.
In the following, let (S,.S ,⊗S) and (T,.T ,⊗T ) be order
semigroups.

Lemma 1: If M(S ~× T ) then M(S), M(T ), and either N(S)
or C(T ).

Proof: Suppose that M(S ~× T ). Then for all (s1, t1),
(s2, t2) and (s3, t3) in S × T we have

(s1, t1) . (s2, t2) =⇒
(s3 ⊗S s1, t3 ⊗T t1) . (s3 ⊗T s2, t3 ⊗T t2).

If we set t1 = t2, and choose any t3, we obtain

s1 .S s2 ⇐⇒ (s1, t1) . (s2, t2)

and

s3 ⊗S s1 .S s3 ⊗S s2 ⇐⇒
(s3 ⊗S s1, t3 ⊗T t1) . (s3 ⊗T s2, t3 ⊗T t2)

and so M(S) is true.

Likewise, set s1 = s2, and choose any s3 to deduce M(T ).

Now, suppose that N(S) is false. Then there exist s1, s2 and
s3 such that

s1 <S s2 and s3 ⊗S s1 ∼S s3 ⊗S s2.
For any t1 and t2, we have (s1, t1) . (s2, t2). Then by
monotonicity of S ~× T , for any t3, t3 ⊗T t1 .T t3 ⊗T t2.
Hence t3 ⊗T t1 ∼T t3 ⊗T t2 for all t1, t2 and t3, and C(T ).



Theorem: M(S ~× T ) ⇐⇒ M(S) ∧ M(T ) ∧ (N(S) ∨ C(T ))

Structure M N C

Bisemigroups (left) c⊗ (a⊕ b) = (c⊗ a)⊕ (c⊗ b) c⊗ a = c⊗ b =⇒ a = b c⊗ a = c⊗ b
Bisemigroups (right) (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) a⊗ c = b⊗ c =⇒ a = b a⊗ c = b⊗ c
Semigroup transforms f(a⊕ b) = f(a)⊕ f(b) f(a) = f(b) =⇒ a = b f(a) = f(b)
Order semigroups (left) a . b =⇒ (c⊗ a) . (c⊗ b) c⊗ a ∼ c⊗ b =⇒ a ∼ b ∨ a # b c⊗ a ∼ c⊗ b
Order semigroups (right) a . b =⇒ (a⊗ c) . (b⊗ c) a⊗ c ∼ b⊗ c =⇒ a ∼ b ∨ a # b a⊗ c ∼ b⊗ c
Order transforms a . b =⇒ f(a) . f(b) f(a) ∼ f(b) =⇒ a ∼ b ∨ a # b f(a) ∼ f(b)

Fig. 2. Properties required for global optima. Each expression is universally quantified over its free variables.

Finally, suppose that C(T ) is false. Then there exist t1, t2
and t3 such that t3 ⊗T t1 and t3 ⊗T t2 are strictly ordered or
incomparable. In any case, we can potentially swap t1 and t2
so that

¬(t3 ⊗T t1 .T t3 ⊗T t2).

From monotonicity of S ~× T we have

s1 <S s2 ∨ (s1 ∼S s2 ∧ t1 .T t2)
=⇒ s3 ⊗S s1 <S s3 ⊗S s2 ∨ (FALSE)

and hence s1 <S s2 implies s3 ⊗S s1 <S s3 ⊗S s2. Now, if
s3 ⊗S s1 ∼S s3 ⊗S s2 then ¬(s3 ⊗S s1 <S s3 ⊗S s2) and
¬(s3 ⊗S s2 <S s3 ⊗S s1), which implies that ¬(s1 <S s2)
and ¬(s2 <S s1). Therefore either s1 ∼S s2 or s1 #S s2, so
we have N(S).

Lemma 2: If M(S), M(T ), and either N(S) or C(T ), then
M(S ~× T ).

Proof: Suppose that (s1, t1) .S (s2, t2). Then either
s1 <S s2, or s1 ∼S s2 and t1 .T t2. Hence s1 .S s2,
and by monotonicity of S we have s3 ⊗S s1 .S s3 ⊗S s2. If
s3⊗S s1 <S s3⊗S s2 then there is nothing more to prove, so
consider the case when s3 ⊗S s2 ∼S s3 ⊗S s1.

If C(T ) is true, then we automatically now have monotonic-
ity of S ~×T , since (s3⊗S s1, t3⊗T t1) . (s3⊗S s2, t3⊗T t2).

If, however, N(S) is true, then it follows that s1 ∼S s2 (or
s1 #S s2, but this cannot be the case because we already know
that s1 .S s2). Hence t1 .T t2, and since T is monotonic
we have t3 ⊗T t1 .T t3 ⊗T t2. Then (s3 ⊗S s1, t3 ⊗T t1) .
(s3⊗Ss2, t3⊗T t2), and so in this case S~×T is also monotonic.

C. Local optima

For finding local optima, the properties of interest are
‘increasing’ and ‘nondecreasing’. As with monotonicity, these
look slightly different in each of the four quadrants, while still
expressing the same general idea: that extensions of paths are
(strictly) less preferred than the originals.

In the case of the lexicographic product, our general theo-
rems are as follows.

Theorem 5: If S and T come from one of the four quad-
rants, then

ND(S ~× T ) ⇐⇒ I(S) ∨ (ND(S) ∧ ND(T ))

I(S ~× T ) ⇐⇒ I(S) ∨ (ND(S) ∧ I(T ))

where the properties ND and I are as in Figure 3

Note that we always have I(S) =⇒ ND(S).

It is then straightforward to prove when an n-ary lexico-
graphic product is increasing.

Corollary 2: Let S1 through Sn be from one of the four
quadrants. Then I(S1 ~× · · · ~× Sn) if and only if there is some
k with 1 ≤ k ≤ n such that I(Sk) and for j < k, ND(Sj).

So a lexicographic product that is increasing has three parts.
First, there are zero or more components that are merely
nondecreasing. Then, a component that is increasing; and
finally, the remaining components need not have any special
properties at all. This means that in our lexicographic products,
we can use increasing algebras to ‘guard’ any lower-priority
algebras at all, and still be able to compute local optima using
these metrics.

We will prove Theorem 5 in the case of semigroup trans-
forms; the other proofs are essentially the same.
Proof: Let (S,⊕S , FS) and (T,⊕T , FT ) be semigroup trans-
forms. Now, S ~× T is nondecreasing if and only if

(s, t) = (s, t)⊕ (f(s), g(t))

for all s in S, t in T , f in FS and g in FT ; that is,

(s, t) = (s⊕S f(s),
[s = s⊕S f(s)]t⊕T [f(s) = s⊕S f(s)]g(t)).

If I(S) then s = s ⊕S f(s) 6= f(s), and we have equality
without needing to consider T at all. If ND(S) but not I(S)
then we additionally need ND(T ) so that t = t ⊕T g(t), for
the case when f(s) = s⊕S f(s). For S ~× T to be increasing,
we need the same as before except that (s, t) should not equal
(f(s), g(t)). If I(S) then we are done, but if we only have
ND(S) we need I(T ) to make t different from g(t).

V. REVISITING POLICY PARTITIONS

Given the results of the previous section we can now revisit
the policy partitioning constructions of Section II, and show



Theorem: ND(S ~× T ) ⇐⇒ I(S) ∨ (ND(S) ∧ ND(T )) and I(S ~× T ) ⇐⇒ I(S) ∨ (ND(S) ∧ I(T ))

Structure ND I

Bisemigroups (left) a = a⊕ (c⊗ a) a = a⊕ (c⊗ a) 6= (c⊗ a)
Bisemigroups (right) a = a⊕ (a⊗ c) a = a⊕ (a⊗ c) 6= (a⊗ c)
Semigroup transforms a = a⊕ f(a) a = a⊕ f(a) 6= f(a)
Order semigroups (left) a . c⊗ a a 6= > =⇒ a < c⊗ a
Order semigroups (right) a . a⊗ c a 6= > =⇒ a < a⊗ c
Order transforms a . f(a) a 6= > =⇒ a < f(a)

Fig. 3. Properties relating to local optima. Each expression is universally quantified over its free variables.

exactly when they are or are not monotonic, increasing, or
nondecreasing.

Theorem 6: If S and T are order transforms, with S having
two or more elements and T having two or more equivalence
classes, then

ND(S � T ) ⇐⇒ I(S) ∧ ND(T ),
I(S � T ) ⇐⇒ I(S) ∧ I(T ),

M(S � T ) ⇐⇒ M(S) ∧ M(T ).

We first remark that it is easy to see that for any order
transform S, the following properties hold:

ND(right(S)), M(left(S)), M(right(S)).

Unless S has only one element, we also have

¬I(left(S)) and ¬I(right(S)),

and unless S consists of a single equivalence class,
¬ND(left(S)). In addition, for any property P in {ND, I,M}
it is easy to check that P(S) ∧ P(T ) ⇐⇒ P(S + T ).

Theorem 6 then follows easily from the results of the
previous section. For example, for the first claim of the
theorem we have

ND(S � T )

⇐⇒ ND(S ~× left(T )) ∧ ND(right(S) ~× T )
⇐⇒ (I(S) ∨ (ND(S) ∧ ND(left(T ))))

∧ (I(right(S)) ∨ (ND(right(S)) ∧ ND(T )))
⇐⇒ (I(S) ∨ (ND(S) ∧ FALSE))

∧ (FALSE ∨ (TRUE ∧ ND(T )))
⇐⇒ I(S) ∧ ND(T ).

What is remarkable about Theorem 6 is that for monotonicity,
we only need the two operands to be monotonic. Compare
this situation with Theorem 4, where either S or T needs an
additional algebraic property. We can see that the use of the
scoped product removes this requirement, so there are many
more order transforms that can be employed in these products
than in lexicographic products.

Recall the bandwidth-delay example: both metrics are
monotonic, but the lexicographic product was not, because the
property N failed for bandwidths. But a scoped product with
these operands is monotonic. This works because in the scoped

product, changes to the first component always replace the
second component at the same time: we never experience the
inversion of preferences resulting from the second component
becoming significant although it previously was not. So for
this example, we can find global optima providing we use
a scoped product rather than a simple lexicographic product;
and we can always find local optima, since we have ND for
bandwidths and I for delays.

In a similar way, we can establish exact conditions for the
OSPF-like operator ∆.

Theorem 7: If S and T are order transforms as in Theo-
rem 6, then

ND(S ∆ T ) ⇐⇒ I(S) ∧ ND(T )
I(S ∆ T ) ⇐⇒ I(S) ∧ I(T )

M(S ∆ T ) ⇐⇒ M(S) ∧ M(T ) ∧ (N(S) ∨ C(T ))

This variation on the scoped product is therefore more de-
manding in terms of the restrictions it places on the operands.
This can be explained by the observation that the BGP-like
operator restricts the use of the algebra, by enforcing a strict
separation of external and internal functions; but ∆ can be
used just like an ordinary lexicographic product in addition to
its internal-only mode.

VI. DISCUSSION

An alternative to using the lexicographic order would be
to combine metrics into a single value according to some
fixed formula, as is done for example in EIGRP [4]. For
some applications, this may be a better design2. Gouda and
Schneider [12] have investigated ‘additive composite metrics’
as a step towards understanding such techniques, and have
proved that if both S and T are nondecreasing, then so is the
additive combination of S and T . We would like to find similar
criteria for other properties, in more complex situations, and
with both necessary and sufficient conditions.

Lexicographic decision making has been studied extensively
by economists, following Debreu’s 1954 discovery that lexi-

2In fact, EIGRP can be perceived as using a lexicographic order in addition
to its normal metric, since it discards routes with hop count greater than a
predefined maximum before considering the ‘real’ metric.



cographic preferences are not always representable by utility
functions [7]. In the economics literature, attention has been
given to the question of whether lexicographic preference is
a good model of how real decisions are made (for example
[6]) which is somewhat relevant to our routing topic. Although
several important protocols do make use of such orderings, it
is not so obvious whether the traffic engineering intentions of
network operators can be fully realized by a strict hierarchy
of metrics. A thorough review of the early treatment of
lexicographic orders in economics and behavioral science was
given by Fishburn [8].

There is a construction due to Szendrei [24] that resem-
bles our lexicographic product of semigroups. The difference
comes in the handling of absorbing elements. If S is a
commutative idempotent semigroup with absorbing element
ω⊕S

, and T is a commutative idempotent monoid, define
S ~×ω T to be the semigroup ((S \ {ω⊕S

} × T ) ∪ {ω},⊕),
where ω⊕ (s, t) = (s, t)⊕ω = ω, and (s1, t1)⊕ (s2, t2) is ω
if s1 ⊕ s2 = ω⊕S

, and equal to our definition otherwise. So
ω is the new absorbing element, and if s1 ⊕ s2 would have
yielded the absorber for S, the whole pair is replaced by ω.

The usefulness of this definition is that if we are dealing
with finite algebraic structures, some of our properties will
necessarily not be true. For example, the N property for
semigroup transforms asserts that if f(a) = f(b), then a = b.
However, in

({0, . . . , n},min, {λx.min(n, x+ y) | y ∈ {0, . . . , n}})

it is quite possible to have f(a) = f(b) = n but a 6= b. But
this algebra is usable as the first component of a lexicographic
product with ~×ω , since if n ever arises the entire expression
will be reduced to ω.

In this paper, we have not explored the relationship between
~× and ~×ω . It is evident, at least, that care needs to be taken
in the definition of possible mixed-mode n-ary lexicographic
products, where some of the products use ~× and some use
~×ω . A proper handling of this issue will take into account the
necessary distinction between a weight that is least-preferred,
and one which represents an error, such as an out-of-range
value.

Wongseelashote [25] defined a reduction on a semigroup
(V, ◦) to be a function r : 2V −→ 2V satisfying

1) r(∅) = ∅,
2) for all A and B in 2V , r(A ∪B) = r(r(A) ∪B), and
3) for all A and B in 2V , r(A ◦ B) = r(r(A) ◦ B) =

r(A ◦ r(B)).

where A ◦ B = {a ◦ b | a ∈ A, b ∈ B}. For example, min
is a reduction on (N,+): this is what we have been calling
‘min-set-map’. We would like to integrate the idea into our
framework, because we use this example but do not have a
solid account of how it relates to other, similar mappings.
The algebraic structure of the set of reductions on a given
semigroup is not well understood, so there is a good deal of

work to be done in order to give a satisfactory account of
min-like operations. We hope that problems like finding k-
best paths can be tackled using the reduction idea.

ACKNOWLEDGEMENTS

We thank the ICNP reviewers, John Billings, Ken Calvert,
and Marcelo Fiore for helpful comments on drafts of this
paper. A. Gurney is supported by a Doctoral Training Account
from the Engineering and Physical Sciences Research Council
(EPSRC). T. Griffin is grateful for support under the the Cisco
Collaborative Research Initiative.

REFERENCES

[1] G. Birkhoff. Lattice Theory, 3rd edition. Amer. Math. Soc., 1967.
[2] M.-O. Buob, M. Meulle, and J.-L. Lutton. Un modèle de graphe et

de dioı̈de pour le routage interdomaine. In Colloque Francophone sur
l’Ingénierie des Protocoles (CFIP), 2006.

[3] B. Carré. Graphs and Networks. Oxford University Press, 1979.
[4] Cisco Systems. Enhanced Interior Gateway Routing Protocol, 2005.

Technology White Paper: document ID 16406.
[5] A. H. Clifford and G. B. Preston. The algebraic theory of semigroups,

volume 1. American Mathematical Society, Providence, RI, 1961.
[6] A. M. Colman and J. A. Stirk. Singleton bias and lexicographic

preferences among equally valued alternatives. Journal of Economic
Behaviour and Organization, 40:337–351, 1999.

[7] G. Debreu. Representation of a preference ordering by a numerical
function. In R. M. Thrall, C. H. Coombs, and R. L. Davis, editors,
Decision Processes. Wiley, 1954.

[8] P. C. Fishburn. Lexicographic orders, utilities and decision rules: a
survey. Management Science, 20(11):1442–1471, July 1974. Theory
Series.

[9] L. Fuchs. Partially Ordered Algebraic Systems. Addison-Wesley, 1963.
[10] M. Gondran and M. Minoux. Graphs and Algorithms. Wiley, 1984.
[11] M. Gondran and M. Minoux. Graphes, dioı̈des et semi-anneaux:

Nouveaux modéles et algorithmes. Tec & Doc, 2001.
[12] M. G. Gouda and M. Schneider. Maximizable routing metrics.

IEEE/ACM Transactions on Networking, 11(4):663–675, August 2003.
[13] T. G. Griffin and A. Gurney. The quadrants model of algebraic routing.

Under review, 2007.
[14] T. G. Griffin and J. L. Sobrinho. Metarouting. In Proc. ACM SIGCOMM,

August 2005.
[15] R. E. Johnson. Free products of ordered semigroups. Proceedings of

the American Mathematical Society, 19(3):697–700, 1968.
[16] K.Varadhan, R.Govindan, and D. Estrin. Persistent route oscillations in

inter-domain routing. Computer Networks, 32:1–16, 2000.
[17] T. Lengauer and D. Theune. Efficient algorithms for path problems with

general cost criteria. Lecture Notes in Computer Science, 510:314–326,
1991.

[18] T. Lengauer and D. Theune. Unstructured path problems and the making
of semirings. Lecture Notes in Computer Science, 519:189–200, 1991.

[19] Y. Rekhter and T. Li. A Border Gateway Protocol. RFC 1771 (BGP
version 4), March 1995.

[20] T. Saitô. Note on the lexicographic product of ordered semigroups.
Proceedings of the Japan Academy, 46(5):413–416, 1970.

[21] J. L. Sobrinho. Algebra and algorithms for QoS path computation and
hop-by-hop. IEEE/ACM Transactions on Networking, 10(4):541–550,
August 2002.

[22] J. L. Sobrinho. Network routing with path vector protocols: Theory and
applications. In Proc. ACM SIGCOMM, September 2003.

[23] J. L. Sobrinho. An algebraic theory of dynamic network routing.
IEEE/ACM Transactions on Networking, 13(5):1160–1173, October
2005.

[24] M. B. Szendrei. On the structure of orthodox semigroups. Journal of
Algebra, 56(1):71–90, 1979.

[25] A. Wongseelashote. Semirings and path spaces. Discrete Mathematics,
26(1):55–78, 1979.


