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Abstract—Most Internet routing protocols have one of two
algorithms lurking at their core — either Dijkstra’s algorithm
in the case of link-state protocols or a distributed Bellman-Ford
algorithm in the case of distance-vector or path-vector protocols.
When computing simple shortest paths these protocols can be
modified to utilize all best paths with a combination of next-
hop sets and Equal Cost Multi-Path (ECMP) forwarding. We
show that this picture breaks down even for simple modifications
to the shortest path metric. This is illustrated with widest-
shortest paths where among all shortest paths only those with
greatest bandwidth are considered best. In this case Bellman-Ford
and Dijkstra may compute different sets of paths and neither
can compute all best paths. In addition, some paths computed
by Dijkstra’s algorithm cannot be implemented with next-hop
forwarding. We provide a general algebraic model that helps to
clarify such anomalies. This is accomplished by computing paths
within the route metric rather than with specialized algorithmic
extensions. Our results depend on the distinction between global
and local optima that has hitherto been applied almost exclusively
to more exotic routing protocols such as BGP.

I. INTRODUCTION

Most widely deployed Internet routing protocols have one
of two algorithms lurking at their core — either Dijkstra’s
algorithm in the case of link-state protocols or a distributed
Bellman-Ford algorithm in the case of distance-vector or path-
vector protocols. When restricted to a shortest-path metric
these protocols easily accommodate the computation of all
optimal paths and each path set can be efficiently imple-
mented with next-hop sets together with Equal Cost Multi-
Path (ECMP) forwarding (a data-plane method of distributing
traffic among available next-hops).

There has also been considerable interest in enhancing the
metrics of intra-domain Internet routing protocols to capture
more that just distance (such as delay). On one end of the
spectrum are attempts to find heuristics for the general QoS
routing problem [1], [2], [3] — finding paths that simulta-
neously satisfy multiple independent constraints — which is
known to be NP-complete [4], [5]. At the other end of the
spectrum we find proposals for extending existing Internet
routing protocols with enhanced QoS metrics. [6], [7].

Several papers have addressed the combination of ECMP
and QoS metrics [7], [8]. However, in the current paper we
focus on the following question which to our knowledge has
not been addressed in the literature.

Main questions. If standard Internet routing protocols are ex-
tended with enhanced QoS metrics, then which set of optimal

paths can they compute? Out of those computed optimal paths
which can be implemented with hop-by-hop forwarding?

Our enhanced metrics will be captured in structures, called
bounded semirings, of the form (S, ⊕, ⊗) [9], [10], [11],
[12], [13]. Informally, ⊕ is used to compute best path weights
while ⊗ is used to compute the weight of a path from the
arc weights. For standard shortest path routing, ⊕ = min and
⊗ = + (see Section III). Assume that the link weights of
a network are represented by an adjacency matrix A, where
A(i, j) is the weight of arc (i, j). We present version of
distributed Bellman-Ford and Dijkstra’s algorithm that have
been suitably modified to support semiring metrics.

Denote the set of optimally weighted paths in the net-
work by optimal-paths(A). For each algorithm denote the
largest set of paths that naturally arise from the algorithm as
computed-paths(A) and by next-hop-paths(A) the subset of
the computed paths that can be implemented with next-hop
forwarding.

Main results. We can now state our main results.

For distributed Bellman-Ford:

next-hop-paths(A) = computed-paths(A)
⊆ optimal-paths(A)

For Dijkstra’s algorithm:

next-hop-paths(A) ⊆ computed-paths(A)
⊆ optimal-paths(A)

All of these path sets coincide exactly when the metric is
cancellative. That is, when a⊗ b = a⊗ c always implies that
b = c.

Without cancellativity, distributed Bellman-Ford and Di-
jkstra’s algorithm may compute different sets of paths, and
neither is guaranteed to yield all best paths. In addition, while
the Bellman-Ford paths are next-hop implementable, the paths
associated with Dijkstra’s algorithm may not be. That is, in
order to forward along any path implicit in Dijkstra’s algorithm
(already not all optimal paths in some cases), we either need
to restrict our attention to the subset of those paths that are
next-hop implementable or we employ some form of tunneling.

We illustrate these results in Section II using ”widest-
shortest paths” [3], [7] where among all shortest paths only
those paths with maximal bandwidth are considered to be best
paths. This composite metric is not cancellative since the min



associated with finding a bottleneck link is not cancellative
(for example, 2 min 3 = 2 and 2 min 4 = 2, but 3 6= 4).

Our approach. Given an adjacency matrix A, the globally
optimal solution to the path problem is a matrix A∗ such that

A∗(i, j) = best path weight over all paths i to j. (1)

In this framework, A∗ solves for L the (left) equation

L = (A⊗ L)⊕ I (2)

and also solves for R in the (right) equation

R = (R⊗A)⊕ I. (3)

where ⊕ and ⊗ have been lifted in a natural way to matrix
operations and I is the multiplicative identity (see Section III).
This classical framework depends on the distributivity of ⊗
over ⊕. That is, a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c). However,
recent work has shown that without distributivity it may be
that solutions to Equations (1)-(3) exist but are all distinct [14].
Furthermore, in some cases where distributivity fails solutions
to Equation (2) can be computed by distributed Bellman-Ford
while solutions to Equation (3) can be computed by Dijkstra’s
algorithm (one row at a time). In fact these two equations can
serve as specifications for the solutions which are computed
by distance-vectoring and link-state respectively. Informally,
L(i, j) represents the best path to j that i can obtain given
the best paths at i’s immediate neighbors. Those familiar with
BGP [15] will recognize this as the kind of solution implicit in
that protocol, which operates in an environment of autonomous
systems where global optimality may have no real meaning.
On the other hand, R(i, j) represents the best path to j that
i can obtain given it’s best paths to j’s immediate neighbors.
In both cases these paths may differ from the globally optimal
paths and so we call L and R the left- and right-locally optimal
solutions.

( original metric
+

complex algorithm

)
→

( modified metric
+

generic algorithm

)

Fig. 1: The Algorithm to Algebra (A2A) method attempts to
shift complexity from an algorithm to the metric, which is

captured in an algebraic structure such as a semiring.

We next apply what we call the Algorithm to Algebra
(A2A) method, illustrated in Figure 1. This method attempts
to remove elements from an algorithm and fold them into the
metric so that a generic algorithm can be used. Using the A2A
method it may be easier to reveal the problem being solved
by the original metric/algorithm (global optimality, left- or
right-local optimality). Among other applications, this method
has been used to model eBGP vs. iBGP [16], areas in OSPF
and levels in ISIS, route redistribution and administrative
distance [17], [18].

In this paper we apply this method to versions of Bellman-
Ford and Dijkstra that compute paths or next-hop sets. We
fold the computation of paths or next-hop sets into the metric
(Section IV). This is accomplished in a simple way using a
lexicographic product, and using the results of [16] we show
that unless the original metric is cancellative the modified

metric will not be distributive and Equations (1)-(3) may have
distinct solutions. This application of the A2A method relies
on the use of the general semiring model where ⊕ is associated
with a partial order rather than being restricted to a total order
as in [7].

II. ALGORITHMS

In this section we explore the forwarding paths naturally
produced by Dijkstra’s algorithm and distributed Bellman-
Ford.

A. Routing Metrics

Standard shortest-path algorithms rely on two binary op-
erations, min for comparison of path weights, and + for
computing the weight of a path from its arc weights. If we do
not consider negative weights, then we have a minimal element
0 and a maximal element ∞ used as a weight when there is
no path (addition is extended so that a+∞ =∞+ a =∞).
There is a long history [9], [19], [11], [12], [13] of generalizing
shortest paths to structures called semiring1, which have the
form

(S, ⊕, ⊗, 0 , 1).

We postpone to the next section a more detailed account of
semirings, and present here only a few simple examples that
have proven useful in network routing.

name S ⊕ ⊗ 0 1 paths
sp N∞ min + ∞ 0 shortest
bw N∞ max min 0 ∞ widest
rel [0, 1] max × 0 1 most reliable

Here N∞ ≡ N ∪ {∞} The abstract notation (S,⊕,⊗, 0, 1) is
derived from the familiar ring of real numbers (R,+,×, 0, 1),
which might initially lead to some confusion for shortest paths
where ⊕ = min and ⊗ = +. Semirings differ from rings in
that the additive operation need not admit inverses. That is,
(S,⊕) is only required to be a monoid, not a group. This
allows us to define a non-trivial “natural” order on S:

a ≤⊕ b ≡ a = a⊕ b.

We will also use the notation

a <⊕ b ≡ a = a⊕ b 6= b.

We write a ≤ b and a < b when the operation ⊕ is clear from
context. In the examples listed above this order is total — it is
always true that either a ≤ b or b ≤ a. It is important to note
that this will not be the case for semirings in general, where
≤ is only a partial order.

A graph G = (V,E) weighted over a semiring S can be
represented by an adjacency matrix A, where A(i, j) = 0
exactly when (i, j) 6∈ E. The null path ε is given the weight
1, while a path

p = (v1, v2)(v2, v3) · · · (vk, vk+1) (4)

1We cite the first edition [11] since later editions sadly omitted the semiring
generalization of shortest-paths.
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(a) Weights represent distance. (b) Weights (d, r) represent distance d and reliability r.

Fig. 2: Simple example networks for (a) shortest paths and (b) most reliable shortest-paths.

is given weight

A(v1, v2)⊗A(v2, v3)⊗ · · · ⊗A(vk, vk+1).

Such a path is elementary (or loop free) when k + 1 =
|{v1, v2, · · · vk, vk+1}|. Given A, we define the matrix of
globally optimal path weights as

A∗(i, j) ≡
⊕

p∈P(i,j)

w(p), (5)

where P(i, j) represents the set of all paths from i to j. This
matrix may not be well-defined for some semirings, but all of
the examples presented above are bounded semirings and A∗

is guaranteed to exist (see the next section).

Consider the shortest-paths semiring and the weighted
graph of Figure 2 (a), which can be represented with the
following adjacency matrix.

A =


0 1 2 3 4

0 ∞ 1 ∞ ∞ ∞
1 1 ∞ 2 1 1
2 ∞ 2 ∞ 1 1
3 ∞ 1 1 ∞ ∞
4 ∞ 1 1 ∞ ∞

 (6)

Here it is easy to (visually) check that

A∗ =


0 1 2 3 4

0 0 1 3 2 2
1 1 0 2 1 1
2 3 2 0 1 1
3 2 1 1 0 2
4 2 1 1 2 0

 (7)

is the solution to the all pairs shortest paths problem.

B. Algorithms

If G represents a network of routers, then we can think
of A∗ as resulting from the collective effort of each node i
computing row A∗(i, ) within some type of distributed com-
putation (assuming the network has stabilized). In protocols
such as OSPF and IS-IS each node j floods its link state
{((j, v), A(j, v)) | (j, v) ∈ E} to all other nodes in a network
so that each node i can construct a representation of A and

compute the row A∗(i, ). Typically this computation is done
with some version of Dijkstra’s algorithm. Another common
approach (BGP, RIP) is to use a version of the distributed
Bellman-Ford algorithm where link-states are known only
locally while the computation is distributed [20].

Needless to say, in network routing we are not just inter-
ested in computing the weights of shortest paths as captured
in A∗. After all, the whole point of a routing protocol is
to populate forwarding tables in such a way that traffic can
be forwarded along best paths. There are various ways of
augmenting Dijkstra’s algorithm and Bellman-Ford to record a
shortest path or a set thereof. For example, Cormen et. al. [11]
record a predecessor node π(i, j) ∈ V that is a last-hop on
some shortest path from node i to node j. Relying on this
information is cumbersome in an IP-like next-hop forwarding
context, given that node i needs to work its way backward,
from the destination j through the successive predecessors to
identify the next-hop to forward to. Alternatively, it is easy to
modify that version of the algorithm so that π(i, j) represents
a next-hop or a set thereof, for shortest paths from node i to
node j.

We present versions of these algorithms where π(i, j) is a
set of paths from i to j. Of course this may not be practical
since the size of path sets can grow exponentially in the size of
the network. However, presenting the more general algorithm
allows us to more easily explore which path sets may or may
not be implemented efficiently, say by next-hop sets together
with ECMP forwarding.

Let epaths(E) represent the set of elementary (loop free)
paths over E. If X and Y are subsets of epaths(E), then we
define

X � Y ≡ {pq ∈ epaths(E) | p ∈ X, q ∈ Y }. (8)

That is, X �Y represents the pair-wise concatenation of paths
in X and Y that result in elementary paths.

Figure 3 (a) presents a generalized Dijkstra’s algorithm,
while Figure 3 (b) presents a (model of) distributed Bellman-
Ford. The results of these computations are D ≡ Dn−1 and
π ≡ πn−1. Both algorithms are generalized for semiring
metrics and compute best weights in matrix D and associated



DIJKSTRA GENERIC WITH PATHS(⊕, ⊗, 0, 1, A, i)
(1) for each q ∈ V do D0(i, q)← 0; π0(i, q)← {}
(2) S0 ← {}; D0(i, i)← 1; π0(i, i)← {ε}
(3) for each k = 1, 2, . . . , | V | do
(4) find qk ∈ V − Sk−1 with Dk−1(i, qk) minimal w.r.t. ≤⊕
(5) Sk ← Sk−1 ∪ {qk}
(6) for each j ∈ V − Sk do
(7) if Dk−1(i, qk)⊗A(qk, j) = Dk−1(i, j)
(8) then πk(i, j)← πk−1(i, j) ∪ (πk−1(i, qk) � {(qk, j)})
(9) else if Dk−1(i, qk) ⊗ A(qk, j) <⊕ Dk−1(i, j)
(10) then Dk(i, j)← Dk−1(i, qk)⊗A(qk, j);
(11) πk(i, j)← πk−1(i, qk) � {(qk, j)}

(a) Generalized Dijkstra’s Algorithm, with explicit path computation.

BELLMANFORD GENERIC WITH PATHS(⊕, ⊗, 0, 1, A)
(1) for each i, j ∈ V do D0(i, j)← 0; π0(i, j)← {}
(2) D0(i, i)← 1; π0(i, i)← {ε}
(3) for k ← 1 to | V | −1 do
(4) for each i ∈ V do
(5) for each j ∈ V do
(6) if i = j
(7) then Dk(i, i)← 1; πk(i, i)← {ε}
(8) else Dk(i, j)← 0; πk(i, j)← {}
(9) for each q ∈ V do
(10) if A(i, q)⊗Dk−1(q, j) = Dk(i, j)
(11) then πk(i, j)← πk(i, j) ∪ ({(i, q)} � πk−1(q, j))
(12) else if A(i, q)⊗Dk−1(q, j) <⊕ Dk(i, j)
(13) then Dk(i, j)← A(i, q)⊗Dk−1(q, j);
(14) πk(i, j)← {(i, q)} � πk−1(q, j)

(b) Proxy algorithm for distributed Bellman-Ford, with explicit path computation.

Fig. 3: Generic algorithms computing best path weights together with associated paths. Abstraction with respect to
(min, +, 0). The notation a <⊕ b means that a = a⊕ b 6= b. The results of these computations are D ≡ Dn−1 and π ≡ πn−1.

Each run of Dijkstra’s algorithm computes only the i-th row of D.

path sets in π. Dijkstra’s algorithm takes a node i and com-
putes the i-th row of D, while our version of Bellman-Ford
computes the all-pairs solution in D. Our version of Bellman-
Ford is intended to model the way distributed Bellman-Ford
algorithms work (BGP, RIP) while at the same time ignor-
ing the complexities associated with distributed asynchronous
algorithms. Note that the algorithm never directly compares
Dk(i, j) with Dk−1(i, j) as the Floyd-Warshall algorithm
does [11]. Put another way, there is no memory at node i
recording the best path seen so far to node j. Rather, all paths
are recomputed at each step (value of k) from the paths of the
previous iteration (k − 1).

C. Do the algorithms compute all best paths?

We return to the example illustrated in Figure 2 (a)
and represented by A in Equation 6. If we instantiate the
algorithms of Figure 3 with the shortest path semiring sp ≡
(N∞, min, +, ∞, 0), then both will compute the correct
value D = A∗ of Equation 7 (of course Dijkstra’s algorithm
must be run n times, once for each row of A∗).

In addition, both algorithms compute the same path sets in
the matrix π. For example, it is easy to see that in Figure 2
(a) that there are three paths in both directions between nodes
0 and 2, each with optimal weight 3. Indeed, both algorithms
compute

π(0, 2) = {(0, 1, 2), (0, 1, 3, 2), (0, 1, 4, 2)}
π(2, 0) = {(2, 1, 0), (2, 3, 1, 0), (2, 4, 1, 0)}.

(Note that we normally compress the path representation and
write (0, 1, 4, 2) instead of (0, 1)(1, 4)(4, 2).)

We now turn to simple QoS metrics that are constructed
from the composition of several semirings. We will focus on
the lexicographic product of semirings,

(S,⊕,⊗, 0, 1) ≡ (S1,⊕1,⊗1, 01, 11) ~× (S2,⊕2,⊗2, 02, 12),

that is defined when the order associated with ⊕1 is total.
The carrier set S is S1 × S2. The multiplicative operator ⊗ is
defined point-wise as

(a, b)⊗ (c, d) ≡ (a⊗1 c, b⊗2 d),
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Fig. 4: Widest-shortest paths: weights (d, b) represent
distance d and bandwidth b.

and so the multiplicative identity is 1 ≡ (11, 12). The additive
operator ⊕ is defined as a lexicographic product

(a, b)⊕ (c, d) ≡


(a, b) a <⊕1 c

(c, d) c <⊕1
a

(a, b⊕2 d) otherwise

and it is easy to check that the additive identity is 0 ≡ (01, 02).
This operator introduces the idea of a priority on metrics,
where weights from the second component are used to break
ties when the first components are equal.

Our first example of a lexicographic product is most
reliable shortest-paths modeled with the metric

sp ~× rel = (N∞, min, +, ∞, 0) ~× ([0, 1], max, ×, 0, 1).

An example weighted graph is presented in Figure 2 (b) which
augments the link weights of Figure 2 (a) with link reliabilities.

The optimal weight between 0 and 2 is (3, 0.405) and the
associated paths are given by:

π(0, 2) = {(0, 1, 2), (0, 1, 3, 2)}
π(2, 0) = {(2, 1, 0), (2, 3, 1, 0)}.

These sets exclude the only non-optimal paths (which go
through the link between 1 and 3) with a weight (3, 0.05)

Now consider the metric for widest-shortest paths,

sp ~× bw = (N∞, min, +, ∞, 0) ~× (N∞, max, min, 0, ∞).

Figure 4 augments the link weights of Figure 2 (a) with link
capacities. This graph is then represented as the adjacency
matrix

A =


0 1 2 3 4

0 0 (1, 10) 0 0 0
1 (1, 10) 0 (2, 90) (1, 5) (1, 100)
2 0 (2, 90) 0 (1, 100) (1, 100)
3 0 (1, 5) (1, 100) 0 0
4 0 (1, 100) (1, 100) 0 0


Running either of our algorithms (Dijkstra n times) results in

an all-pairs matrix D = A∗,


0 1 2 3 4

0 (0,∞) (1, 10) (3, 10) (2, 5) (2, 10)
1 (1, 10) (0,∞) (2, 100) (1, 5) (1, 100)
2 (3, 10) (2, 100) (0,∞) (1, 100) (1, 100)
3 (2, 5) (1, 5) (1, 100) (0,∞) (2, 100)
4 (2, 10) (1, 100) (1, 100) (2, 100) (0,∞)


Note that the first component of each entry corresponds to
the shortest-path weight, while the second corresponds to the
largest capacity among the shortest paths. We can see (by
inspection) that there are now only two paths in each direction
between nodes 0 and 2, each with optimal weight (3, 10):

πoptimal(0, 2) = {(0, 1, 2), (0, 1, 4, 2)}
πoptimal(2, 0) = {(2, 1, 0), (2, 4, 1, 0)}

Paths (0, 1, 3, 2) and (2, 3, 1, 0), each of weight (3, 5), are now
eliminated due to the bottleneck link between nodes 1 and 3.

However, we can check that neither of our algorithms now
computes these paths! It is not too hard to check that Dijkstra’s
algorithm computes the following paths between nodes 0 and
2.

πDijkstra(0, 2) = {(0, 1, 2), (0, 1, 4, 2)}
πDijkstra(2, 0) = {(2, 4, 1, 0)}

That is, when computing from the source node i = 2, Dijkstra’s
algorithm will find only the path (2, 4, 1, 0) and miss the path
(2, 1, 0). One way of understanding this is that when node
i runs this algorithm and inserts node 1 into the set S it has
found this node along path (2, 4, 1) which has weight (2, 100),
which is better than (2, 90), the link weight of arc (2, 1). Note
also that the best path from node 1 to node 2 is not next-hop
consistent with path (0, 1, 2),

πDijkstra(1, 2) = {(1, 4, 2)}

In other words, for destination 2, both paths from node 0
collapse to the same next hop entry (go to node 1), and node
1 knows only one path (with next-hop 4). To implement both
paths we would need some form of tunneling from node 0 to
node 2.

On the other hand, our Bellman-Ford algorithm computes
the following paths between nodes 0 and 2.

πBellman(0, 2) = {(0, 1, 4, 2)}
πBellman(2, 0) = {(2, 1, 0), (2, 4, 1, 0)}

Note that in this case only path (0, 1, 4, 2) is computed
while path (0, 1, 2) is not. However, by construction all paths
computed can be implemented with next-hop and ECMP
forwarding. (It is not always the case, as it is here due to
the simplicity of the example, that the optimal paths can be
obtained from a union of the paths computed by the two
algorithms.)

In summary, we see that Bellman-Ford and Dijkstra com-
pute different sets of paths, and that neither algorithm can
compute all widest-shortest paths. In addition, some paths
computed by Dijkstra’s algorithm cannot be implemented with
next-hop forwarding. In the next two sections we provide a
general algebraic framework that helps clarify such anomalies.



III. SEMIRINGS AND BEYOND

In this section we first provide more details on the
semiring-based approach to path finding. Results stated without
proof or citation are standard and can be found in [9], [19],
[11], [12], [13]. We then review recent results that move
beyond semirings by dropping some of the semiring axioms.

A. Semirings axioms

The structure (S,⊕,⊗, 0, 1) is a semiring when

• ⊕ and ⊗ are associative binary operators over S

• ⊕ is commutative

• 0 is the identity for ⊕

• 1 is the identity for ⊗

• 0 is an annihilator for ⊗, a⊗ 0 = 0⊗ a = 0

and left and right distributivity hold,

LD : a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)
RD : (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c)

All of the examples we consider are also idempotent, where

a = a⊕ a.

The order ≤⊕ is then a partial order. It is a total order when
⊕ is selective,

a⊕ b ∈ {a, b}.

A semiring is bounded when the multiplicative identity is also
an additive annihilator,

a⊕ 1 = 1⊕ a = 1.

In this case we have for every a, 1 ≤⊕ a ≤⊕ 0.

B. Matrix Iterations, Equations

We can extend the operations of a semiring S to the
collection of square matrices of order n over S in a natural
way. For any two such matrices X, Y addition is defined as

(X⊕Y)(i, j) ≡ X(i, j)⊕Y(i, j)

and multiplication as

(X⊗Y)(i, j) ≡
⊕
q∈V

X(i, q)⊗Y(q, j).

Here we assume for the sake of convenience that the matrix
indices range over V . The matrix

I(i, j) =

{
1 (i = j)
0 (otherwise)

is the multiplicative identity, while the matrix where all its
entries are 0 is the additive identity. It is not too hard to show
that the collection of all such matrices forms a semiring.

There are many algorithms for computing A∗, when it
exists, and here we present only two iterative methods. Left
iteration is defined as

A〈0〉 ≡ I
A〈k+1〉 ≡ (A⊗A〈k〉)⊕ I

while right iteration is defined as
〈0〉A ≡ I

〈k+1〉A ≡ (〈k〉A⊗A)⊕ I.

For bounded semirings it turns out that we need only iterate
n− 1 times to converge to A∗,

A∗ = A〈n−1〉 = 〈n−1〉A.

In other words, we have

A〈n−1〉 = (A⊗A〈n−1〉)⊕ I
〈n−1〉A = (〈n−1〉A⊗A)⊕ I,

and thus we have also solved the matrix equations

L = (A⊗ L)⊕ I, (9)

R = (R⊗A)⊕ I. (10)

C. Semiring of elementary paths

Here we introduce a semiring that is associated with only
a partial order — the semiring of elementary paths (sep). The
carrier set is the power set of all elementary paths epaths(E),
the additive operation is union, and the multiplicative operation
is � (defined in Equation 8),

name S ⊕ ⊗ 0 1

sep P(epaths(E)) ∪ � {} {ε}

The adjacency matrix B for graph G = (V,E) is defined
as

B(i, j) =

{
{(i, j)} (i, j) ∈ E
{} (i, j) 6∈ E.

It is not hard to check [10] that

B∗(i, j) = the set of all elementary paths from i to j.

This results holds even though the semiring sep is not closed
— the additive annihilator (epaths(E)) is not equal to the mul-
tiplicative identity ({ε}). This semiring will play an important
role in the next section.

D. On the loss of distributivity

As mentioned in the introduction, research initially inspired
by BGP has forced us to consider algebraic structures that
violate some of the semiring axioms [21], [22], [14]. The most
common violations seen are related to a loss of distributivity
of ⊗ over ⊕. Examples of such violations are most easily ex-
hibited using the lexicographic product defined in the previous
section.

Let us consider only the axiom for left distributivity,

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c).

When instantiating this with the result of a lexicographic
product of two semirings

(S,⊕,⊗, 0, 1) ≡ (S1,⊕1,⊗1, 01, 11) ~× (S2,⊕2,⊗2, 02, 12),

we have for the left-hand-side of the distributivity axiom

lhs ≡ (a1, a2)⊗ ((b1, b2)⊕ (c1, c2)).



By the definitions of ⊕ and ⊗ (Section II-C) we see that there
are three possibilities,

lhs when
lhs.1 (a1 ⊗1 b1, a2 ⊗2 b2) b1 <⊕1 c1
lhs.2 (a1 ⊗1 c1, a2 ⊗2 c2) c1 <⊕1 b1
lhs.3 (a1 ⊗1 b1, a2 ⊗2 (b2 ⊕2 c2)) otherwise

Now consider the righ-hand-side,

rhs ≡ ((a1, a2)⊗ (b1, b2))⊕ ((a1, a2)⊗ (c1, c2))
= (a1 ⊗1 b1, a2 ⊗2 b2)⊕ (a1 ⊗1 c1, a2 ⊗2 c2)

where again there are three possibilities,

rhs when
rhs.1 (a1 ⊗1 b1, a2 ⊗2 b2) a1 ⊗1 b1 <⊕1

a1 ⊗1 c1
rhs.2 (a1 ⊗1 c1, a2 ⊗2 c2) a1 ⊗1 c1 <⊕1

a1 ⊗1 b1
rhs.3 (a1 ⊗1 b1, a2 ⊗2 (b2 ⊕2 c2)) otherwise

We simplified case rhs.3 using distributivity on (a2⊗2 b2)⊕2

(a2 ⊗2 c2). Clearly, in order to guarantee that lhs = rhs we
would like to have, for all x, y, z,

x <⊕1
y =⇒ z ⊗1 x <⊕1

z ⊗1 y.

Unfolding the definition of <⊕1 , we need

x = x⊕1 y 6= y =⇒ z⊗1 x = (z⊗1 x)⊕1 (z⊗1 y) 6= z⊗1 y,

or

(1) x = x⊕1 y =⇒ z ⊗1 x = (z ⊗1 x)⊕1 (z ⊗1 y)
= z ⊗1 x = z ⊗1 (x⊕1 y)

(2) x⊕1 y 6= y =⇒ (z ⊗1 x)⊕1 (z ⊗1 y) 6= z ⊗1 y
= z ⊗1 (x⊕1 y) 6= z ⊗1 y

Since (1) always holds, we are left with (2), which can be
simplified to

w 6= y =⇒ z ⊗1 w 6= z ⊗1 y.

This is simply the contrapositive of what is normally called
(left) cancellativity for the multiplicative component ⊗1,

∀w, y ∈ S1, z ∈ S1\{01}, z ⊗1 w = z ⊗1 y =⇒ w = y

Without cancellativity the left-hand side may fall into cases
lhs.1 or lhs.2, while the right-hand side falls into case rhs.3
because with a1⊗1 b1 = a1⊗1 c1. Assume we have lhs.1, then
a problem will arise if we can select values in S1 so that

lhs ≡ (a1⊗1b1, a2⊗2b2) 6= (a1⊗1b1, a2⊗2(b2⊕2c2)) ≡ rhs.

If the semiring (S2,⊕2,⊗2, 02, 12) is non-trivial, then we
should be able to find such values unless ⊗2 is itself somewhat
trivial in that it is (left) constant,

∀z, y, z ∈ S2, z ⊗2 x = z ⊗2 y.

For right distributivity analogous results hold using corre-
sponding notions of right cancellative and right constant op-
erations. An algebraic structure is distributive, multiplicatively
cancellative or constant, if both the left and right versions of
the properties hold.

Putting this together we have the following theorem [16].

0

1

23 4(5, 1)(5, 1)

(10, 1)

(5, 1) (10, 5)

(5, 1)

(5, 4)

Fig. 5: Shortest widest-paths example from [14] that gives
three distinct solutions for A∗, L, and R.

Theorem 1. The lexicographic product of two semirings is
distributive if and only if the two components are distributive
and ⊗1 is cancellative or ⊗2 is constant2.

Consider the three examples,

definition distributive?
most reliable shortest-paths mrsp ≡ sp ~× rel Yes

widest shortest-paths wsp ≡ sp ~× bw Yes
shortest widest-paths swp ≡ bw ~× sp No

The example swp, shortest widest-paths, is not a semiring [7]
because the multiplicative operation of min is not cancellative
and it appears in the first component of the composite semiring.
Thus for semirings, use of concave metrics, such as bandwidth,
is restricted to all but the last component in a sequence of
lexicographic compositions.

Figure 5 presents shortest widest-paths example from [14]
that gives three distinct solutions for A∗, L, and R. Here we
have

A∗ =


0 1 2 3 4

0 (∞, 0) (5, 1) (0,∞) (0,∞) (0,∞)
1 (0,∞) (∞, 0) (0,∞) (0,∞) (0,∞)
2 (5, 2) (5, 3) (∞, 0) (5, 1) (5, 2)
3 (10, 6) (5, 2) (5, 2) (∞, 0) (10, 1)
4 (10, 5) (5, 4) (5, 1) (5, 2) (∞, 0)



L =


0 1 2 3 4

0 (∞, 0) (5, 1) (0,∞) (0,∞) (0,∞)
1 (0,∞) (∞, 0) (0,∞) (0,∞) (0,∞)
2 (5,7) (5, 3) (∞, 0) (5, 1) (5, 2)
3 (10, 6) (5, 2) (5, 2) (∞, 0) (10, 1)
4 (10, 5) (5, 4) (5, 1) (5, 2) (∞, 0)



R =


0 1 2 3 4

0 (∞, 0) (5, 1) (0,∞) (0,∞) (0,∞)
1 (0,∞) (∞, 0) (0,∞) (0,∞) (0,∞)
2 (5, 2) (5, 3) (∞, 0) (5, 1) (5, 2)
3 (10, 6) (5,6) (5, 2) (∞, 0) (10, 1)
4 (10, 5) (5,5) (5, 1) (5, 2) (∞, 0)


The bold entries in L and R highlight where they differ from
A∗.

2The constant condition may appear at first glance to be rather silly, but it
was put to good use in modeling the eBGP/iBGP distinction with the definition
of the scoped product [16].



IV. FOLDING PATHS INTO THE METRIC

We now have most of the concepts and results needed to
explain the path anomalies described in Section II. Suppose
that

metric ≡ (S1, ⊕1, ⊗1, 01, 11)

is a bounded and totally ordered semiring. We then fold
the path computations into the metric using the semiring
of elementary paths (sep, defined in Section III-C) and the
lexicographic product,

guarded(metric) ≡ metric ~× sep.

We call this a guarded algebra of paths over the semiring
metric. Using the results of the previous section and the fact
that the multiplicative component of sep is not constant, we
conclude that guarded(metric) will be a semiring exactly
when the multiplicative operation of metric is cancellative.

If metric is not cancellative, then guarded(metric) will not
be a semiring (due to a lack of distributivity) and we conclude
that guarded(metric) can exhibit the same kind of behavior
as shortest widest-paths described in the Section III-D. That
is, there may be networks with three distinct solutions for A∗,
L, and R.

Let us consider three examples.

metric Is guarded(metric) a semiring?
sp Yes

mrsp Yes
wsp No, since wsp is not cancellative.

The first two semirings, sp and mrsp, are cancellative and so
the guarded algebra is a semiring and we would expect A∗ =
L = R. However, wsp is not cancellative, so guarded(wsp) is
not a semiring and the algebra can exhibit different solutions
depending on the algorithm used.

Only two things remain to be shown. First, that when the
Bellman-Ford algorithm of Figure 3 (b) is instantiated with
the semiring metric it is really computing a a left solution
L for the algebra guarded(metric). Second, when Dijkstra’s
algorithm of Figure 3 (a) is instantiated with the semiring
metric it is really computing (the i-th row of) a right solution
R for guarded(metric).

A. Application of A2A method to Bellman-Ford

Recall the definition of matrix multiplication from Sec-
tion III-B, which is presented in an algebraic style,

(A⊗Y)(i, j) ≡
⊕
q∈V

A(i, q)⊗Y(q, j).

We could rewrite this in a more algorithmic style, putting the
results of multiplication in matrix L as

L← A⊗Y.

Unfolding this even further we arrive at a standard algorithm
for matrix multiplication,

(1) for each i ∈ V do
(2) for each j ∈ V do
(3) L(i, j)← 0;
(4) for each q ∈ V do
(5) L(i, j)← L(i, j)⊕ (A(i, q)⊗Y(q, j))

Note that line (3) initializes L(i, j) while lines (4) and (5)
accumulate the sum as q ranges over V .

Next, consider how we could modify this algorithm to
compute

L← (A⊗Y)⊕ I.

There are several ways to do this, but we will add a condition
for i = j,

(1) for each i ∈ V do
(2) for each j ∈ V do
(3) if i = j
(4) then L(i, j)← I(i, j)
(5) else L(i, j)← 0
(6) for each q ∈ V do
(7) L(i, j)← L(i, j)⊕ (A(i, q)⊗Y(q, j))

We can now modify this algorithm to capture the (left) iteration
described in Section III-B,

A〈0〉 ≡ I
A〈k+1〉 ≡ (A⊗A〈k〉)⊕ I

where at each step k we will store the result A〈k〉 in Lk,

ITERATION GENERIC(⊕, ⊗, 0, 1, A)
(0) L0 ← I
(1) for k ← 1 to | V | −1 do
(2) for each i ∈ V do
(3) for each j ∈ V do
(4) if i = j
(5) then Lk(i, j)← I(i, j)
(6) else Lk(i, j)← 0;
(7) for each q ∈ V do
(8) Lk(i, j)←

Lk(i, j)⊕ (A(i, q)⊗ Lk−1(q, j))

This is beginning to resemble the Bellman-Ford algorithm of
Figure 3 (b)! However that algorithm is working with two
matrices, Dk and πk, a ⊕ defined as the lexicographic product
of ⊕1 and ⊕2 = ∪, and a ⊗ defined as the direct product of
⊗1 and ⊗2 = �.

Some additional notation will be helpful. Suppose that X
is a matrix with entries in S1, and Y is a matrix with entries
in S2. If X and Y are the same size, then we can define the
matrix LX, YM over entries in S1 × S2 as

LX, YM(i, j) ≡ (X(i, j), Y(i, j)).

Now consider instantiating ITERATION GENERIC with the
algebra guarded(metric). We can express an adjacency matrix
over this algebra as LA, BM, where A is the adjacency matrix
for the semiring metric and B is the adjacency matrix for sep,
as described in Section III-C. Define

Lk ≡ LDk, πkM.

Then lines (1)− (2) of Figure 3 (b) can be seen to correspond
to line (0) of ITERATION GENERIC

LD0, π0M← LI1, I2M

where I1 and I2 are the multiplicative identity matrices for
semiring metric and sep, respectively. Similar observations
can be made to see that lines (7) − (8) of Figure 3 (b)
correspond to lines (4)− (5) of ITERATION GENERIC.



DIJKSTRA GENERIC(⊕, ⊗, 0, 1, A, i)
(1) for each q ∈ V do R0(i, q)← 0
(2) S0 ← {}; R0(i, i)← 1
(3) for each k = 1, 2, . . . , | V | do
(4) find qk ∈ V − Sk−1 with Rk−1(i, q) ≤⊕-minimal
(5) Sl ← Sk−1 ∪ {qk}
(6) for each j ∈ V − Sk do
(7) Rk(i, j)←

Rk−1(i, j)⊕ (Rk−1(i, qk)⊗A(qk, j))

Fig. 6: Dijkstra’s Algorithm Generalized to a totally ordered
semiring [10], [12], [13].

DIJKSTRA GUARDED(⊕, ⊗, 0, 1, A, i)
(1) for each q ∈ V do R0(i, q)← 0
(2) S0 ← {}; R0(i, i)← 1
(3) for each k = 1, 2, . . . , | V | do
(4) find qk ∈ V − Sk−1 with Rk−1(i, qk) ≤1-minimal
(5) Sk ← Sk−1 ∪ {qk}
(6) for each j ∈ V − Sk do
(7) Rk(i, j)←

Rk−1(i, j) ⊕ (Rk−1(i, qk) ⊗̄ A(qk, j))

Fig. 7: Dijkstra’s algorithm for guarded semirings. Order
only first component of the guarded semiring. Only assume

that algebra is guarded, so we are working over an algebra of
the form (S,⊕,⊗, 0, 1) = guarded(metric).

The only remaining line to consider is line (8) of
ITERATION GENERIC. By using LDk, πkM for Lk and un-
folding the definition of ⊗ (Section II-C) we can rewrite this
line as

LDk, πkM(i, j)←
LDk, πkM(i, j)
⊕(A(i, q)⊗1 Dk−1(q, j), {(i, q)} � πk−1(q, j)).

Finally, by unfolding the definition of the lexicographic ⊕
(Section II-C), and recalling that ∪ is the additive operation of
sep, this line can be expressed more algorithmically exactly
as lines (10)− (14) of Figure 3 (b),

(10) if A(i, q)⊗Dk−1(q, j) = Dk(i, j)
(11) then πk(i, j)← πk(i, j) ∪ ({(i, q)} � πk−1(q, j))
(12) else if A(i, q)⊗Dk−1(q, j) <⊕ Dk(i, j)
(13) then Dk(i, j)← A(i, q)⊗Dk−1(q, j);
(14) πk(i, j)← {(i, q)} � πk−1(q, j)

B. Application of A2A method to Dijkstra

Figure 6 presents a generic version of Dijkstra’s algorithm
for totally ordered closed semirings [10], [12], [13]. It is fairly
easy to show, by induction on k, that the k-th iteration of
this algorithm computes the i-th row of a right-local (partial)
solution for elements of Sk.

Theorem 2. For all k such that 0 6 k 6 |V |, we have that:

∀ j ∈ V : Rk(i, j) = I(i, j) ⊕
⊕
q∈Sk

(Rk(i, q) ⊗ A(q, j))

Letting R ≡ Rn and noting that Sn = V , we then have

∀ j ∈ V : R(i, j) = I(i, j) ⊕
⊕
q∈V

(R(i, q) ⊗ A(q, j)).

That is, Figure 6 computes the i-th row of a right solution,

R = (R⊗A)⊕ I.

It is tempting to instantiate the algorithm of Figure 6
with a guarded(metric) and to use it to solve the associated
path problem. This approach would unfortunately fail, since
DIJKSTRA GENERIC requires ≤⊕ to be total, something which
is not true for a guarded(metric). The semiring of elementary
paths, sep, uses set union as its additive law and the associated
order is partial. As a consequence, the order associated with the
additive law of any guarded(metric) is also partial. However,
as our starting point, DIJKSTRA GENERIC WITH PATHS, does
not use at all the order associated with the paths, only the one
associated with the metric. This motivates us to alter Line (4)
of DIJKSTRA GENERIC by introducing a special version of
the order

(a, b) ≤1 (c, d) ≡ a ≤⊕1
c

The resulting algorithm, DIJKSTRA GUARDED, can be instan-
tiated to a guarded(metric).

It is then possible to modify the proof of Theorem 2 and
conclude that for the new algorithm of Figure 7 we have for
all j ∈ V ,

R(i, j) = LI1, I2M(i, j) ⊕
⊕
q∈V

(R(i, q) ⊗ LA, BM(q, j)).

That is, we have solved for the i-th row of a right solution to
equation

R = (R⊗ LA, BM)⊕ LI1, I2M.

Lastly, we need to check that the algorithm of Figure 7
instantiated to guarded(metric) computes the same result as
the the algorithm of Figure 3 (a) when instantiated with the
semiring metric. This can be accomplished by defining

Rk ≡ LDk, πkM.

and then applying the same type of algorithmic unfolding as
was used above for Bellman-Ford.

V. OPEN PROBLEMS

Some researchers have argued that ECMP does not result
in a sufficient diversity of paths and our results can be seen as
strengthening this argument. Proposals have been made to use
not just best the paths, but k-best paths, for some small values
of k, while at the same time avoiding forwarding loops [23],
[24], [25], [26]. Since the metric for k-best paths can be
captured using a semiring [27], [12] it might be interesting to
see if the A2A method described in Section I could be applied
to an analysis of these proposals to move beyond ECMP.

IP routing protocols normally do not propagate addresses,
but rather prefixes representing sets of addresses. Connectivity
is implemented with forwarding tables containing prefixes
together with longest match forwarding. We could model this
with the A2A method by using an approach similar to [17]
— with the prefix length as a part of the routing metric as



a cold potato value preferring longer masks — combined
with exact match forwarding. (This is an example where the
A2A method would be applied only to build a model since
implementing forwarding this way could lead to exponentially
large forwarding tables.). The real difficulty would then be to
model the issues of route aggregation that have been described
in [28]. This would most likely lead to metrics that are not
semirings.
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