## Complexity Theory

Lecture 7: Reductions beyond graphs

## Tom Gur

http://www.cl.cam.ac.uk/teaching/2324/Complexity

- A problem is $\mathcal{N} \mathcal{P}$-hard if any language in $\mathcal{N} \mathcal{P}$ is reducible to it.
- A problem is $\mathcal{N} \mathcal{P}$-hard if any language in $\mathcal{N P}$ is reducible to it.
- A problem is $\mathcal{N} \mathcal{P}$-complete if it is: (1) $\mathcal{N} \mathcal{P}$-hard, (2) in $\mathcal{N} \mathcal{P}$.
- A problem is $\mathcal{N} \mathcal{P}$-hard if any language in $\mathcal{N P}$ is reducible to it.
- A problem is $\mathcal{N} \mathcal{P}$-complete if it is: (1) $\mathcal{N} \mathcal{P}$-hard, (2) in $\mathcal{N} \mathcal{P}$.
- Cook-Levin Theorem: 3SAT is $\mathcal{N} \mathcal{P}$-complete.


## Recap

- A problem is $\mathcal{N P}$-hard if any language in $\mathcal{N P}$ is reducible to it.
- A problem is $\mathcal{N} \mathcal{P}$-complete if it is: (1) $\mathcal{N} \mathcal{P}$-hard, (2) in $\mathcal{N} \mathcal{P}$.
- Cook-Levin Theorem: 3SAT is $\mathcal{N} \mathcal{P}$-complete.
- Using 3SAT, we can establish NP-completeness of many problems (e.g., IS, Clique, Hamiltonicity, TSP).


## Protip

Research is not just about finding answers - it's also about asking the right questions!

## Protip

Research is not just about finding answers - it's also about asking the right questions!

What are the big questions at this stage?

## k-Colourability

A graph $G=(V, E)$ is $k$-colourable, if there is a function

$$
\chi: V \rightarrow\{1, \ldots, \mathrm{k}\}
$$

such that, for each $u, v \in V$, if $(u, v) \in E$,

$$
\chi(\mathrm{u}) \neq \chi(\mathrm{v})
$$

## k-Colourability

A graph $G=(V, E)$ is $k$-colourable, if there is a function

$$
\chi: V \rightarrow\{1, \ldots, \mathrm{k}\}
$$

such that, for each $u, v \in V$, if $(u, v) \in E$,

$$
\chi(\mathrm{u}) \neq \chi(\mathrm{v})
$$



## k-Colourability

A graph $G=(V, E)$ is $k$-colourable, if there is a function

$$
\chi: \mathrm{V} \rightarrow\{1, \ldots, \mathrm{k}\}
$$

such that, for each $u, v \in V$, if $(u, v) \in E$,

$$
\chi(\mathrm{u}) \neq \chi(\mathrm{v})
$$

This gives rise to a decision problem for each k .

## k-Colourability

A graph $G=(V, E)$ is $k$-colourable, if there is a function

$$
\chi: \mathrm{V} \rightarrow\{1, \ldots, \mathrm{k}\}
$$

such that, for each $u, v \in V$, if $(u, v) \in E$,

$$
\chi(\mathrm{u}) \neq \chi(\mathrm{v})
$$

This gives rise to a decision problem for each k .
2-colourability is in P. (How to intimidate your Google interviewer...)

## k-Colourability

A graph $G=(V, E)$ is $k$-colourable, if there is a function

$$
\chi: \mathrm{V} \rightarrow\{1, \ldots, \mathrm{k}\}
$$

such that, for each $u, v \in V$, if $(u, v) \in E$,

$$
\chi(\mathrm{u}) \neq \chi(\mathrm{v})
$$

This gives rise to a decision problem for each k .
2-colourability is in P. (How to intimidate your Google interviewer...)
For all $\mathrm{k}>2$, k -colourability is NP-complete.

## 3-Colourability

3-Colourability is in NP, as we can guess a colouring and verify it.

## 3-Colourability

3-Colourability is in NP, as we can guess a colouring and verify it.

To show NP-completeness, we can construct a reduction from 3SAT to 3-Colourability.

## 3-Colourability

3-Colourability is in NP, as we can guess a colouring and verify it.

To show NP-completeness, we can construct a reduction from 3SAT to 3-Colourability.

For each variable x , we have two vertices $\mathrm{x}, \overline{\mathrm{x}}$ which are connected in a triangle with the vertex a (common to all variables).

## 3-Colourability

3-Colourability is in NP, as we can guess a colouring and verify it.

To show NP-completeness, we can construct a reduction from 3SAT to 3-Colourability.

For each variable x , we have two vertices $\mathrm{x}, \overline{\mathrm{x}}$ which are connected in a triangle with the vertex a (common to all variables).

In addition, for each clause containing the literals $l_{1}, l_{2}$ and $l_{3}$ we have a gadget.

## Gadget



## Gadget



## Gadget



With a further edge from a to b .

Beyond graph problems

## Sets, Numbers and Scheduling

It is not just problems about formulas and graphs that turn out to be NP-complete.

## Sets, Numbers and Scheduling

It is not just problems about formulas and graphs that turn out to be NP-complete.

Literally thousands of naturally arising problems have been proved NP-complete, in areas involving network design, scheduling, optimisation, data storage and retrieval, artificial intelligence and many others.

## Sets, Numbers and Scheduling

It is not just problems about formulas and graphs that turn out to be NP-complete.

Literally thousands of naturally arising problems have been proved NP-complete, in areas involving network design, scheduling, optimisation, data storage and retrieval, artificial intelligence and many others.

Such problems arise naturally whenever we have to construct a solution within constraints, and the most effective way appears to be an exhaustive search of an exponential solution space.

## Sets, Numbers and Scheduling

It is not just problems about formulas and graphs that turn out to be NP-complete.

Literally thousands of naturally arising problems have been proved NP-complete, in areas involving network design, scheduling, optimisation, data storage and retrieval, artificial intelligence and many others.

Such problems arise naturally whenever we have to construct a solution within constraints, and the most effective way appears to be an exhaustive search of an exponential solution space.

We now examine three more NP-complete problems, whose significance lies in that they have been used to prove a large number of other problems NP-complete, through reductions.

## 3D Matching



## 3D Matching

The decision problem of 3D Matching is defined as: Given three disjoint sets X, Y and Z, and a set of triples $\mathrm{M} \subseteq \mathrm{X} \times \mathrm{Y} \times \mathrm{Z}$, does M contain a matching?
I.e. is there a subset $\mathrm{M}^{\prime} \subseteq \mathrm{M}$, such that each element of $\mathrm{X}, \mathrm{Y}$ and Z appears in exactly one triple of $\mathrm{M}^{\prime}$ ?

## 3D Matching

The decision problem of 3D Matching is defined as: Given three disjoint sets X, Y and Z, and a set of triples $\mathrm{M} \subseteq \mathrm{X} \times \mathrm{Y} \times \mathrm{Z}$, does M contain a matching?
I.e. is there a subset $\mathrm{M}^{\prime} \subseteq \mathrm{M}$, such that each element of $\mathrm{X}, \mathrm{Y}$ and Z appears in exactly one triple of $\mathrm{M}^{\prime}$ ?

## 3D Matching

The decision problem of 3D Matching is defined as: Given three disjoint sets X, Y and Z, and a set of triples $\mathrm{M} \subseteq \mathrm{X} \times \mathrm{Y} \times \mathrm{Z}$, does M contain a matching?
I.e. is there a subset $\mathrm{M}^{\prime} \subseteq \mathrm{M}$, such that each element of $\mathrm{X}, \mathrm{Y}$ and Z appears in exactly one triple of $\mathrm{M}^{\prime}$ ?

We can show that 3DM is NP-complete by a reduction from 3SAT.

## Reduction

If a Boolean expression $\phi$ in 3CNF has $n$ variables, and $m$ clauses, we construct for each variable v the following gadget.


In addition, for every clause $c$, we have two elements $\mathrm{x}_{\mathrm{c}}$ and $\mathrm{y}_{\mathrm{c}}$.
If the literal v occurs in c, we include the triple

$$
\left(\mathrm{x}_{\mathrm{c}}, \mathrm{y}_{\mathrm{c}}, \mathrm{z}_{\mathrm{vc}}\right)
$$

in M.

In addition, for every clause $c$, we have two elements $\mathrm{x}_{\mathrm{c}}$ and $\mathrm{y}_{\mathrm{c}}$.
If the literal v occurs in c , we include the triple

$$
\left(\mathrm{x}_{\mathrm{c}}, \mathrm{y}_{\mathrm{c}}, \mathrm{z}_{\mathrm{vc}}\right)
$$

in M.

Similarly, if $\neg \mathrm{v}$ occurs in c , we include the triple

$$
\left(\mathrm{x}_{\mathrm{c}}, \mathrm{y}_{\mathrm{c}}, \overline{\mathrm{z}}_{\mathrm{vc}}\right)
$$

in M.
Finally, we include extra dummy elements in X and Y to make the numbers match up.

## Set Cover



## Exact Set Covering

Two other well known problems are proved NP-complete by immediate reduction from 3DM.

## Exact Set Covering

Two other well known problems are proved NP-complete by immediate reduction from 3DM.

Exact Cover by 3-Sets is defined by: Given a set U with 3 n elements, and a collection $\mathrm{S}=$ $\left\{S_{1}, \ldots, S_{\mathrm{m}}\right\}$ of three-element subsets of U , is there a subcollection containing exactly $n$ of these sets whose union is all of U?

## Exact Set Covering

Two other well known problems are proved NP-complete by immediate reduction from 3DM.

Exact Cover by 3-Sets is defined by: Given a set U with 3 n elements, and a collection $\mathrm{S}=$ $\left\{S_{1}, \ldots, S_{\mathrm{m}}\right\}$ of three-element subsets of U , is there a subcollection containing exactly $n$ of these sets whose union is all of U?

## Exact Set Covering

Two other well known problems are proved NP-complete by immediate reduction from 3DM.

Exact Cover by 3-Sets is defined by: Given a set U with 3 n elements, and a collection $\mathrm{S}=$ $\left\{S_{1}, \ldots, S_{\mathrm{m}}\right\}$ of three-element subsets of U , is there a subcollection containing exactly $n$ of these sets whose union is all of U?

The reduction from 3DM simply takes $U=X \cup Y \cup Z$, and $S$ to be the collection of three-element subsets resulting from M.

## Set Covering

More generally, we have the Set Covering problem: Given a set $U$, a collection $S=\left\{S_{1}, \ldots, S_{m}\right\}$ of subsets of $U$ and an integer budget $B$, is there a collection of $B$ sets in $S$ whose union is U?

## Knapsack



## Knapsack

KNAPSACK is a problem which generalises many natural scheduling and optimisation problems, and through reductions has been used to show many such problems NP-complete.

## Knapsack

KNAPSACK is a problem which generalises many natural scheduling and optimisation problems, and through reductions has been used to show many such problems NP-complete.

In the problem, we are given $n$ items, each with a positive integer value $\mathrm{v}_{\mathrm{i}}$ and weight $\mathrm{w}_{\mathrm{i}}$.

We are also given a maximum total weight W , and a minimum total value V.

Can we select a subset of the items whose total weight does not exceed W, and whose total value is at least V?

## Reduction

The proof that KNAPSACK is NP-complete is by a reduction from the problem of Exact Cover by 3-Sets.

## Reduction

The proof that KNAPSACK is NP-complete is by a reduction from the problem of Exact Cover by 3-Sets.

Given a set $\mathrm{U}=\{1, \ldots, 3 \mathrm{n}\}$ and a collection of 3 -element subsets of $\mathrm{U}, \mathrm{S}=\left\{\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{m}}\right\}$.

We map this to an instance of KNAPSACK with $m$ elements each corresponding to one of the $S_{i}$, and having weight and value

$$
\sum_{\mathrm{j} \in \mathrm{~S}_{\mathrm{i}}}(\mathrm{~m}+1)^{\mathrm{j}-1}
$$

and set the target weight and value both to

$$
\sum_{j=0}^{3 n-1}(m+1)^{j}
$$

## Scheduling

Some examples of the kinds of scheduling tasks that have been proved NP-complete include:

## Timetable Design

Given a set H of work periods, a set W of workers each with an associated subset of H (available periods), a set T of tasks and an assignment $\mathrm{r}: \mathrm{W} \times \mathrm{T} \rightarrow \mathbb{N}$ of required work, is there a mapping $\mathrm{f}: \mathrm{W} \times \mathrm{T} \times \mathrm{H} \rightarrow\{0,1\}$ which completes all tasks?

## Scheduling

## Sequencing with Deadlines

Given a set $T$ of tasks and for each task a length $l \in \mathbb{N}$, a release time $r \in \mathbb{N}$ and a deadline $d \in \mathbb{N}$, is there a work schedule which completes each task between its release time and its deadline?

## Scheduling

## Sequencing with Deadlines

Given a set $T$ of tasks and for each task a length $l \in \mathbb{N}$, a release time $r \in \mathbb{N}$ and a deadline $d \in \mathbb{N}$, is there a work schedule which completes each task between its release time and its deadline?

## Scheduling

## Sequencing with Deadlines

Given a set $T$ of tasks and for each task a length $l \in \mathbb{N}$, a release time $\mathrm{r} \in \mathbb{N}$ and a deadline $\mathrm{d} \in \mathbb{N}$, is there a work schedule which completes each task between its release time and its deadline?

Job Scheduling
Given a set $T$ of tasks, a number $m \in \mathbb{N}$ of processors a length $l \in \mathbb{N}$ for each task, and an overall deadline $D \in \mathbb{N}$, is there a multi-processor schedule which completes all tasks by the deadline?

## Food for thought:

Outside of P , is everything NP-hard?

