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A problem is NP-hard if any language in NP is reducible to it.
A problem is N'P-complete if it is: (1) N'P-hard, (2) in NP.
Cook-Levin Theorem: 3SAT is N'P-complete.

Using 3SAT, we can establish NP-completeness of many problems
(e.g., IS, Clique, Hamiltonicity, TSP).
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What are the big questions at this stage?
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k-Colourability

A graph is k-colourable, if there is a function

such that, for each , if ,

This gives rise to a decision problem for each
-colourability is in P. (How to intimidate your Google interviewer...)

For all , k-colourability is NP-complete.
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3-Colourability

is in , as we can a colouring and verify it.
To show -completeness, we can construct a reduction from to
For each variable x, we have two vertices x, ¥ which are connected in

a triangle with the vertex a (common to all variables).

In addition, for each clause containing the literals ||, |, and |; we have
a gadget.
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Gadget

With a further edge from a to



Beyond graph problems
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It is not just problems about formulas and graphs that turn out to be
NP-complete.

Literally thousands of naturally arising problems have been proved
NP-complete, in areas involving network design, scheduling,
optimisation, data storage and retrieval, artificial intelligence and
many others.

Such problems arise naturally whenever we have to construct a
solution within constraints, and the most effective way appears to be

an exhaustive search of an exponential solution space.

We now examine three more NP-complete problems, whose
significance lies in that they have been used to prove a large number
of other problems NP-complete, through reductions.
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3D Matching

The decision problem of is defined as:
Given three disjoint sets X, and 7, and a set of triples
, does M contain a matching?
I.e. is there a subset , such that each element of X,
and 7 appears in exactly one triple of M’?

We can show that is NPP-complete by a reduction from



Reduction

If a Boolean expression ¢ in has 1 variables, and m clauses, we

construct for each variable v the following gadget.

10



In addition, for every clause ¢, we have two elements x. and v..

If the literal v occurs in ¢, we include the triple
(X<‘,~ Ye, Z\'(:)

in M.
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In addition, for every clause ¢, we have two elements x. and v..

If the literal v occurs in ¢, we include the triple
(X<‘,~ Ye, Z\'(:)

in M.

Similarly, if —v occurs in ¢, we include the triple
(X(:« Ye, 7\'(')

in M.

Finally, we include extra dummy elements in X and Y to make the
numbers match up.
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Exact Set Covering

Two other well known problems are proved -complete by
immediate reduction from

is defined by:
Given a set with elements, and a collection
of three-element subsets of U, is there a sub-
collection containing exactly n of these sets whose union is all
of U?

The reduction from simply takes , and S to be the
collection of three-element subsets resulting from
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Set Covering

More generally, we have the problem:
Given a set U, a collection of subsets of
and an integer budget B, is there a collection of B sets in
whose union is U?
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Knapsack

is a problem which generalises many natural scheduling
and optimisation problems, and through reductions has been used to
show many such problems NP-complete.
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Knapsack

is a problem which generalises many natural scheduling
and optimisation problems, and through reductions has been used to
show many such problems NP-complete.

In the problem, we are given n items, each with a positive integer

value v; and weight

We are also given a maximum total weight VW, and a minimum total

value
Can we select a subset of the items whose total weight does

not exceed W, and whose total value is at least V7
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Reduction

The proof that is -complete is by a reduction from the
problem of
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Reduction

The proof that is -complete is by a reduction from the
problem of

Given a set and a collection of 3-element subsets of
b

We map this to an instance of with m elements each
corresponding to one of the 5;, and having weight and value

and set the target weight and value both to

17



Scheduling

Some examples of the kinds of scheduling tasks that have been proved
-complete include:

Given a set H of , a set of each with
an associated subset of I1 (available periods), a set T of

and an assignment of , is there
a mapping which completes all tasks?
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and its deadline?
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Scheduling

Given a set T of and for each task a , a
release time and a deadline , is there a work
schedule which completes each task between its release time
and its deadline?

Given a set T of , a number of processors a length

for each task, and an overall deadline , is there
a multi-processor schedule which completes all tasks by the
deadline?
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Food for thought:
Outside of P, is everything NP-hard?



