Complexity Theory

Lecture 7: Reductions beyond graphs

Tom Gur

http://www.cl.cam.ac.uk/teaching /2324 /Complexity

e A problem is A/P-hard if any language in NP is reducible to it.

e A problem is A/P-hard if any language in NP is reducible to it.
e A problem is N'P-complete if it is: (1) NP-hard, (2) in N'P.

e A problem is A/P-hard if any language in NP is reducible to it.
e A problem is N'P-complete if it is: (1) NP-hard, (2) in N'P.
e Cook-Levin Theorem: 3SAT is N'P-complete.

A problem is NP-hard if any language in NP is reducible to it.
A problem is N'P-complete if it is: (1) N'P-hard, (2) in NP.
Cook-Levin Theorem: 3SAT is N'P-complete.

Using 3SAT, we can establish NP-completeness of many problems
(e.g., IS, Clique, Hamiltonicity, TSP).

Protip

Research is not just about finding answers — it’s

also about asking the right questions!

Protip

Research is not just about finding answers — it’s

also about asking the right questions!

What are the big questions at this stage?

k-Colourability

A graph is k-colourable, if there is a function

such that, for each , if ,

k-Colourability

A graph is k-colourable, if there is a function

such that, for each , if ,

k-Colourability

A graph is k-colourable, if there is a function

such that, for each , if ,

This gives rise to a decision problem for each

k-Colour

A graph is k-colourable, if there is a function

such that, for each , if ,

This gives rise to a decision problem for each

-colourability is in P. (How to intimidate your Google interviewer...)

k-Colourability

A graph is k-colourable, if there is a function

such that, for each , if ,

This gives rise to a decision problem for each
-colourability is in P. (How to intimidate your Google interviewer...)

For all , k-colourability is NP-complete.

3-Colourability

is in , as we can a colouring and verify it.

3-Colourability

is in , as we can a colouring and verify it.

To show -completeness, we can construct a reduction from to

3-Colourability

is in , as we can a colouring and verify it.
To show -completeness, we can construct a reduction from to
For each variable x, we have two vertices x, ¥ which are connected in

a triangle with the vertex a (common to all variables).

3-Colourability

is in , as we can a colouring and verify it.
To show -completeness, we can construct a reduction from to
For each variable x, we have two vertices x, ¥ which are connected in

a triangle with the vertex a (common to all variables).

In addition, for each clause containing the literals ||, |, and |; we have
a gadget.

Gadget

N

Gadget

N

Gadget

With a further edge from a to

Beyond graph problems

Sets, Numbers and Scheduling

It is not just problems about formulas and graphs that turn out to be
-complete.

Sets, Numbers and Scheduling

It is not just problems about formulas and graphs that turn out to be
-complete.

Literally thousands of naturally arising problems have been proved

-complete, in areas involving network design, scheduling,
optimisation, data storage and retrieval, artificial intelligence and
many others.

Sets, Numbers and Scheduling

It is not just problems about formulas and graphs that turn out to be
NP-complete.

Literally thousands of naturally arising problems have been proved
NP-complete, in areas involving network design, scheduling,
optimisation, data storage and retrieval, artificial intelligence and
many others.

Such problems arise naturally whenever we have to construct a
solution within constraints, and the most effective way appears to be

an exhaustive search of an exponential solution space.

Sets, Numbers and Scheduling

It is not just problems about formulas and graphs that turn out to be
NP-complete.

Literally thousands of naturally arising problems have been proved
NP-complete, in areas involving network design, scheduling,
optimisation, data storage and retrieval, artificial intelligence and
many others.

Such problems arise naturally whenever we have to construct a
solution within constraints, and the most effective way appears to be

an exhaustive search of an exponential solution space.

We now examine three more NP-complete problems, whose
significance lies in that they have been used to prove a large number
of other problems NP-complete, through reductions.

3D Matching

3D Matching

The decision problem of is defined as:
Given three disjoint sets X, and 7, and a set of triples
, does M contain a matching?
I.e. is there a subset , such that each element of X,
and 7 appears in exactly one triple of M’?

3D Matching

The decision problem of is defined as:
Given three disjoint sets X, and 7, and a set of triples
, does M contain a matching?
I.e. is there a subset , such that each element of X,
and 7 appears in exactly one triple of M’?

3D Matching

The decision problem of is defined as:
Given three disjoint sets X, and 7, and a set of triples
, does M contain a matching?
I.e. is there a subset , such that each element of X,
and 7 appears in exactly one triple of M’?

We can show that is NPP-complete by a reduction from

Reduction

If a Boolean expression ¢ in has 1 variables, and m clauses, we

construct for each variable v the following gadget.

10

In addition, for every clause ¢, we have two elements x. and v..

If the literal v occurs in ¢, we include the triple
(X<‘,~ Ye, Z\'(:)

in M.

11

In addition, for every clause ¢, we have two elements x. and v..

If the literal v occurs in ¢, we include the triple
(X<‘,~ Ye, Z\'(:)

in M.

Similarly, if —v occurs in ¢, we include the triple
(X(:« Ye, 7\'(')

in M.

Finally, we include extra dummy elements in X and Y to make the
numbers match up.

11

. Set Covering

Two other well known problems are proved -complete by
immediate reduction from

13

. Set Covering

Two other well known problems are proved -complete by
immediate reduction from

is defined by:
Given a set with elements, and a collection
of three-element subsets of U, is there a sub-
collection containing exactly n of these sets whose union is all
of U?

13

. Set Covering

Two other well known problems are proved -complete by
immediate reduction from

is defined by:
Given a set with elements, and a collection
of three-element subsets of U, is there a sub-
collection containing exactly n of these sets whose union is all
of U?

13

Exact Set Covering

Two other well known problems are proved -complete by
immediate reduction from

is defined by:
Given a set with elements, and a collection
of three-element subsets of U, is there a sub-
collection containing exactly n of these sets whose union is all
of U?

The reduction from simply takes , and S to be the
collection of three-element subsets resulting from

13

Set Covering

More generally, we have the problem:
Given a set U, a collection of subsets of
and an integer budget B, is there a collection of B sets in
whose union is U?

14

Knapsack
v P

12/‘9 n b
o
15 kg
£
A
\
‘?,Fg
[]

37
1,(-5,

15

Knapsack

is a problem which generalises many natural scheduling
and optimisation problems, and through reductions has been used to
show many such problems NP-complete.

16

Knapsack

is a problem which generalises many natural scheduling
and optimisation problems, and through reductions has been used to
show many such problems NP-complete.

In the problem, we are given n items, each with a positive integer

value v; and weight

We are also given a maximum total weight VW, and a minimum total

value
Can we select a subset of the items whose total weight does

not exceed W, and whose total value is at least V7

16

Reduction

The proof that is -complete is by a reduction from the
problem of

17

Reduction

The proof that is -complete is by a reduction from the
problem of

Given a set and a collection of 3-element subsets of
b

We map this to an instance of with m elements each
corresponding to one of the 5;, and having weight and value

and set the target weight and value both to

17

Scheduling

Some examples of the kinds of scheduling tasks that have been proved
-complete include:

Given a set H of , a set of each with
an associated subset of I1 (available periods), a set T of

and an assignment of , is there
a mapping which completes all tasks?

18

Scheduling

Given a set T of and for each task a , a
release time and a deadline , is there a work
schedule which completes each task between its release time
and its deadline?

19

Scheduling

Given a set T of and for each task a , a
release time and a deadline , is there a work
schedule which completes each task between its release time
and its deadline?

19

Scheduling

Given a set T of and for each task a , a
release time and a deadline , is there a work
schedule which completes each task between its release time
and its deadline?

Given a set T of , a number of processors a length

for each task, and an overall deadline , is there
a multi-processor schedule which completes all tasks by the
deadline?

19

Food for thought:
Outside of P, is everything NP-hard?

