Complexity Theory

Lecture 6: NP-Complete Problems

Tom Gur

http://www.cl.cam.ac.uk/teaching/2324/Complexity

Preface: What do professors do all day?

- \mathcal{P} captures polynomial-time computation.
- \mathcal{P} captures polynomial-time computation.
- $\mathcal{N} \mathcal{P}$ captures polynomial-time verification.
- \mathcal{P} captures polynomial-time computation.
- $\mathcal{N} \mathcal{P}$ captures polynomial-time verification.
- A problem is $\mathcal{N} \mathcal{P}$-hard if any language in $\mathcal{N P}$ is reducible to it.

Recap

- \mathcal{P} captures polynomial-time computation.
- $\mathcal{N P}$ captures polynomial-time verification.
- A problem is $\mathcal{N} \mathcal{P}$-hard if any language in $\mathcal{N P}$ is reducible to it.
- A problem is $\mathcal{N} \mathcal{P}$-complete if it is: (1) $\mathcal{N} \mathcal{P}$-hard, (2) in $\mathcal{N P}$.

Recap

- \mathcal{P} captures polynomial-time computation.
- $\mathcal{N P}$ captures polynomial-time verification.
- A problem is $\mathcal{N} \mathcal{P}$-hard if any language in $\mathcal{N} \mathcal{P}$ is reducible to it.
- A problem is $\mathcal{N} \mathcal{P}$-complete if it is: (1) $\mathcal{N} \mathcal{P}$-hard, (2) in $\mathcal{N} \mathcal{P}$.
- Cook-Levin Theorem: SAT is $\mathcal{N} \mathcal{P}$-complete.

Recap

- \mathcal{P} captures polynomial-time computation.
- $\mathcal{N P}$ captures polynomial-time verification.
- A problem is $\mathcal{N} \mathcal{P}$-hard if any language in $\mathcal{N} \mathcal{P}$ is reducible to it.
- A problem is $\mathcal{N} \mathcal{P}$-complete if it is: (1) $\mathcal{N} \mathcal{P}$-hard, (2) in $\mathcal{N} \mathcal{P}$.
- Cook-Levin Theorem: SAT is $\mathcal{N P}$-complete.
- In fact, so is CNF-SAT.

Recap

- \mathcal{P} captures polynomial-time computation.
- $\mathcal{N P}$ captures polynomial-time verification.
- A problem is $\mathcal{N} \mathcal{P}$-hard if any language in $\mathcal{N} \mathcal{P}$ is reducible to it.
- A problem is $\mathcal{N} \mathcal{P}$-complete if it is: (1) $\mathcal{N} \mathcal{P}$-hard, (2) in $\mathcal{N} \mathcal{P}$.
- Cook-Levin Theorem: SAT is $\mathcal{N P}$-complete.
- In fact, so is CNF-SAT.
- And CNF-SAT is reducible to 3SAT:

Recap

- \mathcal{P} captures polynomial-time computation.
- $\mathcal{N P}$ captures polynomial-time verification.
- A problem is $\mathcal{N} \mathcal{P}$-hard if any language in $\mathcal{N} \mathcal{P}$ is reducible to it.
- A problem is $\mathcal{N} \mathcal{P}$-complete if it is: (1) $\mathcal{N} \mathcal{P}$-hard, (2) in $\mathcal{N} \mathcal{P}$.
- Cook-Levin Theorem: SAT is $\mathcal{N P}$-complete.
- In fact, so is CNF-SAT.
- And CNF-SAT is reducible to 3SAT:

Recap

- \mathcal{P} captures polynomial-time computation.
- $\mathcal{N P}$ captures polynomial-time verification.
- A problem is $\mathcal{N P}$-hard if any language in $\mathcal{N P}$ is reducible to it.
- A problem is $\mathcal{N} \mathcal{P}$-complete if it is: (1) $\mathcal{N} \mathcal{P}$-hard, (2) in $\mathcal{N} \mathcal{P}$.
- Cook-Levin Theorem: SAT is $\mathcal{N P}$-complete.
- In fact, so is CNF-SAT.
- And CNF-SAT is reducible to 3SAT: $\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right) \rightarrow\left(x_{1} \vee x_{2} \vee z_{1}\right) \wedge\left(\neg z_{1} \vee x_{3} \vee z_{2}\right) \wedge\left(\neg z_{2} \vee x_{4}\right)$

Composing Reductions

Polynomial time reductions are clearly closed under composition.
So, if $L_{1} \leq_{P} L_{2}$ and $L_{2} \leq_{P} L_{3}$, then we also have $L_{1} \leq_{P} L_{3}$.

Composing Reductions

Polynomial time reductions are clearly closed under composition.
So, if $L_{1} \leq_{P} L_{2}$ and $L_{2} \leq_{P} L_{3}$, then we also have $L_{1} \leq_{P} L_{3}$.

If we show, for some problem A in NP that

$$
3 \mathrm{SAT} \leq_{p} A
$$

Composing Reductions

Polynomial time reductions are clearly closed under composition.
So, if $L_{1} \leq_{P} L_{2}$ and $L_{2} \leq_{P} L_{3}$, then we also have $L_{1} \leq_{P} L_{3}$.

If we show, for some problem A in NP that

$$
3 \mathrm{SAT} \leq_{p} A
$$

Then

$$
\mathrm{SAT} \leq_{P} 3 \mathrm{SAT} \leq_{P} \text { A }
$$

Composing Reductions

Polynomial time reductions are clearly closed under composition.
So, if $L_{1} \leq_{P} L_{2}$ and $L_{2} \leq_{P} L_{3}$, then we also have $L_{1} \leq_{P} L_{3}$.

If we show, for some problem A in NP that

$$
3 \mathrm{SAT} \leq_{P} A
$$

Then

$$
\mathrm{SAT} \leq_{P} 3 \mathrm{SAT} \leq_{P} \text { A }
$$

Hence A is also NP-complete.

Let's see some reductions!

Independent Set

Given a graph $G=(V, E)$, a subset $X \subseteq V$ of the vertices is said to be an independent set, if there are no edges (u, v) for $u, v \in X$.

Independent Set

Given a graph $G=(V, E)$, a subset $X \subseteq V$ of the vertices is said to be an independent set, if there are no edges (u, v) for $u, v \in X$.

Independent Set

Given a graph $G=(V, E)$, a subset $X \subseteq V$ of the vertices is said to be an independent set, if there are no edges (u, v) for $u, v \in X$.

The natural algorithmic problem is, given a graph, find the largest independent set.

Independent Set

Given a graph $G=(V, E)$, a subset $X \subseteq V$ of the vertices is said to be an independent set, if there are no edges (u, v) for $u, v \in X$.

The natural algorithmic problem is, given a graph, find the largest independent set.

To turn this optimisation problem into a decision problem, we define IS as:

The set of pairs (G, K), where G is a graph, and K is an integer, such that G contains an independent set with K or more vertices.

Independent Set

Given a graph $G=(V, E)$, a subset $X \subseteq V$ of the vertices is said to be an independent set, if there are no edges (u, v) for $u, v \in X$.

The natural algorithmic problem is, given a graph, find the largest independent set.

To turn this optimisation problem into a decision problem, we define IS as:

The set of pairs (G, K), where G is a graph, and K is an integer, such that G contains an independent set with K or more vertices.

Independent Set

Given a graph $G=(V, E)$, a subset $X \subseteq V$ of the vertices is said to be an independent set, if there are no edges (u, v) for $u, v \in X$.

The natural algorithmic problem is, given a graph, find the largest independent set.

To turn this optimisation problem into a decision problem, we define IS as:

The set of pairs (G, K), where G is a graph, and K is an integer, such that G contains an independent set with K or more vertices.

IS is clearly in NP. We now show it is NP-complete.

Reduction

We can construct a reduction from 3SAT to IS.

Reduction

We can construct a reduction from 3SAT to IS.

A Boolean expression ϕ in 3CNF with m clauses is mapped by the reduction to the pair (G, m), where G is the graph obtained from ϕ as follows:
G contains m triangles, one for each clause of ϕ, with each node representing one of the literals in the clause.
Additionally, there is an edge between two nodes in different triangles if they represent literals where one is the negation of the other.

Example

$$
\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(x_{3} \vee \neg x_{2} \vee \neg x_{1}\right)
$$

Clique

Given a graph $G=(V, E)$, a subset $X \subseteq V$ of the vertices is called a clique, if for every $u, v \in X,(u, v)$ is an edge.

Clique

Given a graph $G=(V, E)$, a subset $X \subseteq V$ of the vertices is called a clique, if for every $u, v \in X,(u, v)$ is an edge.

Clique

Given a graph $G=(V, E)$, a subset $X \subseteq V$ of the vertices is called a clique, if for every $u, v \in X,(u, v)$ is an edge.

As with IS, we can define a decision problem:
CLIQUE is defined as:
The set of pairs (G, K), where G is a graph, and K is an integer, such that G contains a clique with K or more vertices.

Clique

CLIQUE is in NP by the algorithm which guesses a clique and then verifies it.

Clique

CLIQUE is in NP by the algorithm which guesses a clique and then verifies it.

CLIQUE is NP-complete, since

IS \leq_{p} CLIQUE

by the reduction that maps the pair (G, K) to (\bar{G}, K), where \bar{G} is the complement graph of G.

k-Colourability

A graph $G=(V, E)$ is k-colourable, if there is a function

$$
\chi: V \rightarrow\{1, \ldots, k\}
$$

such that, for each $u, v \in V$, if $(u, v) \in E$,

$$
\chi(u) \neq \chi(v)
$$

k-Colourability

A graph $G=(V, E)$ is k-colourable, if there is a function

$$
\chi: V \rightarrow\{1, \ldots, k\}
$$

such that, for each $u, v \in V$, if $(u, v) \in E$,

$$
\chi(u) \neq \chi(v)
$$

k-Colourability

A graph $G=(V, E)$ is k-colourable, if there is a function

$$
\chi: V \rightarrow\{1, \ldots, k\}
$$

such that, for each $u, v \in V$, if $(u, v) \in E$,

$$
\chi(u) \neq \chi(v)
$$

This gives rise to a decision problem for each k.

k-Colourability

A graph $G=(V, E)$ is k-colourable, if there is a function

$$
\chi: V \rightarrow\{1, \ldots, k\}
$$

such that, for each $u, v \in V$, if $(u, v) \in E$,

$$
\chi(u) \neq \chi(v)
$$

This gives rise to a decision problem for each k.
2-colourability is in P .

k-Colourability

A graph $G=(V, E)$ is k-colourable, if there is a function

$$
\chi: V \rightarrow\{1, \ldots, k\}
$$

such that, for each $u, v \in V$, if $(u, v) \in E$,

$$
\chi(u) \neq \chi(v)
$$

This gives rise to a decision problem for each k.
2-colourability is in P .
For all $k>2$, k-colourability is NP-complete.

3-Colourability

3-Colourability is in NP, as we can guess a colouring and verify it.

3-Colourability

3-Colourability is in NP, as we can guess a colouring and verify it.

To show NP-completeness, we can construct a reduction from 3SAT to 3-Colourability.

3-Colourability

3-Colourability is in NP, as we can guess a colouring and verify it.

To show NP-completeness, we can construct a reduction from 3SAT to 3-Colourability.

For each variable x, we have two vertices x, \bar{x} which are connected in a triangle with the vertex a (common to all variables).

3-Colourability

3-Colourability is in NP, as we can guess a colouring and verify it.

To show NP-completeness, we can construct a reduction from 3SAT to 3-Colourability.

For each variable x, we have two vertices x, \bar{x} which are connected in a triangle with the vertex a (common to all variables).

In addition, for each clause containing the literals I_{1}, l_{2} and I_{3} we have a gadget.

Gadget

Gadget

Gadget

With a further edge from a to b.

Hamiltonian Graphs

Given a graph $G=(V, E)$, a Hamiltonian cycle in G is a path in the graph, starting and ending at the same node, such that every node in V appears on the cycle exactly once.

Hamiltonian Graphs

Given a graph $G=(V, E)$, a Hamiltonian cycle in G is a path in the graph, starting and ending at the same node, such that every node in V appears on the cycle exactly once.

Hamiltonian Graphs

Given a graph $G=(V, E)$, a Hamiltonian cycle in G is a path in the graph, starting and ending at the same node, such that every node in V appears on the cycle exactly once.

A graph is called Hamiltonian if it contains a Hamiltonian cycle.

Hamiltonian Graphs

Given a graph $G=(V, E)$, a Hamiltonian cycle in G is a path in the graph, starting and ending at the same node, such that every node in V appears on the cycle exactly once.

A graph is called Hamiltonian if it contains a Hamiltonian cycle.

The language HAM is the set of encodings of Hamiltonian graphs.

Hamiltonian Cycle

We can construct a reduction from 3SAT to HAM
Essentially, this involves coding up a Boolean expression as a graph, so that every satisfying truth assignment to the expression corresponds to a Hamiltonian circuit of the graph.

Hamiltonian Cycle

We can construct a reduction from 3SAT to HAM
Essentially, this involves coding up a Boolean expression as a graph, so that every satisfying truth assignment to the expression corresponds to a Hamiltonian circuit of the graph.

This reduction is much more intricate than the one for IND.

Travelling Salesman

- V - a set of nodes.

Travelling Salesman

- V - a set of nodes.
- $c: V \times V \rightarrow \mathbb{N}-$ a cost matrix.

Travelling Salesman

- V - a set of nodes.
- $c: V \times V \rightarrow \mathbb{N}-$ a cost matrix.

Travelling Salesman

- V - a set of nodes.
- c: $V \times V \rightarrow \mathbb{N}$ - a cost matrix.

Find an ordering v_{1}, \ldots, v_{n} of V minimising:

$$
c\left(v_{n}, v_{1}\right)+\sum_{i=1}^{n-1} c\left(v_{i}, v_{i+1}\right)
$$

Travelling Salesman

- V - a set of nodes.
- c: $V \times V \rightarrow \mathbb{N}$ - a cost matrix.

Find an ordering v_{1}, \ldots, v_{n} of V minimising:

$$
c\left(v_{n}, v_{1}\right)+\sum_{i=1}^{n-1} c\left(v_{i}, v_{i+1}\right)
$$

Travelling Salesman

As with other optimisation problems, we can make a decision problem version of the Travelling Salesman problem.

Travelling Salesman

As with other optimisation problems, we can make a decision problem version of the Travelling Salesman problem.

The problem TSP consists of the set of triples

$$
(V, c: V \times V \rightarrow \mathbb{N}, t)
$$

such that there is a tour of the set of vertices V, which under the cost matrix c, has cost t or less.

Reduction

There is a simple reduction from HAM to TSP, mapping a graph (V, E) to the triple $(V, c: V \times V \rightarrow \mathbb{N}, n)$, where

$$
c(u, v)= \begin{cases}1 & (u, v) \in E \\ 2 & (u, v) \notin E\end{cases}
$$

and n is the size of V.

Bonus: Randomness and BPP

