The four stages of learning complexity theory
The four stages of learning complexity theory

1) Unconscious ignorance
The four stages of learning complexity theory

1) Unconscious ignorance
2) Conscious ignorance
The four stages of learning complexity theory

1) Unconscious ignorance
2) Conscious ignorance
3) Conscious knowledge
The four stages of learning complexity theory

1) Unconscious ignorance
2) Conscious ignorance
3) Conscious knowledge
4) Unconscious knowledge
Recap

- Goal: understand the complexity of computational problems
Recap

- Goal: understand the complexity of computational problems
- Strategy: Divide problems into complexity classes
Recap

- Goal: understand the complexity of computational problems
- Strategy: Divide problems into complexity classes
- Post-Turing: Focus on subclasses of \mathcal{R}

Today we will go beyond tractable computation!
Recap

- Goal: understand the complexity of computational problems
- Strategy: Divide problems into complexity classes
- Post-Turing: Focus on subclasses of \mathcal{R}
- Resolution: Polynomial (for now...)
Recap

- Goal: understand the complexity of computational problems
- Strategy: Divide problems into complexity classes
- Post-Turing: Focus on subclasses of \mathcal{R}
- Resolution: Polynomial (for now...)
- Most important class: \mathcal{P} – tractable computation
Recap

- Goal: understand the complexity of computational problems
- Strategy: Divide problems into complexity classes
- Post-Turing: Focus on subclasses of \(\mathcal{R} \)
- Resolution: Polynomial (for now...)
- Most important class: \(\mathcal{P} \) – tractable computation

Today we will go beyond tractable computation!
Recap

- Goal: understand the complexity of computational problems
- Strategy: Divide problems into complexity classes
- Post-Turing: Focus on subclasses of \mathcal{R}
- Resolution: Polynomial (for now...)
- Most important class: \mathcal{P} – tractable computation

Today we will go beyond tractable computation!
Consider the decision problem (or language) Composite defined by:

\[
\{ x \mid x \text{ is not prime} \}
\]
Consider the decision problem (or *language*) Composite defined by:

\[\{ x \mid x \text{ is not prime} \} \]

This is the complement of the language *Prime*.

Consider the decision problem (or *language*) Composite defined by:

\[\{ x \mid x \text{ is not prime} \} \]

This is the complement of the language Prime.

Is Composite \(\in\) P?
Consider the decision problem (or language) Composite defined by:

\[\{ x \mid x \text{ is not prime} \} \]

This is the complement of the language Prime.

Is Composite ∈ P?

Clearly, the answer is yes if, and only if, Prime ∈ P.
Consider the decision problem (or \textit{language}) \textit{Composite} defined by:

$$\{x \mid x \text{ is not prime}\}$$

This is the complement of the language \textit{Prime}.

Is \textit{Composite} \(\in\) \textit{P}?

Clearly, the answer is yes if, and only if, \textit{Prime} \(\in\) \textit{P}.

Is there a conceptual difference between the two?
Hamiltonian Graphs

Given a graph $G = (V, E)$, a Hamiltonian cycle in G is a path in the graph, starting and ending at the same node, such that every node in V appears on the cycle exactly once.
Hamiltonian Graphs

Given a graph $G = (V, E)$, a *Hamiltonian cycle* in G is a path in the graph, starting and ending at the same node, such that every node in V appears on the cycle *exactly once*.

The first of these graphs is not Hamiltonian, but the second one is.
Given a graph $G = (V, E)$, a Hamiltonian cycle in G is a path in the graph, starting and ending at the same node, such that every node in V appears on the cycle exactly once.

A graph is called Hamiltonian if it contains a Hamiltonian cycle.
Given a graph $G = (V, E)$, a Hamiltonian cycle in G is a path in the graph, starting and ending at the same node, such that every node in V appears on the cycle exactly once.

A graph is called Hamiltonian if it contains a Hamiltonian cycle.

The language HAM is the set of encodings of Hamiltonian graphs.
Given a graph $G = (V, E)$, a Hamiltonian cycle in G is a path in the graph, starting and ending at the same node, such that every node in V appears on the cycle exactly once.

A graph is called Hamiltonian if it contains a Hamiltonian cycle.

The language HAM is the set of encodings of Hamiltonian graphs.

Is HAM ∈ P?
Graph Isomorphism

Given two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, is there a bijection

$$\pi : V_1 \rightarrow V_2$$

such that for every $u, v \in V_1$,

$$(u, v) \in E_1 \quad \text{if, and only if,} \quad (\pi(u), \pi(v)) \in E_2.$$
Given two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, is there a bijection

$$
\pi : V_1 \rightarrow V_2
$$

such that for every $u, v \in V_1$,

$$(u, v) \in E_1 \quad \text{if, and only if,} \quad (\pi(u), \pi(v)) \in E_2.$$

Is Graph Isomorphism $\in \mathcal{P}$?
The problems Composite, SAT, HAM and Graph Isomorphism have something in common.
The problems Composite, SAT, HAM and Graph Isomorphism have something in common.

In each case, there is a search space of possible solutions.

- the numbers less than x;
- truth assignments to the variables of ϕ;
- lists of the vertices of G;
- a bijection between V_1 and V_2.
The problems Composite, SAT, HAM and Graph Isomorphism have something in common.

In each case, there is a search space of possible solutions.

the numbers less than x; truth assignments to the variables of \(\phi \); lists of the vertices of \(G \); a bijection between \(V_1 \) and \(V_2 \).
The problems Composite, SAT, HAM and Graph Isomorphism have something in common.

In each case, there is a search space of possible solutions.

- the numbers less than \(x \);
- truth assignments to the variables of \(\phi \);
- lists of the vertices of \(G \);
- a bijection between \(V_1 \) and \(V_2 \).

The size of the search is exponential in the length of the input.
The problems Composite, SAT, HAM and Graph Isomorphism have something in common.

In each case, there is a *search space* of possible solutions.

the numbers less than x; truth assignments to the variables of ϕ; lists of the vertices of G; a bijection between V_1 and V_2.

The size of the search is *exponential* in the length of the input.

Given a potential solution in the search space, it is *easy* to check whether or not it is a solution.
A verifier V for a language L is an algorithm such that

$$L = \{ x \mid (x, c) \text{ is accepted by } V \text{ for some } c \}$$
A verifier V for a language L is an algorithm such that

$$L = \{ x \mid (x, c) \text{ is accepted by } V \text{ for some } c \}$$

If V runs in time polynomial in the length of x, then we say that L is polynomially verifiable.
A verifier V for a language L is an algorithm such that

$$L = \{x \mid (x, c) \text{ is accepted by } V \text{ for some } c\}$$

If V runs in time polynomial in the length of x, then we say that L is polynomially verifiable.
A verifier V for a language L is an algorithm such that

$$L = \{x \mid (x, c) \text{ is accepted by } V \text{ for some } c\}$$

If V runs in time polynomial in the length of x, then we say that

L is polynomially verifiable.

Many natural examples arise, whenever we have to construct a solution to some design constraints or specifications.
Nondeterminism

If, in the definition of a Turing machine, we relax the condition on δ being a function and instead allow an arbitrary relation, we obtain a **nondeterministic Turing machine**.

$$\delta \subseteq (Q \times \Sigma) \times ((Q \cup \{\text{acc, rej}\}) \times \Sigma \times \{R, L, S\}).$$

The yields relation \rightarrow_M is also no longer functional.
If, in the definition of a Turing machine, we relax the condition on δ being a function and instead allow an arbitrary relation, we obtain a *nondeterministic Turing machine*.

\[
\delta \subseteq (Q \times \Sigma) \times ((Q \cup \{\text{acc, rej}\}) \times \Sigma \times \{R, L, S\}).
\]

The yields relation \rightarrow_M is also no longer functional.

We still define the language accepted by M by:

\[
\{x \mid (s, \triangleright, x) \rightarrow^*_M (\text{acc}, w, u) \text{ for some } w \text{ and } u\}
\]

though, for some x, there may be computations leading to accepting as well as rejecting states.
Computation Trees

With a nondeterministic machine, each configuration gives rise to a tree of successive configurations.
With a nondeterministic machine, each configuration gives rise to a tree of successive configurations.
Nondeterministic Complexity Classes

We have already defined $\text{TIME}(f)$ and $\text{SPACE}(f)$.

NP = $\bigcup_{k=1}^{\infty} \text{NTIME}(n^k)$
We have already defined \(\text{TIME}(f) \) and \(\text{SPACE}(f) \).

\(\text{NTIME}(f) \) is defined as the class of those languages \(L \) which are accepted by a *nondeterministic* Turing machine \(M \), such that for every \(x \in L \), there is an accepting computation of \(M \) on \(x \) of length \(O(f(n)) \), where \(n \) is the length of \(x \).
We have already defined \(\text{TIME}(f) \) and \(\text{SPACE}(f) \).

\(\text{NTIME}(f) \) is defined as the class of those languages \(L \) which are accepted by a nondeterministic Turing machine \(M \), such that for every \(x \in L \), there is an accepting computation of \(M \) on \(x \) of length \(O(f(n)) \), where \(n \) is the length of \(x \).

\[
\text{NP} = \bigcup_{k=1}^{\infty} \text{NTIME}(n^k)
\]
For a language in NTIME(f), the height of the tree can be bounded by f(n) when the input is of length n.
For a language in $\text{NTIME}(f)$, the height of the tree can be bounded by $f(n)$ when the input is of length n.
Theorem

A language L is polynomially verifiable if, and only if, it is in NP.
Nondeterminism vs Verification

Theorem
A language L is polynomially verifiable if, and only if, it is in NP.
Theorem
A language \(L \) is polynomially verifiable if, and only if, it is in \(\text{NP} \).

To prove this, suppose \(L \) is a language, which has a verifier \(V \), which runs in time \(p(n) \).
Nondeterminism vs Verification

Theorem
A language L is polynomially verifiable if, and only if, it is in NP.

To prove this, suppose L is a language, which has a verifier V, which runs in time $p(n)$.

The following describes a *nondeterministic algorithm* that accepts L:

1. input x of length n
Theorem
A language L is polynomially verifiable if, and only if, it is in NP.

To prove this, suppose L is a language, which has a verifier V, which runs in time $p(n)$.

The following describes a nondeterministic algorithm that accepts L.

1. input x of length n
2. nondeterministically guess c of length $\leq p(n)$
Theorem
A language L is polynomially verifiable if, and only if, it is in NP.

To prove this, suppose L is a language, which has a verifier V, which runs in time $p(n)$.

The following describes a *nondeterministic algorithm* that accepts L

1. input x of length n
2. nondeterministically guess c of length $\leq p(n)$
3. run V on (x, c)
In the other direction, suppose M is a nondeterministic machine that accepts a language L in time n^k.

We define the deterministic algorithm V which on input (x, c) simulates M on input x. At the ith nondeterministic choice point, V looks at the ith character in c to decide which branch to follow. If M accepts then V accepts, otherwise it rejects. V is a polynomial verifier for L.
In the other direction, suppose M is a nondeterministic machine that accepts a language L in time n^k.

We define the *deterministic algorithm* V which on input (x, c) simulates M on input x.

At the i^{th} nondeterministic choice point, V looks at the i^{th} character in c to decide which branch to follow.

If M accepts then V accepts, otherwise it rejects.
In the other direction, suppose M is a nondeterministic machine that accepts a language L in time n^k.

We define the *deterministic algorithm* V which on input (x, c) simulates M on input x.

At the i^{th} nondeterministic choice point, V looks at the i^{th} character in c to decide which branch to follow.

If M accepts then V accepts, otherwise it rejects.

V is a polynomial verifier for L.
Why NP and not EXP?