Complexity Theory

Lecture 4: The class NP

Tom Gur
http://www.cl.cam.ac.uk/teaching/2324/Complexity

The four stages of learning complexity theory

The four stages of learning complexity theory

1) Unconscious ignorance

The four stages of learning complexity theory

1) Unconscious ignorance
2) Conscious ignorance

The four stages of learning complexity theory

1) Unconscious ignorance
2) Conscious ignorance
3) Conscious knowledge

The four stages of learning complexity theory

1) Unconscious ignorance
2) Conscious ignorance
3) Conscious knowledge
4) Unconscious knowledge

- Goal: understand the complexity of computational problems
- Goal: understand the complexity of computational problems
- Strategy: Divide problems into complexity classes
- Goal: understand the complexity of computational problems
- Strategy: Divide problems into complexity classes
- Post-Turing: Focus on subclasses of \mathcal{R}

Recap

- Goal: understand the complexity of computational problems
- Strategy: Divide problems into complexity classes
- Post-Turing: Focus on subclasses of \mathcal{R}
- Resolution: Polynomial (for now...)

Recap

- Goal: understand the complexity of computational problems
- Strategy: Divide problems into complexity classes
- Post-Turing: Focus on subclasses of \mathcal{R}
- Resolution: Polynomial (for now...)
- Most important class: \mathcal{P} - tractable computation

Recap

- Goal: understand the complexity of computational problems
- Strategy: Divide problems into complexity classes
- Post-Turing: Focus on subclasses of \mathcal{R}
- Resolution: Polynomial (for now...)
- Most important class: \mathcal{P} - tractable computation

Recap

- Goal: understand the complexity of computational problems
- Strategy: Divide problems into complexity classes
- Post-Turing: Focus on subclasses of \mathcal{R}
- Resolution: Polynomial (for now...)
- Most important class: \mathcal{P} - tractable computation

Today we will go beyond tractable computation!

Composites

Consider the decision problem (or language) Composite defined by:

$$
\{x \mid x \text { is not prime }\}
$$

Composites

Consider the decision problem (or language) Composite defined by:

$$
\{x \mid x \text { is not prime }\}
$$

This is the complement of the language Prime.

Composites

Consider the decision problem (or language) Composite defined by:

$$
\{x \mid x \text { is not prime }\}
$$

This is the complement of the language Prime.

Is Composite $\in P$?

Composites

Consider the decision problem (or language) Composite defined by:

$$
\{x \mid x \text { is not prime }\}
$$

This is the complement of the language Prime.

Is Composite $\in P$?

Clearly, the answer is yes if, and only if, Prime $\in P$.

Composites

Consider the decision problem (or language) Composite defined by:

$$
\{x \mid x \text { is not prime }\}
$$

This is the complement of the language Prime.

Is Composite $\in P$?

Clearly, the answer is yes if, and only if, Prime $\in P$.

Is there a conceptual difference between the two?

Hamiltonian Graphs

Given a graph $G=(V, E)$, a Hamiltonian cycle in G is a path in the graph, starting and ending at the same node, such that every node in V appears on the cycle exactly once.

Hamiltonian Graphs

Given a graph $G=(V, E)$, a Hamiltonian cycle in G is a path in the graph, starting and ending at the same node, such that every node in V appears on the cycle exactly once.

The first of these graphs is not Hamiltonian, but the second one is.

Hamiltonian Graphs

Given a graph $G=(V, E)$, a Hamiltonian cycle in G is a path in the graph, starting and ending at the same node, such that every node in V appears on the cycle exactly once.

A graph is called Hamiltonian if it contains a Hamiltonian cycle.

Hamiltonian Graphs

Given a graph $G=(V, E)$, a Hamiltonian cycle in G is a path in the graph, starting and ending at the same node, such that every node in V appears on the cycle exactly once.

A graph is called Hamiltonian if it contains a Hamiltonian cycle.

The language HAM is the set of encodings of Hamiltonian graphs.

Hamiltonian Graphs

Given a graph $G=(V, E)$, a Hamiltonian cycle in G is a path in the graph, starting and ending at the same node, such that every node in V appears on the cycle exactly once.

A graph is called Hamiltonian if it contains a Hamiltonian cycle.

The language HAM is the set of encodings of Hamiltonian graphs.

Is $H A M \in P$?

Graph Isomorphism

Given two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, is there a bijection

$$
\pi: V_{1} \rightarrow V_{2}
$$

such that for every $u, v \in V_{1}$,

$$
(u, v) \in E_{1} \quad \text { if, and only if, } \quad(\pi(u), \pi(v)) \in E_{2} .
$$

Graph Isomorphism

Given two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, is there a bijection

$$
\pi: V_{1} \rightarrow V_{2}
$$

such that for every $u, v \in V_{1}$,

$$
(u, v) \in E_{1} \quad \text { if, and only if, } \quad(\pi(u), \pi(v)) \in E_{2} .
$$

Is Graph Isomorphism $\in P$?

Polynomial Verification

The problems Composite, SAT, HAM and Graph Isomorphism have something in common.

Polynomial Verification

The problems Composite, SAT, HAM and Graph Isomorphism have something in common.

In each case, there is a search space of possible solutions. the numbers less than x; truth assignments to the variables of ϕ; lists of the vertices of G; a bijection between V_{1} and V_{2}.

Polynomial Verification

The problems Composite, SAT, HAM and Graph Isomorphism have something in common.

In each case, there is a search space of possible solutions. the numbers less than x; truth assignments to the variables of ϕ; lists of the vertices of G; a bijection between V_{1} and V_{2}.

Polynomial Verification

The problems Composite, SAT, HAM and Graph Isomorphism have something in common.

In each case, there is a search space of possible solutions. the numbers less than x; truth assignments to the variables of ϕ; lists of the vertices of G; a bijection between V_{1} and V_{2}.

The size of the search is exponential in the length of the input.

Polynomial Verification

The problems Composite, SAT, HAM and Graph Isomorphism have something in common.

In each case, there is a search space of possible solutions. the numbers less than x; truth assignments to the variables of ϕ; lists of the vertices of G; a bijection between V_{1} and V_{2}.

The size of the search is exponential in the length of the input.

Given a potential solution in the search space, it is easy to check whether or not it is a solution.

Verifiers

A verifier V for a language L is an algorithm such that

$$
L=\{x \mid(x, c) \text { is accepted by } V \text { for some } c\}
$$

Verifiers

A verifier V for a language L is an algorithm such that

$$
L=\{x \mid(x, c) \text { is accepted by } V \text { for some } c\}
$$

If V runs in time polynomial in the length of x, then we say that L is polynomially verifiable.

Verifiers

A verifier V for a language L is an algorithm such that

$$
L=\{x \mid(x, c) \text { is accepted by } V \text { for some } c\}
$$

If V runs in time polynomial in the length of x, then we say that L is polynomially verifiable.

Verifiers

A verifier V for a language L is an algorithm such that

$$
L=\{x \mid(x, c) \text { is accepted by } V \text { for some } c\}
$$

If V runs in time polynomial in the length of x, then we say that L is polynomially verifiable.

Many natural examples arise, whenever we have to construct a solution to some design constraints or specifications.

Nondeterminism

If, in the definition of a Turing machine, we relax the condition on δ being a function and instead allow an arbitrary relation, we obtain a nondeterministic Turing machine.

$$
\delta \subseteq(Q \times \Sigma) \times((Q \cup\{\text { acc }, \text { rej }\}) \times \Sigma \times\{R, L, S\}) .
$$

The yields relation \rightarrow_{M} is also no longer functional.

Nondeterminism

If, in the definition of a Turing machine, we relax the condition on δ being a function and instead allow an arbitrary relation, we obtain a nondeterministic Turing machine.

$$
\delta \subseteq(Q \times \Sigma) \times((Q \cup\{\text { acc }, \text { rej }\}) \times \Sigma \times\{R, L, S\}) .
$$

The yields relation \rightarrow_{M} is also no longer functional.

We still define the language accepted by M by:

$$
\left\{x \mid(s, \triangleright, x) \rightarrow_{M}^{\star}(\operatorname{acc}, w, u) \text { for some } w \text { and } u\right\}
$$

though, for some x, there may be computations leading to accepting as well as rejecting states.

Computation Trees

Computation Trees

With a nondeterministic machine, each configuration gives rise to a tree of successive configurations.

Nondeterministic Complexity Classes

We have already defined TIME (f) and $\operatorname{SPACE}(f)$.

Nondeterministic Complexity Classes

We have already defined $\operatorname{TIME}(f)$ and $\operatorname{SPACE}(f)$.

NTIME (f) is defined as the class of those languages L which are accepted by a nondeterministic Turing machine M, such that for every $x \in L$, there is an accepting computation of M on x of length $O(f(n))$, where n is the length of x.

Nondeterministic Complexity Classes

We have already defined TIME (f) and $\operatorname{SPACE}(f)$.

NTIME (f) is defined as the class of those languages L which are accepted by a nondeterministic Turing machine M, such that for every $x \in L$, there is an accepting computation of M on x of length $O(f(n))$, where n is the length of x.

$$
\mathrm{NP}=\bigcup_{k=1}^{\infty} \operatorname{NTIME}\left(n^{k}\right)
$$

Nondeterminism

For a language in NTIME (f), the height of the tree can be bounded by $f(n)$ when the input is of length n.

Nondeterminism vs Verification

Theorem
A language L is polynomially verifiable if, and only if, it is in NP.

Nondeterminism vs Verification

Theorem
A language L is polynomially verifiable if, and only if, it is in NP.

Nondeterminism vs Verification

Theorem

A language L is polynomially verifiable if, and only if, it is in NP.

To prove this, suppose L is a language, which has a verifier V, which runs in time $p(n)$.

Nondeterminism vs Verification

Theorem

A language L is polynomially verifiable if, and only if, it is in NP.

To prove this, suppose L is a language, which has a verifier V, which runs in time $p(n)$.

The following describes a nondeterministic algorithm that accepts L

1. input \times of length n

Nondeterminism vs Verification

Theorem

A language L is polynomially verifiable if, and only if, it is in NP.

To prove this, suppose L is a language, which has a verifier V, which runs in time $p(n)$.

The following describes a nondeterministic algorithm that accepts L

1. input \times of length n
2. nondeterministically guess c of length $\leq p(n)$

Nondeterminism vs Verification

Theorem

A language L is polynomially verifiable if, and only if, it is in NP.

To prove this, suppose L is a language, which has a verifier V, which runs in time $p(n)$.

The following describes a nondeterministic algorithm that accepts L

1. input \times of length n
2. nondeterministically guess c of length $\leq p(n)$
3. run V on (x, c)

Nondeterminism vs Verification

In the other direction, suppose M is a nondeterministic machine that accepts a language L in time n^{k}.

Nondeterminism vs Verification

In the other direction, suppose M is a nondeterministic machine that accepts a language L in time n^{k}.

We define the deterministic algorithm V which on input (x, c) simulates M on input x.

At the $i^{\text {th }}$ nondeterministic choice point, V looks at the $i^{\text {th }}$ character in c to decide which branch to follow.

If M accepts then V accepts, otherwise it rejects.

Nondeterminism vs Verification

In the other direction, suppose M is a nondeterministic machine that accepts a language L in time n^{k}.

We define the deterministic algorithm V which on input (x, c) simulates M on input x.

At the $i^{\text {th }}$ nondeterministic choice point, V looks at the $i^{\text {th }}$ character in c to decide which branch to follow.

If M accepts then V accepts, otherwise it rejects.
V is a polynomial verifier for L.

Why NP and not EXP?

