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Configuration Graph

Define the configuration graph of M , x to be the graph whose nodes are

the possible configurations, and there is an edge from i to j if, and only

if, i →M j .
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Configuration Graph

Define the configuration graph of M , x to be the graph whose nodes are

the possible configurations, and there is an edge from i to j if, and only

if, i →M j .

Then, M accepts x if, and only if, some accepting configuration is

reachable from the starting configuration (s, ⊲, x , ⊲, ε) in the

configuration graph of M , x .
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Using the O(n2) algorithm for Reachability, we get that L(M)—the

language accepted by M—can be decided by a deterministic machine

operating in time

c ′(nc f (n))2 ∼ c ′c2(log n+f (n)) ∼ k (log n+f (n))
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Using the O(n2) algorithm for Reachability, we get that L(M)—the

language accepted by M—can be decided by a deterministic machine

operating in time

c ′(nc f (n))2 ∼ c ′c2(log n+f (n)) ∼ k (log n+f (n))

In particular, this establishes that NL ⊆ P and NPSPACE ⊆ EXP.
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NL Reachability

We can construct an algorithm to show that the Reachability problem is

in NL:
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guess an index j (log n bits) and write it on the work space.
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NL Reachability

We can construct an algorithm to show that the Reachability problem is

in NL:

1. write the index of node a in the work space;

2. if i is the index currently written on the work space:

2.1 if i = b then accept, else

guess an index j (log n bits) and write it on the work space.

2.2 if (i , j) is not an edge, reject, else replace i by j and return to (2).
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Savitch’s Theorem

Further simulation results for nondeterministic space are obtained by

other algorithms for Reachability.
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other algorithms for Reachability.

We can show that Reachability can be solved by a deterministic
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Savitch’s Theorem

Further simulation results for nondeterministic space are obtained by

other algorithms for Reachability.

We can show that Reachability can be solved by a deterministic

algorithm in O((log n)2) space.

Consider the following recursive algorithm for determining whether there

is a path from a to b of length at most i .
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O((log n)2) space Reachability algorithm:
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O((log n)2) space Reachability algorithm:

Path(a, b, i)

if i = 1 and a 6= b and (a, b) is not an edge reject

else if (a, b) is an edge or a = b accept

else, for each node x , check:

1. Path(a, x , ⌊i/2⌋)

if such an x is found, then accept, else reject.
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O((log n)2) space Reachability algorithm:

Path(a, b, i)

if i = 1 and a 6= b and (a, b) is not an edge reject

else if (a, b) is an edge or a = b accept

else, for each node x , check:

1. Path(a, x , ⌊i/2⌋)

2. Path(x , b, ⌈i/2⌉)

if such an x is found, then accept, else reject.
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O((log n)2) space Reachability algorithm:

Path(a, b, i)

if i = 1 and a 6= b and (a, b) is not an edge reject

else if (a, b) is an edge or a = b accept

else, for each node x , check:

1. Path(a, x , ⌊i/2⌋)

2. Path(x , b, ⌈i/2⌉)

if such an x is found, then accept, else reject.

The maximum depth of recursion is log n, and the number of bits of

information kept at each stage is 3 log n.
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Savitch’s Theorem

The space efficient algorithm for reachability used on the configuration

graph of a nondeterministic machine shows:
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Savitch’s Theorem

The space efficient algorithm for reachability used on the configuration

graph of a nondeterministic machine shows:

NSPACE(f ) ⊆ SPACE(f 2)

for f (n) ≥ log n.
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Savitch’s Theorem

The space efficient algorithm for reachability used on the configuration

graph of a nondeterministic machine shows:

NSPACE(f ) ⊆ SPACE(f 2)

for f (n) ≥ log n.

This yields

PSPACE = NPSPACE = co-NPSPACE.
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Complementation

A still more clever algorithm for Reachability has been used to show that

nondeterministic space classes are closed under complementation:
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Complementation

A still more clever algorithm for Reachability has been used to show that

nondeterministic space classes are closed under complementation:

If f (n) ≥ log n, then

NSPACE(f ) = co-NSPACE(f )

In particular

NL = co-NL.
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Logarithmic Space Reductions

We write

A ≤L B

if there is a reduction f of A to B that is computable by a deterministic

Turing machine using O(log n) workspace (with a read-only input tape

and write-only output tape).
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Logarithmic Space Reductions

We write

A ≤L B

if there is a reduction f of A to B that is computable by a deterministic

Turing machine using O(log n) workspace (with a read-only input tape

and write-only output tape).

Note: We can compose ≤L reductions. So,

if A ≤L B and B ≤L C then A ≤L C
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NP-complete Problems

Analysing carefully the reductions we constructed in our proofs of

NP-completeness, we can see that SAT and the various other

NP-complete problems are actually complete under ≤L reductions.
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NP-complete Problems

Analysing carefully the reductions we constructed in our proofs of

NP-completeness, we can see that SAT and the various other

NP-complete problems are actually complete under ≤L reductions.

Thus, if SAT ≤L A for some problem A in L then not only P = NP but

also L = NP.
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P-complete Problems

It makes little sense to talk of complete problems for the class P with

respect to polynomial time reducibility ≤P .
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P-complete Problems

It makes little sense to talk of complete problems for the class P with

respect to polynomial time reducibility ≤P .

There are problems that are complete for P with respect to logarithmic

space reductions ≤L.

One example is CVP—the circuit value problem.

That is, for every language A in P,

A ≤L CVP

• If CVP ∈ L then L = P.

• If CVP ∈ NL then NL = P.
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Questions?
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