Complexity Theory

Lecture 10

Tom Gur
http://www.cl.cam.ac.uk/teaching/2324/Complexity
A function f is called a one way function if it satisfies the following conditions:

1. f is one-to-one.

We cannot hope to prove the existence of one-way functions without at the same time proving $P \neq NP$.

It is strongly believed that the RSA function:

$$f(x, e, p, q) = (x^e \mod pq, pq, e)$$

is a one-way function.
A function f is called a one way function if it satisfies the following conditions:

1. f is one-to-one.
2. for each x, $|x|^{1/k} \leq |f(x)| \leq |x|^k$ for some k.

We cannot hope to prove the existence of one-way functions without at the same time proving $P \neq NP$.

It is strongly believed that the RSA function:

$$f(x, e, p, q) = (x^e \mod pq, pq, e)$$

is a one-way function.
A function f is called a **one way function** if it satisfies the following conditions:

1. f is one-to-one.
2. for each x, $|x|^{1/k} \leq |f(x)| \leq |x|^k$ for some k.
3. f is computable in polynomial time.

We cannot hope to prove the existence of one-way functions without at the same time proving $P \neq NP$.

It is strongly believed that the **RSA** function:

$$f(x, e, p, q) = (x^e \text{ mod } pq, pq, e)$$

is a one-way function.
One Way Functions

A function f is called a one way function if it satisfies the following conditions:

1. f is one-to-one.
2. for each x, $|x|^{1/k} \leq |f(x)| \leq |x|^k$ for some k.
3. f is computable in polynomial time.
4. f^{-1} is not computable in polynomial time.

We cannot hope to prove the existence of one-way functions without at the same time proving $P \neq NP$.

It is strongly believed that the RSA function:

$$f(x, e, p, q) = (x^e \mod pq, pq, e)$$

is a one-way function.
We have

\[P \subseteq \text{UP} \subseteq \text{NP} \]
We have

\[P \subseteq \text{UP} \subseteq \text{NP} \]

It seems unlikely that there are any \textit{NP}-complete problems in \textit{UP}.
We have

\[P \subseteq \text{UP} \subseteq \text{NP} \]

It seems unlikely that there are any \text{NP}-complete problems in \text{UP}.

One-way functions exist \textit{if, and only if}, \(P \neq \text{UP} \).
Suppose that L is a language that is in UP but not in P. Let U be an unambiguous machine that accepts L.
Suppose that \(L \) is a language that is in UP but not in P. Let \(U \) be an unambiguous machine that accepts \(L \).

Define the function \(f_U \) by

if \(x \) is a string that encodes an accepting computation of \(U \),
then \(f_U(x) = 1y \) where \(y \) is the input string accepted by this computation.
\(f_U(x) = 0x \) otherwise.

We can prove that \(f_U \) is a one-way function.
We’ve already seen the definition $\text{SPACE}(f)$: the languages accepted by a machine which uses $O(f(n))$ tape cells on inputs of length n. Counting only work space.
We’ve already seen the definition $\text{SPACE}(f)$: the languages accepted by a machine which uses $O(f(n))$ tape cells on inputs of length n. Counting only work space.

$\text{NSPACE}(f)$ is the class of languages accepted by a nondeterministic Turing machine using at most $O(f(n))$ work space.
We’ve already seen the definition \(\text{SPACE}(f) \): the languages accepted by a machine which uses \(O(f(n)) \) tape cells on inputs of length \(n \). *Counting only work space.*

\(\text{NSPACE}(f) \) is the class of languages accepted by a *nondeterministic* Turing machine using at most \(O(f(n)) \) work space.

As we are only counting work space, it makes sense to consider bounding functions \(f \) that are less than linear.
Classes

$L = \text{SPACE}(\log n)$
Classes

$L = \text{SPACE}(\log n)$

$NL = \text{NSPACE}(\log n)$
Classes

L = SPACE(log n)

NL = NSPACE(log n)

PSPACE = \bigcup_{k=1}^{\infty} SPACE(n^k)

The class of languages decidable in polynomial space.
Classes

$L = \text{SPACE}(\log n)$

$NL = \text{NSPACE}(\log n)$

$\text{PSPACE} = \bigcup_{k=1}^{\infty} \text{SPACE}(n^k)$

The class of languages decidable in polynomial space.

$\text{NPSPACE} = \bigcup_{k=1}^{\infty} \text{NSPACE}(n^k)$
Classes

\[L = \text{SPACE}(\log n) \]

\[\text{NL} = \text{NSPACE}(\log n) \]

\[\text{PSPACE} = \bigcup_{k=1}^{\infty} \text{SPACE}(n^k) \]

The class of languages decidable in polynomial space.

\[\text{NPSPACE} = \bigcup_{k=1}^{\infty} \text{NSPACE}(n^k) \]

Also, define:

Classes

$L = \text{SPACE}(\log n)$

$NL = \text{NSPACE}(\log n)$

$\text{PSPACE} = \bigcup_{k=1}^{\infty} \text{SPACE}(n^k)$

The class of languages decidable in polynomial space.

$\text{NPSPACE} = \bigcup_{k=1}^{\infty} \text{NSPACE}(n^k)$

Also, define:

$\text{co-NL} –$ the languages whose complements are in NL.
Classes

\[L = \text{SPACE}(\log n) \]

\[\text{NL} = \text{NSPACE}(\log n) \]

\[\text{PSPACE} = \bigcup_{k=1}^{\infty} \text{SPACE}(n^k) \]

\[\text{NPSPACE} = \bigcup_{k=1}^{\infty} \text{NSPACE}(n^k) \]

The class of languages decidable in polynomial space.

Also, define:

\text{co-NL} – the languages whose complements are in \text{NL}.

\text{co-NPSPACE} – the languages whose complements are in \text{NPSPACE}.
Inclusions

We have the following inclusions:

\[L \subseteq NL \subseteq P \subseteq NP \subseteq \text{PSPACE} \subseteq \text{NPSPACE} \subseteq \text{EXP} \]

where \(\text{EXP} = \bigcup_{k=1}^{\infty} \text{TIME}(2^{n^k}) \)
We have the following inclusions:

\[
L \subseteq NL \subseteq P \subseteq NP \subseteq \text{PSPACE} \subseteq \text{NPSPACE} \subseteq \text{EXP}
\]

where
\[
\text{EXP} = \bigcup_{k=1}^{\infty} \text{TIME}(2^{n^k})
\]

Moreover,

\[
L \subseteq NL \cap \text{co-NL}
\]

\[
P \subseteq NP \cap \text{co-NP}
\]

\[
\text{PSPACE} \subseteq \text{NPSPACE} \cap \text{co-NPSPACE}
\]
We can scale up relations between complexity classes. For example:

\[L = P \implies \text{PSPACE} = \text{EXP} \]

Proof: Let \(S \in \text{EXP} \).
We can scale up relations between complexity classes. For example:

\[L = P \implies \text{PSPACE} = \text{EXP} \]

Proof: Let \(S \in \text{EXP} \).

Then \(S' = \{x01^{2|x|^{k}} : x \in S\} \in \text{P} \).
We can scale up relations between complexity classes. For example:

\[L = P \implies \text{PSPACE} = \text{EXP} \]

Proof: Let \(S \in \text{EXP} \).

Then \(S' = \{ x01^{2|x|^k} : x \in S \} \in P \).

Hence, \(S' \in L \).
We can scale up relations between complexity classes. For example:

\[L = P \implies \text{PSPACE} = \text{EXP} \]

Proof: Let \(S \in \text{EXP} \).

Then \(S' = \{ x01^{2|x|^k} : x \in S \} \in \text{P} \).

Hence, \(S' \in \text{L} \).

Given \(x \in S \), we can generate \(x01^{2|x|^k} \in S' \) in polynomial space.
We can scale up relations between complexity classes. For example:

$$L = P \implies \text{PSPACE} = \text{EXP}$$

Proof: Let $S \in \text{EXP}$. Then $S' = \{x01^{2|\cdot|_k} : x \in S\} \in P$. Hence, $S' \in L$.

Given $x \in S$, we can generate $x01^{2|\cdot|_k} \in S'$ in polynomial space.

Thus $S \in \text{PSPACE}$.

Padding arguments
Constructible Functions
A complexity class such as $\text{TIME}(f)$ can be very unnatural, if f is.
We restrict our bounding functions f to be proper functions:
A complexity class such as $\text{TIME}(f)$ can be very unnatural, if f is. We restrict our bounding functions f to be proper functions:

Definition
A function $f : \mathbb{N} \rightarrow \mathbb{N}$ is constructible if:

- f is non-decreasing, i.e. $f(n + 1) \geq f(n)$ for all n; and
A complexity class such as \(\text{TIME}(f) \) can be very unnatural, if \(f \) is.

We restrict our bounding functions \(f \) to be proper functions:

Definition

A function \(f : \mathbb{N} \rightarrow \mathbb{N} \) is *constructible* if:

- \(f \) is non-decreasing, i.e. \(f(n + 1) \geq f(n) \) for all \(n \); and
- there is a deterministic machine \(M \) which, on any input of length \(n \), replaces the input with the string \(0^{f(n)} \), and \(M \) runs in time \(O(n + f(n)) \) and uses \(O(f(n)) \) work space.
Examples

All of the following functions are constructible:

- \([\log n]\);
All of the following functions are constructible:

- $\lceil \log n \rceil$;
- n^2;
Examples

All of the following functions are constructible:

- \([\log n]\);
- \(n^2\);
- \(n\);
All of the following functions are constructible:

- \([\log n]\);
- \(n^2\);
- \(n\);
- \(2^n\).
All of the following functions are constructible:

- $\lceil \log n \rceil$;
- n^2;
- n;
- 2^n.
All of the following functions are constructible:

- \([\log n]\);
- \(n^2\);
- \(n\);
- \(2^n\).

If \(f\) and \(g\) are constructible functions, then so are
\(f + g\), \(f \cdot g\), \(2^f\) and \(f(g)\) (this last, provided that \(f(n) > n\)).
\textbf{Using Constructible Functions}

$\text{NTIME}(f)$ can be defined as the class of those languages L accepted by a \textit{nondeterministic} Turing machine M, such that for every $x \in L$, there is an accepting computation of M on x of length at most $O(f(n))$.
Using Constructible Functions

\(\text{NTIME}(f) \) can be defined as the class of those languages \(L \) accepted by a *nondeterministic* Turing machine \(M \), such that for every \(x \in L \), there is an accepting computation of \(M \) on \(x \) of length at most \(O(f(n)) \).

If \(f \) is a constructible function then any language in \(\text{NTIME}(f) \) is accepted by a machine for which all computations are of length at most \(O(f(n)) \).
Using Constructible Functions

\(\text{NTIME}(f) \) can be defined as the class of those languages \(L \) accepted by a \textit{nondeterministic} Turing machine \(M \), such that for every \(x \in L \), there is an accepting computation of \(M \) on \(x \) of length at most \(O(f(n)) \).

If \(f \) is a constructible function then any language in \(\text{NTIME}(f) \) is accepted by a machine for which all computations are of length at most \(O(f(n)) \).

Also, given a Turing machine \(M \) and a constructible function \(f \), we can define a machine that simulates \(M \) for \(f(n) \) steps.
To establish the known inclusions between the main complexity classes, we prove the following, for any constructible f.
Establishing Inclusions

To establish the known inclusions between the main complexity classes, we prove the following, for any constructible f.

- $\text{SPACE}(f(n)) \subseteq \text{NSPACE}(f(n))$;
Establishing Inclusions

To establish the known inclusions between the main complexity classes, we prove the following, for any constructible f.

- $\text{SPACE}(f(n)) \subseteq \text{NSPACE}(f(n))$;
- $\text{TIME}(f(n)) \subseteq \text{NTIME}(f(n))$;
To establish the known inclusions between the main complexity classes, we prove the following, for any constructible f.

- $\text{SPACE}(f(n)) \subseteq \text{NSPACE}(f(n))$;
- $\text{TIME}(f(n)) \subseteq \text{NTIME}(f(n))$;
- $\text{NTIME}(f(n)) \subseteq \text{SPACE}(f(n))$;
To establish the known inclusions between the main complexity classes, we prove the following, for any constructible f.

- $\text{SPACE}(f(n)) \subseteq \text{NSPACE}(f(n))$;
- $\text{TIME}(f(n)) \subseteq \text{NTIME}(f(n))$;
- $\text{NTIME}(f(n)) \subseteq \text{SPACE}(f(n))$;
- $\text{NSPACE}(f(n)) \subseteq \text{TIME}(k^{\log n} + f(n))$;
Establishing Inclusions

To establish the known inclusions between the main complexity classes, we prove the following, for any constructible f.

- $\text{SPACE}(f(n)) \subseteq \text{NSPACE}(f(n))$;
- $\text{TIME}(f(n)) \subseteq \text{NTIME}(f(n))$;
- $\text{NTIME}(f(n)) \subseteq \text{SPACE}(f(n))$;
- $\text{NSPACE}(f(n)) \subseteq \text{TIME}(k^{\log n+f(n)})$;
Establishing Inclusions

To establish the known inclusions between the main complexity classes, we prove the following, for any constructible f.

\begin{itemize}
 \item $\text{SPACE}(f(n)) \subseteq \text{NSPACE}(f(n))$;
 \item $\text{TIME}(f(n)) \subseteq \text{NTIME}(f(n))$;
 \item $\text{NTIME}(f(n)) \subseteq \text{SPACE}(f(n))$;
 \item $\text{NSPACE}(f(n)) \subseteq \text{TIME}(k^{\log n+f(n)})$;
\end{itemize}

The first two are straightforward from definitions.
The third is an easy simulation.
The last requires some more work.
Recall the Reachability problem: given a directed graph $G = (V, E)$ and two nodes $a, b \in V$, determine whether there is a path from a to b in G.
Recall the Reachability problem: given a directed graph $G = (V, E)$ and two nodes $a, b \in V$, determine whether there is a path from a to b in G.

A simple search algorithm solves it:

1. mark node a, leaving other nodes unmarked, and initialise set S to $\{a\}$;
Recall the **Reachability** problem: given a *directed* graph $G = (V, E)$ and two nodes $a, b \in V$, determine whether there is a path from a to b in G.

A simple search algorithm solves it:

1. mark node a, leaving other nodes unmarked, and initialise set S to $\{a\}$;
2. while S is not empty, choose node i in S: remove i from S and for all j such that there is an edge (i, j) and j is unmarked, mark j and add j to S;
Recall the **Reachability** problem: given a directed graph $G = (V, E)$ and two nodes $a, b \in V$, determine whether there is a path from a to b in G.

A simple search algorithm solves it:

1. mark node a, leaving other nodes unmarked, and initialise set S to $\{a\}$;
2. while S is not empty, choose node i in S: remove i from S and for all j such that there is an edge (i, j) and j is unmarked, mark j and add j to S;
3. if b is marked, accept else reject.
We can use the $O(n^2)$ algorithm for Reachability to show that:

\[\text{NSPACE}(f(n)) \subseteq \text{TIME}(k^{\log n} + f(n)) \]

for some constant k.
We can use the $O(n^2)$ algorithm for Reachability to show that:

$$\text{NSPACE}(f(n)) \subseteq \text{TIME}(k \log n + f(n))$$

for some constant k.

Let M be a nondeterministic machine working in space bounds $f(n)$. For any input x of length n, there is a constant c (depending on the number of states and alphabet of M) such that the total number of possible configurations of M within space bounds $f(n)$ is bounded by $n \cdot c^f(n)$.

Here, $c^f(n)$ represents the number of different possible contents of the work space, and n different head positions on the input.
Questions?