
Complexity Theory
Lecture 1: Introduction and motivation

Tom Gur
http://www.cl.cam.ac.uk/teaching/2324/Complexity



The story starts here in Cambridge...

2



Alan Turing and Computation Theory

Infinite, or finite, that is the question.

Or is it...

3



Alan Turing and Computation Theory

Infinite, or finite, that is the question.

Or is it...

3



Alan Turing and Computation Theory

Infinite, or finite, that is the question.

Or is it...

3



Numbers and Scale

10 - Fingers.

100 - a full lecture theatre

1000 = 210 - a rock concert

1000000 = 220 - 5x population of Cambridge, 1M seconds = 11.5 days

1 Billion = 230 - 1B seconds = 31.5 years, 1GHz = 1/billion sec, iPhone

1 Trillion = 240 - 1T seconds = 34,842.1 years, FLOPS of PlayStation

250 - 35,678,377.2 years, FLOPs of a supercomputer

260 - 36 Billion years, 3 times the age of the universe

2150 - all super computers working throughout the universe’s lifespan...

21000000 complexity of an exponential-time algorithm on a small input...

4



Numbers and Scale

10 - Fingers.

100 - a full lecture theatre

1000 = 210 - a rock concert

1000000 = 220 - 5x population of Cambridge, 1M seconds = 11.5 days

1 Billion = 230 - 1B seconds = 31.5 years, 1GHz = 1/billion sec, iPhone

1 Trillion = 240 - 1T seconds = 34,842.1 years, FLOPS of PlayStation

250 - 35,678,377.2 years, FLOPs of a supercomputer

260 - 36 Billion years, 3 times the age of the universe

2150 - all super computers working throughout the universe’s lifespan...

21000000 complexity of an exponential-time algorithm on a small input...

4



Numbers and Scale

10 - Fingers.

100 - a full lecture theatre

1000 = 210 - a rock concert

1000000 = 220 - 5x population of Cambridge, 1M seconds = 11.5 days

1 Billion = 230 - 1B seconds = 31.5 years, 1GHz = 1/billion sec, iPhone

1 Trillion = 240 - 1T seconds = 34,842.1 years, FLOPS of PlayStation

250 - 35,678,377.2 years, FLOPs of a supercomputer

260 - 36 Billion years, 3 times the age of the universe

2150 - all super computers working throughout the universe’s lifespan...

21000000 complexity of an exponential-time algorithm on a small input...

4



Numbers and Scale

10 - Fingers.

100 - a full lecture theatre

1000 = 210 - a rock concert

1000000 = 220 - 5x population of Cambridge, 1M seconds = 11.5 days

1 Billion = 230 - 1B seconds = 31.5 years, 1GHz = 1/billion sec, iPhone

1 Trillion = 240 - 1T seconds = 34,842.1 years, FLOPS of PlayStation

250 - 35,678,377.2 years, FLOPs of a supercomputer

260 - 36 Billion years, 3 times the age of the universe

2150 - all super computers working throughout the universe’s lifespan...

21000000 complexity of an exponential-time algorithm on a small input...

4



Numbers and Scale

10 - Fingers.

100 - a full lecture theatre

1000 = 210 - a rock concert

1000000 = 220 - 5x population of Cambridge, 1M seconds = 11.5 days

1 Billion = 230 - 1B seconds = 31.5 years, 1GHz = 1/billion sec, iPhone

1 Trillion = 240 - 1T seconds = 34,842.1 years, FLOPS of PlayStation

250 - 35,678,377.2 years, FLOPs of a supercomputer

260 - 36 Billion years, 3 times the age of the universe

2150 - all super computers working throughout the universe’s lifespan...

21000000 complexity of an exponential-time algorithm on a small input...

4



Numbers and Scale

10 - Fingers.

100 - a full lecture theatre

1000 = 210 - a rock concert

1000000 = 220 - 5x population of Cambridge, 1M seconds = 11.5 days

1 Billion = 230 - 1B seconds = 31.5 years, 1GHz = 1/billion sec, iPhone

1 Trillion = 240 - 1T seconds = 34,842.1 years, FLOPS of PlayStation

250 - 35,678,377.2 years, FLOPs of a supercomputer

260 - 36 Billion years, 3 times the age of the universe

2150 - all super computers working throughout the universe’s lifespan...

21000000 complexity of an exponential-time algorithm on a small input...

4



Numbers and Scale

10 - Fingers.

100 - a full lecture theatre

1000 = 210 - a rock concert

1000000 = 220 - 5x population of Cambridge, 1M seconds = 11.5 days

1 Billion = 230 - 1B seconds = 31.5 years, 1GHz = 1/billion sec, iPhone

1 Trillion = 240 - 1T seconds = 34,842.1 years, FLOPS of PlayStation

250 - 35,678,377.2 years, FLOPs of a supercomputer

260 - 36 Billion years, 3 times the age of the universe

2150 - all super computers working throughout the universe’s lifespan...

21000000 complexity of an exponential-time algorithm on a small input...

4



Numbers and Scale

10 - Fingers.

100 - a full lecture theatre

1000 = 210 - a rock concert

1000000 = 220 - 5x population of Cambridge, 1M seconds = 11.5 days

1 Billion = 230 - 1B seconds = 31.5 years, 1GHz = 1/billion sec, iPhone

1 Trillion = 240 - 1T seconds = 34,842.1 years, FLOPS of PlayStation

250 - 35,678,377.2 years, FLOPs of a supercomputer

260 - 36 Billion years, 3 times the age of the universe

2150 - all super computers working throughout the universe’s lifespan...

21000000 complexity of an exponential-time algorithm on a small input...

4



Numbers and Scale

10 - Fingers.

100 - a full lecture theatre

1000 = 210 - a rock concert

1000000 = 220 - 5x population of Cambridge, 1M seconds = 11.5 days

1 Billion = 230 - 1B seconds = 31.5 years, 1GHz = 1/billion sec, iPhone

1 Trillion = 240 - 1T seconds = 34,842.1 years, FLOPS of PlayStation

250 - 35,678,377.2 years, FLOPs of a supercomputer

260 - 36 Billion years, 3 times the age of the universe

2150 - all super computers working throughout the universe’s lifespan...

21000000 complexity of an exponential-time algorithm on a small input...

4



Numbers and Scale

10 - Fingers.

100 - a full lecture theatre

1000 = 210 - a rock concert

1000000 = 220 - 5x population of Cambridge, 1M seconds = 11.5 days

1 Billion = 230 - 1B seconds = 31.5 years, 1GHz = 1/billion sec, iPhone

1 Trillion = 240 - 1T seconds = 34,842.1 years, FLOPS of PlayStation

250 - 35,678,377.2 years, FLOPs of a supercomputer

260 - 36 Billion years, 3 times the age of the universe

2150 - all super computers working throughout the universe’s lifespan...

21000000 complexity of an exponential-time algorithm on a small input...

4



What is Complexity Theory?

Complexity theory characterises tractable computation!

It allows us to understand the power and limitations of algorithms.

Why should you care?

Practice: learn how to avoid intractable problems.

Theory: new ways of overcoming barriers (interactive proofs, sublinear
algorithms, learning algorithms, etc.)

Interdisciplinary: Deep connections to physics (e.g., quantum) and
mathematics (e.g., P vs NP, algebraic geometry, harmonic analysis).

Bonus: Ways to make progress on big philosophical questions:
randomness, quantum, free will, and beyond.

So let’s start!

5



What is Complexity Theory?

Complexity theory characterises tractable computation!

It allows us to understand the power and limitations of algorithms.

Why should you care?

Practice: learn how to avoid intractable problems.

Theory: new ways of overcoming barriers (interactive proofs, sublinear
algorithms, learning algorithms, etc.)

Interdisciplinary: Deep connections to physics (e.g., quantum) and
mathematics (e.g., P vs NP, algebraic geometry, harmonic analysis).

Bonus: Ways to make progress on big philosophical questions:
randomness, quantum, free will, and beyond.

So let’s start!

5



What is Complexity Theory?

Complexity theory characterises tractable computation!

It allows us to understand the power and limitations of algorithms.

Why should you care?

Practice: learn how to avoid intractable problems.

Theory: new ways of overcoming barriers (interactive proofs, sublinear
algorithms, learning algorithms, etc.)

Interdisciplinary: Deep connections to physics (e.g., quantum) and
mathematics (e.g., P vs NP, algebraic geometry, harmonic analysis).

Bonus: Ways to make progress on big philosophical questions:
randomness, quantum, free will, and beyond.

So let’s start!

5



What is Complexity Theory?

Complexity theory characterises tractable computation!

It allows us to understand the power and limitations of algorithms.

Why should you care?

Practice: learn how to avoid intractable problems.

Theory: new ways of overcoming barriers (interactive proofs, sublinear
algorithms, learning algorithms, etc.)

Interdisciplinary: Deep connections to physics (e.g., quantum) and
mathematics (e.g., P vs NP, algebraic geometry, harmonic analysis).

Bonus: Ways to make progress on big philosophical questions:
randomness, quantum, free will, and beyond.

So let’s start!

5



What is Complexity Theory?

Complexity theory characterises tractable computation!

It allows us to understand the power and limitations of algorithms.

Why should you care?

Practice: learn how to avoid intractable problems.

Theory: new ways of overcoming barriers (interactive proofs, sublinear
algorithms, learning algorithms, etc.)

Interdisciplinary: Deep connections to physics (e.g., quantum) and
mathematics (e.g., P vs NP, algebraic geometry, harmonic analysis).

Bonus: Ways to make progress on big philosophical questions:
randomness, quantum, free will, and beyond.

So let’s start!

5



What is Complexity Theory?

Complexity theory characterises tractable computation!

It allows us to understand the power and limitations of algorithms.

Why should you care?

Practice: learn how to avoid intractable problems.

Theory: new ways of overcoming barriers (interactive proofs, sublinear
algorithms, learning algorithms, etc.)

Interdisciplinary: Deep connections to physics (e.g., quantum) and
mathematics (e.g., P vs NP, algebraic geometry, harmonic analysis).

Bonus: Ways to make progress on big philosophical questions:
randomness, quantum, free will, and beyond.

So let’s start!

5



What is Complexity Theory?

Complexity theory characterises tractable computation!

It allows us to understand the power and limitations of algorithms.

Why should you care?

Practice: learn how to avoid intractable problems.

Theory: new ways of overcoming barriers (interactive proofs, sublinear
algorithms, learning algorithms, etc.)

Interdisciplinary: Deep connections to physics (e.g., quantum) and
mathematics (e.g., P vs NP, algebraic geometry, harmonic analysis).

Bonus: Ways to make progress on big philosophical questions:
randomness, quantum, free will, and beyond.

So let’s start!

5



Algorithms and Problems

Insertion Sort runs in time O(n2), while Merge Sort is an
O(n log n) algorithm.

The first half of this statement is short for:
If we count the number of steps performed by the Insertion Sort
algorithm on an input of size n, taking the largest such number,
from among all inputs of that size, then the function of n so
defined is eventually bounded by a constant multiple of n2.

It makes sense to compare the two algorithms because they seek to solve
the same problem.

But, what is the complexity of the sorting problem?

6



Algorithms and Problems

Insertion Sort runs in time O(n2), while Merge Sort is an
O(n log n) algorithm.

The first half of this statement is short for:
If we count the number of steps performed by the Insertion Sort
algorithm on an input of size n, taking the largest such number,
from among all inputs of that size, then the function of n so
defined is eventually bounded by a constant multiple of n2.

It makes sense to compare the two algorithms because they seek to solve
the same problem.

But, what is the complexity of the sorting problem?

6



Algorithms and Problems

Insertion Sort runs in time O(n2), while Merge Sort is an
O(n log n) algorithm.

The first half of this statement is short for:
If we count the number of steps performed by the Insertion Sort
algorithm on an input of size n, taking the largest such number,
from among all inputs of that size, then the function of n so
defined is eventually bounded by a constant multiple of n2.

It makes sense to compare the two algorithms because they seek to solve
the same problem.

But, what is the complexity of the sorting problem?

6



Algorithms and Problems

Insertion Sort runs in time O(n2), while Merge Sort is an
O(n log n) algorithm.

The first half of this statement is short for:
If we count the number of steps performed by the Insertion Sort
algorithm on an input of size n, taking the largest such number,
from among all inputs of that size, then the function of n so
defined is eventually bounded by a constant multiple of n2.

It makes sense to compare the two algorithms because they seek to solve
the same problem.

But, what is the complexity of the sorting problem?

6



Review

The complexity of an algorithm (whether measuring number of steps, or
amount of memory) is usually described asymptotically:

Definition
For functions f : IN → IN and g : IN → IN, we say that:

• f = O(g), if there is an n0 ∈ IN and a constant c such that for all
n > n0, f (n) ≤ cg(n);

• f = Ω(g), if there is an n0 ∈ IN and a constant c such that for all
n > n0, f (n) ≥ cg(n).

• f = θ(g) if f = O(g) and f = Ω(g).

Usually, O is used for upper bounds and Ω for lower bounds.

7



Review

The complexity of an algorithm (whether measuring number of steps, or
amount of memory) is usually described asymptotically:

Definition
For functions f : IN → IN and g : IN → IN, we say that:

• f = O(g), if there is an n0 ∈ IN and a constant c such that for all
n > n0, f (n) ≤ cg(n);

• f = Ω(g), if there is an n0 ∈ IN and a constant c such that for all
n > n0, f (n) ≥ cg(n).

• f = θ(g) if f = O(g) and f = Ω(g).

Usually, O is used for upper bounds and Ω for lower bounds.

7



Review

The complexity of an algorithm (whether measuring number of steps, or
amount of memory) is usually described asymptotically:

Definition
For functions f : IN → IN and g : IN → IN, we say that:

• f = O(g), if there is an n0 ∈ IN and a constant c such that for all
n > n0, f (n) ≤ cg(n);

• f = Ω(g), if there is an n0 ∈ IN and a constant c such that for all
n > n0, f (n) ≥ cg(n).

• f = θ(g) if f = O(g) and f = Ω(g).

Usually, O is used for upper bounds and Ω for lower bounds.

7



Lower and Upper Bounds

What is the running time complexity of the fastest algorithm that sorts a
list?

By the analysis of the Merge Sort algorithm, we know that this is no
worse than O(n log n).

The complexity of a particular algorithm establishes an upper bound on
the complexity of the problem.

To establish a lower bound, we need to show that no possible algorithm,
including those as yet undreamed of, can do better.

In the case of sorting, we can establish a lower bound of Ω(n log n),
showing that Merge Sort is asymptotically optimal.

Sorting is a rare example where known upper and lower bounds match.

8



Lower and Upper Bounds

What is the running time complexity of the fastest algorithm that sorts a
list?

By the analysis of the Merge Sort algorithm, we know that this is no
worse than O(n log n).

The complexity of a particular algorithm establishes an upper bound on
the complexity of the problem.

To establish a lower bound, we need to show that no possible algorithm,
including those as yet undreamed of, can do better.

In the case of sorting, we can establish a lower bound of Ω(n log n),
showing that Merge Sort is asymptotically optimal.

Sorting is a rare example where known upper and lower bounds match.

8



Lower and Upper Bounds

What is the running time complexity of the fastest algorithm that sorts a
list?

By the analysis of the Merge Sort algorithm, we know that this is no
worse than O(n log n).

The complexity of a particular algorithm establishes an upper bound on
the complexity of the problem.

To establish a lower bound, we need to show that no possible algorithm,
including those as yet undreamed of, can do better.

In the case of sorting, we can establish a lower bound of Ω(n log n),
showing that Merge Sort is asymptotically optimal.

Sorting is a rare example where known upper and lower bounds match.

8



Lower and Upper Bounds

What is the running time complexity of the fastest algorithm that sorts a
list?

By the analysis of the Merge Sort algorithm, we know that this is no
worse than O(n log n).

The complexity of a particular algorithm establishes an upper bound on
the complexity of the problem.

To establish a lower bound, we need to show that no possible algorithm,
including those as yet undreamed of, can do better.

In the case of sorting, we can establish a lower bound of Ω(n log n),
showing that Merge Sort is asymptotically optimal.

Sorting is a rare example where known upper and lower bounds match.

8



Lower and Upper Bounds

What is the running time complexity of the fastest algorithm that sorts a
list?

By the analysis of the Merge Sort algorithm, we know that this is no
worse than O(n log n).

The complexity of a particular algorithm establishes an upper bound on
the complexity of the problem.

To establish a lower bound, we need to show that no possible algorithm,
including those as yet undreamed of, can do better.

In the case of sorting, we can establish a lower bound of Ω(n log n),
showing that Merge Sort is asymptotically optimal.

Sorting is a rare example where known upper and lower bounds match.

8



Lower and Upper Bounds

What is the running time complexity of the fastest algorithm that sorts a
list?

By the analysis of the Merge Sort algorithm, we know that this is no
worse than O(n log n).

The complexity of a particular algorithm establishes an upper bound on
the complexity of the problem.

To establish a lower bound, we need to show that no possible algorithm,
including those as yet undreamed of, can do better.

In the case of sorting, we can establish a lower bound of Ω(n log n),
showing that Merge Sort is asymptotically optimal.

Sorting is a rare example where known upper and lower bounds match.

8



Lower Bound on Sorting

An algorithm A sorting a list of n distinct numbers a1, . . . , an.

To work for all permutations of the input list, the tree must have at least
n! leaves and therefore height at least log2(n!) = θ(n log n).

9



Lower Bound on Sorting

An algorithm A sorting a list of n distinct numbers a1, . . . , an.

To work for all permutations of the input list, the tree must have at least
n! leaves and therefore height at least log2(n!) = θ(n log n).

9



Travelling Salesman

Given

• V — a set of nodes.
• c : V × V → IN — a cost matrix.

Find an ordering v1, . . . , vn of V for which the total cost:

c(vn, v1) +
n−1∑
i=1

c(vi , vi+1)

is the smallest possible.

10



Travelling Salesman

Given

• V — a set of nodes.
• c : V × V → IN — a cost matrix.

Find an ordering v1, . . . , vn of V for which the total cost:

c(vn, v1) +
n−1∑
i=1

c(vi , vi+1)

is the smallest possible.

10



Complexity of TSP

Obvious algorithm: Try all possible orderings of V and find the one with
lowest cost.
The worst case running time is θ(n!).

Lower bound: An analysis like that for sorting shows a lower bound of
Ω(n log n).

Upper bound: The currently fastest known algorithm has a running time
of O(n22n).

Between these two is the chasm of our ignorance.

11



Complexity of TSP

Obvious algorithm: Try all possible orderings of V and find the one with
lowest cost.
The worst case running time is θ(n!).

Lower bound: An analysis like that for sorting shows a lower bound of
Ω(n log n).

Upper bound: The currently fastest known algorithm has a running time
of O(n22n).

Between these two is the chasm of our ignorance.

11



Complexity of TSP

Obvious algorithm: Try all possible orderings of V and find the one with
lowest cost.
The worst case running time is θ(n!).

Lower bound: An analysis like that for sorting shows a lower bound of
Ω(n log n).

Upper bound: The currently fastest known algorithm has a running time
of O(n22n).

Between these two is the chasm of our ignorance.

11



Complexity of TSP

Obvious algorithm: Try all possible orderings of V and find the one with
lowest cost.
The worst case running time is θ(n!).

Lower bound: An analysis like that for sorting shows a lower bound of
Ω(n log n).

Upper bound: The currently fastest known algorithm has a running time
of O(n22n).

Between these two is the chasm of our ignorance.

11



Complexity of TSP

Obvious algorithm: Try all possible orderings of V and find the one with
lowest cost.
The worst case running time is θ(n!).

Lower bound: An analysis like that for sorting shows a lower bound of
Ω(n log n).

Upper bound: The currently fastest known algorithm has a running time
of O(n22n).

Between these two is the chasm of our ignorance.

11



Textbooks

The main texts for the course are:

Computational Complexity.
Christos H. Papadimitriou.

Introduction to the Theory of Computation.
Michael Sipser.

12



Outline

A rough lecture-by-lecture guide, with relevant sections from the text by
Papadimitriou (or Sipser, where marked with an S).

• Algorithms and problems. 1.1–1.3.
• Time and space. 2.1–2.5, 2.7.
• Time Complexity classes. 7.1, S7.2.
• Nondeterminism. 2.7, 9.1, S7.3.
• NP-completeness. 8.1–8.2, 9.2.
• Graph-theoretic problems. 9.3

13



Outline

• Sets, numbers and scheduling. 9.4
• coNP. 10.1–10.2.
• Cryptographic complexity. 12.1–12.2.
• Space Complexity 7.1, 7.3, S8.1.
• Hierarchy 7.2, S9.1.
• Quantum Complexity 20 [Arora-Barak]

14



Anonymous feedback

Let me know what works and what doesn’t. Complexity theory is
beautiful – let’s enjoy and get the most out of it!

15



Questions?

15


