
A Consistency Checker for Memory Subsystem Traces

Matthew Naylor, Simon W. Moore, Alan Mujumdar
Computer Laboratory, University of Cambridge, UK

{matthew.naylor, simon.moore, alan.mujumdar}@cl.cam.ac.uk

Abstract—Verifying the memory subsystem in a modern
shared-memory multiprocessor is a big challenge. Optimized
implementations are highly sophisticated, yet must provide subtle
consistency and liveness guarantees for the correct execution of
concurrent programs. We present a tool that supports efficient
specification-based testing of the memory subsystem against a
range of formally specified consistency models. Our tool operates
directly on the memory subsystem interface, promoting a com-
positional approach to system-on-chip verification, and can be
used to search for simple failure cases – assisting rapid debug. It
has recently been incorporated into the development flows of two
open-source implementations – Berkeley’s Rocket Chip (RISC-
V) and Cambridge’s BERI (MIPS) – where it has uncovered a
number of serious bugs.

I. INTRODUCTION

We are interested in verifying that the memory subsystem
in a shared-memory multiprocessor implements a well-defined
consistency model – a pre-requisite for the correct execution
of concurrent programs on such architectures [1]. We take
a specification-based testing approach inspired by the work
of Manovit et al. [2], [3], [4], [5] and their TSOtool [6].
TSOtool generates pseudo-random multi-threaded programs,
runs them on a multiprocessor, and compares the results
against the Total Store Order specification (TSO) to reveal
potential discrepancies. A key contribution of the work is a
state-of-the-art conformance-checking algorithm for TSO that
can handle long-running programs – on the order of millions
of memory operations and hundreds of cores – despite this
being an NP-complete problem [7]. TSOtool, and variants of
it, have been used with great success at Sun Microsystems [2]
and Intel [8].

In this paper, we both build on and deviate from TSOtool
in a number of useful ways, as outlined below.

Testing the memory subsystem in isolation Unlike TSOtool,
we feed memory requests directly to the memory subsystem
using an HDL-level test bench, not via software running on
processors connected to the memory subsystem. As a result:

• The memory subsystem can be tested as a reusable
component, not constrained to the usage pattern of
any particular processor implementation.

• Greater stress can be applied to the memory subsystem
directly than may be possible indirectly via software.

• It is faster to simulate the memory subsystem in the
absence of processor pipelines, allowing more tests
per unit time.

• We avoid the implicit traffic arising from execution of
software tests (e.g., fetching instructions, logging test
results), allowing simpler failure cases to be found.

Model Name & Reference

SC Sequential Consistency [10]

⊂ TSO Total Store Order [11]

⊂ PSO Partial Store Order [11]

⊂ WMO1 Weak Memory Order [11]

⊂ POW POWER model [12]

Fig. 1: Consistency models supported by Axe

More consistency models We can test memory subsystems
against a range of consistency models found in modern multi-
processors, not just TSO. For example, we can test Berkeley’s
Rocket Chip [9], which at the time of writing is intentionally
more relaxed than TSO.

Our conformance-checking tool – Axe – supports a spec-
trum of five consistency models shown in Figure 1, each one
permitting a subset of the behaviors allowed by the next.
In this paper, we focus on support for the SPARC models
(SC, TSO, PSO, WMO), which have been sufficient for the
memory subsystems we have tested thus far; support for the
POWER model (POW) is detailed in the Axe manual [14]. Our
checking algorithm for the SPARC models is a generalization
of TSOtool’s algorithm. Although this generalization leads to
a checker with a worse time and space complexity, we show
that it still performs very well in practice.

Simpler debugging The TSOtool authors say very little about
how best to report violations to the user. Simply indicating that
a violation exists is clearly not very helpful when large traces
are involved. However, due to the backtracking nature of the
checker, it may not be easy to give a concise error message.
To address this, we have developed a shrinking procedure that
attempts to isolate the smallest subset of a failing trace that
still violates the model.

While this procedure works very well for explaining why
the model has been violated, it does not always help in
understanding what went wrong in the implementation. For
this, we exploit one of the great benefits of specification-based
testing: we adjust the test-generation method to search for
small test-cases that fail.

Open-source tools While TSOTool is a “proprietary product
of Sun Microsystems” [6], Axe is open-source and freely-
available [14], as are the applications of Axe to open-source
processors Rocket Chip and BERI [9], [15].

Paper outline We begin by presenting the design and imple-
mentation of Axe. This includes the format of memory subsys-

1WMO is equivalent to SPARC RMO [11] except that it forbids reordering
of loads to the same address, making it a subset of POWER [12].

tem traces taken as input, the consistency models supported,
the checking algorithms we have implemented, performance
evaluations of these algorithms, and a tool for shrinking failing
traces to reveal minimal violations. After that, we present
experiences of using Axe to test the memory subsystem in
Berkeley’s open-source Rocket Chip [9], including details
of test benches developed and the bugs we found. Finally,
we compare our approach against litmus testing and with
other checking tools reported in the literature. This includes
experiences of testing the open-source BERI processor [15],
the value of searching for small failure cases, and bugs missed
by Axe.

II. AXE CONSISTENCY CHECKER

Given a memory subsystem execution trace containing a
set of top-level memory requests and responses (including
loads, stores, atomic read-modify-writes, memory barriers, and
optional timestamps) initiated by concurrent processor cores
(or “hardware threads”), Axe determines whether the trace
is valid according to one of the consistency models listed in
Figure 1. Unlike some heuristic algorithms, Axe is complete
in the sense that it will detect any violation of the model.

Following Gibbons [7] and Manovit [2], we assume that
the address-value pair of every store in a trace is unique, i.e.,
the same value is never written to the same address more than
once. This reduces the amount of nondeterminism in a model,
because the store read by any load can be uniquely identified.
The restriction is easily met by an automatic test generator, and
is justified by the fact that the actual values being stored do not
typically affect any interesting hardware behavior. But it does
mean that our tool cannot be used for checking memory traces
that arise during execution of arbitrary software applications,
which are unlikely to meet this restriction.

Another technique for reducing nondeterminism is to mod-
ify the hardware to emit extra trace information such as the
order in which writes reach a particular internal merge point
in the memory subsystem. However, we treat the memory
subsystem as a black box, and do not inspect or modify its
internals in any way: we would like our tool to be as easy as
possible to use, i.e., not requiring modifications to the system
under test.

A. Syntax of memory traces

Example 1 Here is a simple Axe trace consisting of five
operations running on two threads.

0: M[0] := 1
0: sync
0: M[1] := 1
1: M[1] == 1 @ 100 : 110
1: M[0] == 0 @ 115 :

The first number on each line denotes the hardware thread id;
M[a] denotes a memory location with address a; operators ==
and := denote loads and stores respectively; sync denotes a
full memory barrier; the optional timestamps beginning with @
denote the begin and end times at which the request was sent
and the response received, respectively.

The textual order of operations with the same thread id
is the order in which those operations were submitted to the

memory subsystem by that thread. We refer to this order as
the thread-order. No ordering is implied by the textual order
of operations from different threads.

The initial value of every memory location is implicitly
zero. For any load of a value other than zero, there must exist
a write of that value to the same address in the trace, otherwise
the trace is invalid. As explained above, we also require the
address-value pair of every write to be unique.

Load operations will typically contain two timestamps,
since they involve both a request and a response. Axe currently
forbids response timestamps on store operations, making it
clear that this information is not used by any of the supported
models. All timestamps are completely optional, for a few
reasons:

1) Some consistency models are unaffected by timestamps.
2) Timestamps may not be available, depending on how the

traces are produced.
3) Example traces are easier to read if only the interesting

or relevant timestamp information is supplied.

However, in some consistency models timestamps can affect
whether or not a trace is allowed. In the above example,
the timestamps indicate that the first load must have finished
before the second load begins, implying that the memory
subsystem could not have executed the operations out of order.
In the SPARC and POWER architectures, a programmer can
arrange such a dependency by having the address of the second
load be dependent on the result of the first – a so-called
address dependency [12]. Other kinds of dependency include
data dependencies (where the value of a store is dependent
on the result of a preceding load) and control dependencies
(where an operation is control-flow dependent on the result
of preceding load). These program-level dependencies become
observable in the memory trace as end-time-before-begin-time
dependencies.

For the SPARC models, Axe considers timestamps to be
local to each thread, i.e., it does not use timestamps to infer
ordering between operations that run on different threads.

There is no explicit support in Axe for canceled operations,
which often arise in modern CPUs due to speculative execution
or exceptions. Traces containing such operations can still be
checked by simply replacing them with no-ops. There is also
no support for mixed-width accesses at present: Axe abstracts
over the width of each memory location, and hence the width
may vary between traces – but not within a trace.

Example 2 Here is another trace, this time containing three
operations, the first of which is an atomic read-modify-write.

0: <M[0] == 0; M[0] := 1>
1: M[0] := 2
1: M[0] == 1

The first line can be read as thread 0 atomically reads value
0 from memory location 0 and updates it to value 1. The two
memory addresses in an atomic operation must be the same,
otherwise the trace is invalid. In the future, it may be desirable
to generalize read-modify-write (RMW) to allow any number
of operations on any number of addresses, i.e., transactional
memory [23].

A common way to express atomic operations in RISC in-
struction sets is via a pair of load-linked and store-conditional
operations. At the trace level, it is straightforward to convert
such a pair into a single read-modify-write:

• If the store-conditional fails, then remove it from the
trace and convert the load-linked to a standard load.

• Otherwise, convert both operations to a single read-
modify-write operation.

For read-modify-write operations, the response timestamp sim-
ply denotes the time at which the read-response is received.

B. Consistency models

We now introduce the supported consistency models by ex-
ample; a full operational semantics for each model is available
in the Axe manual [14]. Lamport’s sequential consistency [10]
is the strongest supported model; it requires that there exists
a sequential interleaving of each thread’s operations satisfying
the trace.

Example 3 (SB) Here is a trace, known as the “store buffer”
(SB) trace, that is forbidden by sequential consistency.

0: M[1] := 1
0: M[0] == 0
1: M[0] := 1
1: M[1] == 0

There are six possible interleavings of each thread’s operations
and none result in both reads returning zero. However, under
TSO [11], stores may be buffered locally by a thread, allowing
subsequent loads to complete before the buffered stores can be
observed globally.

Example 4 (SB+syncs) Under all consistency models, the
above behavior can be prevented by inserting a sync after
the store on each thread; sync has the effect of flushing the
store buffer of the calling thread. Such memory barriers are
necessary to implement Peterson’s mutual exclusion algorithm
[20], for example.

Example 5 (SB+RMWs) Under TSO, another way to prevent
the SB behavior is to replace each write with an atomic RMW,
which has the side-effect of flushing the store buffer.

0: <M[1] == 0; M[1] := 1>
0: M[0] == 0
1: <M[0] == 0; M[0] := 1>
1: M[1] == 0

Example 6 (MP) The following “message passing” trace is
forbidden under both sequential consistency and TSO.

0: M[0] := 1
0: M[1] := 1
1: M[1] == 1
1: M[0] == 0

However, under PSO [11], this is allowed: buffered stores (to
different addresses) can be evicted out-of-order. Hence, the
second store can be observed globally before the first.

Example 7 (MP+sync) Under PSO, the above behavior can
be disallowed by inserting a sync between the two stores.
However, MP+sync is still allowed by WMO, which permits
load buffering as well as store buffering. As a result, the first
load may now be buffered and overtaken by the second as they
access two different addresses.

Example 8 (MP+syncs) One way to prevent the two loads
from being reordered is simply to place another sync between
them; sync waits for all buffered loads to complete.

Example 9 (MP+sync+dep) Another situation in which
load reordering is disallowed is when a timestamp dependency
forbids it. This trace is disallowed by WMO:

0: M[0] := 1
0: sync
0: M[1] := 1
1: M[1] == 1 @ 100 : 110
1: M[0] == 0 @ 115

Example 10 (LB) The MP+sync example demonstrates
reordering of loads, but WMO also allows reordering of a load
followed by a store. The following trace is allowed by WMO.

0: M[0] == 1
0: M[1] := 1
1: M[1] == 1
1: M[0] := 1

Example 11 (LB+syncs & LB+deps) As expected, a
sync after each load will prevent the behavior. So too will
a timestamp dependency between each load and store.

In summary: TSO allows store-load reordering; PSO ad-
ditionally allows store-store reordering (when the addresses
differ); WMO additionally allows load-load and load-store
reorderings (when the addresses differ). It is quite easy to
see how all these behaviors could arise in the presence of
nonblocking L1 caches: any operation that misses in the L1
cache and is buffered may be overtaken by a subsequent
operation that hits. Such behavior is important for out-of-
order processors, where unnecessary dependencies between
operations must be avoided.

The common feature of all these models is the existence
(or illusion) of a single shared memory: if a write by one
thread is observed by another, then it must be observable to all
threads. Sometimes known as multi-copy atomicity or global
store atomicity, this property is provided by hardware that
implements a single-writer coherence protocol such as MESI.

C. Axiomatic definitions

We now present the axiomatic definitions for the con-
sistency models, upon which the Axe checking algorithm is
based. In these definitions, we consider a read-modify-write
operation to be both a “load” and a “store”.

To begin, it is helpful to distinguish between two different
orderings over operations in the trace:

• Thread Order: for any given thread, the textual order
of operations in the trace issued by that thread.

• Memory Order: a total order over all operations.

All valid traces under these models must satisfy the fol-
lowing property (value axiom): the value returned by a load
from address a equals the value of the latest store (in memory
order) from the set Local ∪Global where Local is the set of
stores to address a that precede the load in thread order and
Global is the set of stores to address a that precede the load
in memory order.

Depending on the model, the following local axioms on
operations i and j from the same thread must also be satisfied.

SC If i precedes j in thread-order, then i must precede j in
memory order.

TSO If i precedes j in thread-order, then i must precede j in
memory order when i is a load; or i and j are stores; or i is
a sync or j is a sync.

PSO If i precedes j in thread-order, then i must precede j in
memory order when: i is a load; or i and j are stores to the
same address; or i is a sync or j is a sync.

WMO If i precedes j in thread-order, then i must precede j
in memory order when: i is a load and j accesses the same
address; or i and j are stores to the same address; or i is a
sync or j is a sync; or i is a load with end-time t0 and j has
begin-time t1 and t0 < t1.

D. Checking algorithm

In this section, we generalize an algorithm for checking
traces against the TSO model to support the SC, TSO, PSO
and WMO models. The central data structure used by this
algorithm is the analysis graph – in which each node denotes
an operation from the trace, and each edge denotes that the
source node precedes the destination node in memory order.

Simple algorithm Starting with an empty analysis graph, a
simple checking algorithm is as follows.

1) Add each operation in the trace as a node to the analysis
graph and add the edges implied by the local axioms
defined above. (Redundant edges implied by transitivity
need not be added.)

2) Apply the two edge-introduction rules shown in Figure 2
to the graph.

3) Add an edge from each read M[x] == 0 to the first store
M[x] := v on each thread. This ensures that any read of
zero (initial value) from address x must happen before any
writes to address x.

4) Apply a standard topological sort procedure to the anal-
ysis graph with the following tweak: every time a store
operation M[x] := v is removed from the graph, add an
edge from each load M[x] == v to the next unpicked
store M[x] := w on each thread. This ensures that any
read of the current value at address x must happen before
any store of another value to address x.

5) If a topological sort can be found (i.e., a total order of op-
erations exists that satisfies the memory order constraints),
then the trace is valid; otherwise it is invalid.

The key inefficiency of this algorithm is the nondetermin-
ism present in the topological sort. At any stage, there may
exist several store operations that can be removed next. If a
bad choice is made, the algorithm must backtrack, because an

M[x] := v

M[x] == v

mo

7
to

(a)

M[x] := v

M[x] := w

M[x] == v

mo

moto

(b)

Fig. 2: Edge-introduction rules. Thread-order edges are la-
belled to and memory-order edges mo. In (a) the dotted edge
is introduced if the solid edge does not exist. In (b) the dotted
edges are introduced if the solid edge does exist and v 6= w.

M[x] := v

M[x] := w

M[x] == v

(a)

M[x] := w

M[x] := v

M[x] == w

(b)

Fig. 3: Edge-inference rules proposed by Manovit [2] (our
representation). All edges are memory-order edges. In each
case, if the solid edges are known to exist, either directly or
by transitivity, and v 6= w then the dotted edge can be inferred.

alternative choice might lead to success. (The order of stores
to each address is not known in advance.)

Reducing nondeterminism Manovit proposes the two rules
shown in Figure 3 as a way of inferring new edges in the
analysis graph, greatly reducing the amount of nondeterminism
in the topological sort. Notice that applying these rules can
introduce edges that enable the rules to be applied again.
Therefore, it is desirable to apply the rules repeatedly until
a fixed-point is reached, i.e., until no new edges are inferred.

This leads to two modifications of the simple algorithm
above: first, add a new step after step (2) that applies the
inference rules until a fixed-point is reached; second, every
time a store is removed from the graph in step (4), and new
edges are added, reapply the inference rules until a fixed-point
is reached.

Reducing rule-application sites Applying the inference rules
at all matching sites in the analysis graph would be extremely
inefficient and, fortunately, unnecessary. Manovit shows that
it is sufficient to apply each rule once for each store s of the
form M[x] := v with:

• for rule 3a, node M[x] := w bound to the earliest
store to address x that succeeds s in the analysis graph;

• for rule 3b, node M[x] == w bound to the earliest
load to address x that succeeds s in the analysis graph.

While there may exist several bindings that satisfy the above

constraints (the earliest successor may not be unique in a
partial order), the number of application sites to consider is
greatly reduced.

Determining the earliest successors The problem now is
this: starting from any store operation, how do we efficiently
determine the next load and store to the same address in the
analysis graph?

To answer this, we maintain two data structures. The first
is the mapping nextLoad(op, t, a) that gives the next load (in
the analysis graph) to address a on thread t from operation op.
(Since loads to the same address on a given thread are totally
ordered under all models, this mapping is a function, i.e.,
unambiguous.) Initially, it is computed by a backward analysis,
propagating the next load for each (a, t) pair backwards along
the edges of the graph, in reverse topological order. At a fork
point, the information at several nodes is merged by taking the
minimum load in thread order for each (a, t) pair. When a new
edge i → j is added to the graph, the nextLoad mapping is
updated by applying the same propagation method backwards
from node j until no new updates are made.

The second data structure we maintain is the mapping
nextStore, identical to nextLoad but giving the next store
instead of the next load. These two data structures have a
number of uses:

1) The inference rules from Figure 3 can be efficiently
applied. And when adding an edge, the backward-
propagation method used to update the nextLoad and
nextStore mappings will naturally visit all the nodes at
which the inference rules must be reapplied.

2) The existence of a path from a store to any load or store
can be determined in constant-time, avoiding the addition
of redundant edges to the graph.

3) Similarly, we can be determine in constant-time whether
or not the addition of an edge to the graph will lead to a
cycle, allowing immediate failure detection.

Comparison to Manovit’s algorithm When specializing the
algorithm to the TSO model, it is possible to simplify the
nextLoad and nextStore mappings. Instead of mapping each
(op, a, t) triple to the next load or next store, it is sufficient to
map each (op, t) pair. This is because all loads by the same
thread are totally ordered under TSO, as are all stores by the
same thread. Once the next load on some thread is determined,
the next load to a particular address on that thread can be easily
found by looking at the static thread order. Consequently, the
size of these data structures reduces from 2×N×A×T for N
operations, A addresses, and T threads to 2×N×T . Not only
does this save space, but it makes the backward analysis faster
as the amount of information being propagated is smaller. In
other words, the efficiency of our checker depends on the
number of different address locations used in the trace. This
is not the case for Manovit’s TSO-only checker.

E. Evaluation

Performance To evaluate the performance of Axe, we
have generated a range of traces2 with various numbers of

2Using a model cache implementation with load and store buffering, out-
of-order eviction, out-of-order responses, prefetching and invalidation-based
coherence. These traces are available at http://dx.doi.org/10.17863/CAM.794

8K 16K 24K 32K
number of memory operations

0

1

2

3

4

5

ru
n-

tim
e/

s

t=32
t=16
t=4

Fig. 4: Performance of the WMO checker

memory operations (n ∈ {8K, 16K, 24K, 32K}), threads
(t ∈ {4, 16, 32}), and addresses (a ∈ {4, 16, 32}). For each
combination of parameters, we generate 16 traces, giving
576 traces in total. Figure 4 shows how the performance of
the WMO checker varies with the number of operations and
threads present, averaged over the number of addresses present:
in practice, Axe allows rapid checking of large traces which,
for a fixed number of addresses and threads, scales linearly
with the number of operations.

Correctness Axe has been tested for equivalence against
an operational semantics for each model (defined in the Axe
manual [14]) and also an axiomatic semantics for each model
(defined in §II-C). The test traces include: (1) 199 litmus tests
from the PPCMEM distribution [13]; and (2) 200K randomly-
generated traces ranging from around 10 to 50 operations in
size (distributed with the Axe tool [14]). Axe also gives the
expected outcomes for all the traces used in our performance
evaluation.

F. Shrinking traces

Given a trace that violates a model, we would like to find
the smallest subset of the trace that still violates the model.
This is very useful for debugging (§III). Our shrinker works by
applying each of the following rewrite rules for retry attempts
before moving on to the next rule. Each rule is conditioned on
the resulting trace still violating the model.

1) Pick an address and drop all accesses to that address.
2) Drop a random subset (n%) of loads.
3) Drop a random subset (n%) of stores which write a value

that is never read.
4) Repeat (3) but for read-modify-write operations.

After that, in reverse trace order, it tries to drop each operation
in turn; this is repeated until a fixed-point is reached. For
suitable choices of retry and n, the shrinker is both effective
and fast, typically yielding fewer than ten operations and taking
between a second and a minute for traces between 1K and 32K
elements respectively.

III. CASE STUDY: ROCKET CHIP

Rocket Chip is an open-source system-on-chip generator
developed at UC Berkeley including support for multiple pro-

1: load-req 0x0000000008 #0 @64
1: store-req 5 0x0000100008 #1 @65
1: store-req 7 0x0000000010 #2 @66
0: store-req 2 0x0000000008 #0 @303
0: load-req 0x0000000008 #1 @304
0: store-req 6 0x0000100008 #2 @305
1: resp 0 #0 @96
0: resp 0 #0 @350
0: resp 2 #1 @351
0: load-req 0x0000000010 #3 @353
1: resp 0 #1 @149
1: load-req 0x0000000108 #3 @152
1: resp 0 #3 @184
0: resp 5 #2 @422
0: resp 0 #3 @424
1: resp 0 #2 @226

Fig. 5: A sample trace generated using our extensions to
Rocket Chip’s GroundTest framework: the first number on
each line of the trace is the thread-id; #n denotes a request-id
n; @t denotes a time t in clock cycles; hex numbers denote
addresses; remaining decimal numbers denote data values
being loaded or stored. This trace contains only loads, stores
and responses, but we also support generation of LR/SC pairs,
atomic operations, and fences. Notice that the timestamps are
not monotonically increasing: in simulation, the Rocket Chip
tiles are brought out of reset sequentially.

cessor cores and a cache-coherent shared-memory subsystem.
Available cores include implementations of the RISC-V ISA:
the in-order Rocket, the out-of-order BOOM, and the Z-scale
microcontroller – and (pending release) the Hwacha vector-
thread accelerator. Having been taped out 11 times between
2011 and 2015, Rocket Chip is fairly mature – but faces con-
stant change through extensions, redesigns, and refactorings.
Rocket Chip is written using the Chisel HDL [16].

The Rocket Chip developers have already recognized the
importance of making HDL-level test benches for the mem-
ory subsystem: “In order to test behaviors in our memory
hierarchy which are not easy or efficient to test in software,
we have designed a set of test circuits called GroundTest”
[9]. GroundTest plugs into the socket given to CPU tiles
and generates various kinds of memory traffic directly to the
memory subsystem, either via the L1 caches, or directly to the
L2, or via DMA.

Rocket Chip is highly parameterized, including the choice
of coherence protocol – which by default is MESI, at the time
of writing. Since MESI guarantees at most one writer to a
cache line at any time, it gives the illusion of a single shared
memory – despite the reality of multiple local caches – and
is thus expected to conform to one of the SPARC consistency
models.

Extending GroundTest We developed a trace generator that
plugs into the GroundTest framework. Given a random seed, it
generates random memory requests from each tile, and emits
a trace of events. To illustrate, Figure 5 shows an example of
a generated trace.

The number of tiles, requests, and addresses used when
generating a trace can all be controlled using compile-time pa-
rameters. Ideally though, the number of requests and addresses

would be taken as simulation-time parameters, allowing the
top-level testing script to gradually increase the sizes of traces
in the hope of finding smaller failures first. Unfortunately,
Chisel does not yet support a convenient way to read from
external sources (such as files or environment variables) during
simulation.

Converting traces to Axe format We made a simple script
to convert traces emitted by the trace generator into Axe
format. For example, given the sample trace from Figure 5,
this conversion script yields:

&M[2] == 0x0000000010
&M[0] == 0x0000000008
&M[3] == 0x0000000108
&M[1] == 0x0000100008
1: M[0] == 0 @ 64:96
1: M[1] := 5 @ 65:
1: M[2] := 7 @ 66:
0: M[0] := 2 @ 303:
0: M[0] == 2 @ 304:351
0: M[1] := 6 @ 305:
0: M[2] == 0 @ 353:424
1: M[3] == 0 @ 152:184

Notice that lines beginning with # are treated as comments by
Axe: we use these comments to record the mapping between
physical addresses and addresses used by Axe.

Testing against the SC model We made a script that repeat-
edly: (1) generates a trace with a random seed; (2) converts
the trace to Axe format; and (3) checks the trace against the
chosen consistency model. Running this script, we found a
260-element trace that fails to satisfy sequential consistency.
Passing this through our shrinking procedure (§II-F), we get:

1: M[1] := 185 @ 1921:
1: M[0] := 193 @ 1966:
0: M[0] == 193 @ 2207:2245
0: M[1] := 204 @ 2208:
0: M[1] == 185 @ 2209:2269

Similar to the MP example, this trace can be explained either
by thread 1’s stores being performed out-of-order (PSO) or
thread 0’s loads being performed out-of-order (WMO).

Testing against the PSO model We also found a 261-element
trace that violates PSO, which after shrinking is:

0: M[2] == 137 @ 1825:1948
0: M[0] := 154 @ 1886:
1: M[0] == 154 @ 1689:1725
1: M[2] := 137 @ 1690:

Similar to the LB example, this trace can be explained by the
load and store on thread 0 (or 1) being reordered (WMO).

Coherence bug We observed that a large number of traces
satisfy the WMO model, but eventually we hit a 260-element
counterexample – which after shrinking is:

0: M[2] := 46 @ 497:
1: M[2] == 46 @ 280:513
1: M[2] := 61 @ 729:
1: M[2] == 46 @ 854:979

Note that the write of M[2] := 46 by core 0 is the only
write of 46 in the entire trace (the trace generator ensures that
all write values are unique). Also, the initial value of each
location is 0. Therefore, the write M[2] := 61 by core 1 has
seemingly been dropped. This is a coherence violation and
undesirable: if the write of 46 to M[2] is interpreted as “core
1, a message is available”, then core 1 might end up receiving
two messages as it effectively sees the write twice. (It sees 46
once on line 2, then it clears that value with a store on line 3,
and finally it sees 46 again on line 4). We reported this issue
to the Rocket Chip developers, who identified a race condition
in the coherence protocol and fixed it within a few days.

Livelock bug For the above testing we enabled only loads
and stores in the trace generator. When we enabled generation
of LR/SC pairs, we found a lock-up issue in which a store-
conditional would never return under some circumstances. We
reported this to the Rocket Chip developers, who diagnosed
the problem as a livelock issue in the coherence protocol.

Store-conditional bug With the livelock issue fixed, we found
a 228-element counterexample to WMO. After shrinking it is:

1: M[3] := 31 @ 340:
0: { M[3] == 31; M[3] := 178} @ 745:812
0: { M[3] == 178; M[3] := 198} @ 926:955
1: { M[3] == 178; M[3] := 59 } @ 759:761

Notice that the read-modify-write by thread 1 atomically
changes M[0] from 178 to 59. Furthermore, the second read-
modify-write by thread 0 atomically changes M[0] from 178
to 198. Of course, if these operations really were atomic, this
behavior would be impossible. After investigating the raw trace
emitted by the generator, we noticed this issue arises when
a store-conditional is issued before a load-reserve response is
received. We reported this issue to the Rocket Chip developers,
who identified it as a bug in which a cache line is not marked
as dirty when it should be.

Testing against the WMO model At the time of writing
(with loads, stores, LR/SC pairs, atomics, and fences all
being generated), Rocket Chip satisfies the WMO model on
thousands of large traces, each comprising 64K operations, 16
addresses, and 8 threads.

Liveness A key limitation of the above specification-based
testing approach is that it does not check for liveness, e.g.,
that a store-conditional operation actually succeeds when it
should. In response, we added a mode to the trace generator
in which it will generate only LR/SC pairs that are expected to
succeed. This is possible in Rocket Chip because of the way
it implements LR/SC: the L1 cache will hold on to a cache
line for a maximum of n cycles after an LR response. Thus,
provided the LR and SC are within n cycles of each other,
the SC should succeed. In this mode, we observed an LR/SC
success rate of 94%. The 6% of failures remain unexplained
and we plan to explore this in future work.

IV. COMPARISONS WITH RELATED WORK

A. Litmus testing

Litmus testing is a method of determining whether or not
specific memory behaviors are observable in a multiprocessor
implementation [17], [18]. Behaviors are captured by litmus

{ x=0; 0:r2=x; 1:r2=x; }
P0 | P1 ;
ll r1, 0(r2) | ll r1, 0(r2) ;
add r1, r1, 1 | add r1, r1, 1 ;
sc r1, 0(r2) | sc r1, 0(r2) ;

exists (0:r1=0 /\ 1:r1=0)

Fig. 6: A litmus test for MIPS in which two threads attempt to
concurrently increment a shared variable x using load-linked
and store-conditional operations. The test looks for the case
where both store-conditionals fail – a potential liveness bug.

tests – small concurrent program-fragments with pre- and
post-conditions. To a first approximation, a litmus testing tool
works by repeatedly: (1) establishing the test’s pre-condition;
(2) synchronizing all threads; (3) running the test; and (4)
recording the value of the post condition. Slight variations are
introduced on each iteration – for example by changing the
addresses of the shared variables used, by inserting random
delays, or by simply relying on random perturbations due to
context switching and other OS activities.

In our efforts to verify the memory subsystem of the BERI
multiprocessor [15], [19], we have found litmus testing to be
complementary to our Axe-based approach, which does not
cover liveness properties. For example, the litmus test shown
in Figure 6 caught a serious liveness bug in BERI to which
Axe was oblivious. Unlike in Rocket Chip, it is not possible
in BERI to capture static conditions under which a store
conditional is expected to succeed: concurrent LL/SC accesses
to the same address are resolved by a race, and whoever wins
invalidates the others. But regardless of who wins, there should
exist a winner. The litmus test was able to disprove this by
showing a case where all store-conditionals fail. This was
due to a bug in which even a failing store-conditional would
invalidate the load-linked reservations of other threads.

Litmus testing, as described in [18], is a whole-system
approach, covering the processor pipeline, the memory subsys-
tem, and even the compiler. This strength is also a weakness
when it comes to modular reasoning and debugging. For
example, our test framework for BERI – which employs Axe
alongside techniques for finding simple failures [19] – can find
a counterexample to sequential consistency containing just five
operations. Litmus testing can require hundreds of iterations,
with hundreds of memory accesses per iteration, to expose
the same behavior. Using the smaller counterexample, it is fat
easier to manually trace through the internal hardware state
transitions to understand why the behavior is occurring.

Another problem with a whole-system approach is that a
largely complete and largely working SoC is required before
testing can be attempted. The complex software mechanism
used to synchronize all threads at the beginning of each litmus
test iteration is, on its own, a very demanding test. In contrast,
our approach allows incremental development, starting out
with plain load and store requests, and later moving to fences
and atomics – all without the need for a CPU pipeline, a
compiler, or an OS.

Finally, litmus tests consider specific – not arbitrary –
sequences of memory operations, and we developed Axe to
support full specification-based testing.

B. Intel’s checker

We are not the first to generalize TSOtool’s checking
algorithm to a wider range of consistency models. Intel has
incorporated a variant of the algorithm into their MP RIT
(multiprocessor random instruction test) framework [8], with
support for any consistency model that provides global store
atomicity. This means that Intel’s algorithm is more general
than ours. However, this extra generality comes at a cost, and
its benefit is not clear cut.

Cost Intel’s algorithm represents the analysis graph as an
adjacency matrix and maintains the full transitive closure. Axe
exploits the fact that, in WMO, loads to the same address
on each thread are totally ordered, as are stores to the same
address. This means we don’t need to track all successors for
each node; we need only track the nearest successor of each
node for each (address,thread) pair. The extra cost of Intel’s
algorithm is apparent in their performance graph: despite
parallelizing the checker over multiple cores, a polynomial
growth in execution time is observed for traces up to just 8K
operations for a fixed 8 threads.

Benefit The benefit of the increased generality over WMO is
unclear. Both WMO and Intel’s checker require global store
atomicity. WMO additionally requires sequential-consistency-
per-location, but this property is provided by almost all
CPUs [24].

Unlike Axe, Intel’s checker is incomplete, i.e., there are
some model violations that the tool will inherently miss. And
as with TSOtool, Intel’s checker is not publicly available.

V. CONCLUSIONS

We have generalized a state-of-the-art TSO conformance-
checking algorithm to support a wider range of consistency
models increasingly being found in modern hardware. Al-
though the generalized algorithm has worse time and space
complexity – now dependent on the number of distinct memory
locations that are accessed – it still performs very well in prac-
tice. Using it, we have been able to test the memory subsystem
of Berkeley’s Rocket Chip, which supports load buffering
and out-of-order responses and is therefore intentionally more
relaxed than TSO. This testing has uncovered a number of
serious memory consistency bugs that have been reported to
the Rocket Chip developers in a clear and concise manner
using our trace shrinking procedure. In contrast to whole-
system approaches, we have focused on testing the memory
subsystem as a reusable component that can be understood
in isolation and verified incrementally. This not only permits
testing at much earlier stage in the development process, but
also leads to simpler failure cases. Axe is now part of the
standard test infrastructure for both the BERI and Rocket Chip
open-source processors.

Acknowledgements Many thanks to Henry Cook, Howard
Mao, Peter Neumann, Peter Sewell, Andrew Waterman, Jon
Woodruff, and the anonymous reviewers. This work was sup-
ported by DARPA/AFRL contracts FA8750-10-C-0237 (CT-
SRD) and FA8750-11-C-0249 (MRC2), and EPSRC grant
EP/K008528/1 (REMS). The views, opinions, and/or findings
contained in this paper are those of the authors and should not

be interpreted as representing the official views or policies,
either expressed or implied, of the Department of Defense or
the U.S. Government.

Open access Research data supporting this paper can be
obtained from http://dx.doi.org/10.17863/CAM.794.
This includes all the sample traces used to test and eval-
uate the performance of Axe, and a snapshot of the Axe
source code taken in July 2016. However, the latest version
of the Axe source code should always be obtained from
https://github.com/CTSRD-CHERI/axe.

REFERENCES

[1] S. Adve and K. Gharachorloo. Shared Memory Consistency Models: A
Tutorial, Computer Journal, volume 29, number 12, pp. 66–76, 1996.

[2] C. Manovit. Testing memory consistency of shared-memory multipro-
cessors, PhD thesis, Stanford University, 2006.

[3] S. Hangal, D. Vahia, C. Manovit, and JY. J. Lu, TSOtool: A Program
for Verifying Memory Systems Using the Memory Consistency Model,
in ISCA 2004, pp. 114.

[4] C. Manovit and S. Hangal, Efficient algorithms for verifying memory
consistency, in SPAA 2005, pp. 245–252.

[5] C. Manovit and S. Hangal, Completely verifying memory consistency
of test program executions, in HPCA 2006, pp. 166–175.

[6] Homepage of TSOTool, a program for verifying memory systems us-
ing the memory consistency model, http://xenon.stanford.edu/∼hangal/
tsotool.html.

[7] P. B. Gibbons and E. Korach. On testing cache-coherent shared mem-
ories, in SPAA 1994, pp. 177-188.

[8] A. Roy, S. Zeisset, C. J. Fleckenstein, J. C. Huang, Fast and Generalized
Polynomial Time Memory Consistency Verification, CAV 2006, pp. 503.

[9] K. Asanovic et al., The Rocket Chip Generator, Technical Report
UCB/EECS-2016-17, University of California, Berkeley, 2016.

[10] L. Lamport. How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs, IEEE Transactions on Computers,
volume 28, number 9, pp. 690–691, 1979.

[11] D. L. Weaver and T. Germond. The SPARC Architecture Manual Version
9, 2003.

[12] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams. Under-
standing POWER Multiprocessors, PLDI 2011, pp. 175–186.

[13] Homepage of PPCMEM/ARMMEM, a tool for exploring the POWER
and ARM memory models, https://www.cl.cam.ac.uk/∼pes20/ppcmem/.

[14] M. Naylor, S. Moore, and A Mujumdar, Axe Manual Version 1.4, https:
//github.com/CTSRD-CHERI/axe.

[15] Homepage of the BERI processor (Bluespec Enhanced RISC Instruc-
tions), http://bericpu.org.

[16] J. Bachrach et al. Chisel: Constructing Hardware in a Scala Embedded
Language, DAC 2012, pp. 1216–1225.

[17] S. Sarkar, P. Sewell, F.Z. Nardelli, S. Owens, T. Ridge, T. Braibant,
M.O. Myreen, and J. Alglave, The Semantics of x86-CC Multiprocessor
Machine Code, in POPL 2009, pp. 379–391.

[18] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell, Litmus: Running Tests
Against Hardware, in TACAS 2011, pp. 41–44.

[19] M. Naylor and S. W. Moore, A Generic Synthesisable Test Bench, in
MEMOCODE 2015, pp. 128–137.

[20] G. L. Peterson, Myths About the Mutual Exclusion Problem, Information
Processing Letters, vol. 12, no. 3, pp. 115-116, 1981.

[21] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic, The RISC-V
Instruction Set Manual, Volume I: User-Level ISA, Version 2.0, EECS
Department, University of California, Berkeley, May 2014.

[22] W. M. Collier. Reasoning about parallel architectures. Prentice-Hall,
Inc., 1992.

[23] C. Manovit, S. Hangal, H. Chafi, A. McDonald, and C. Kozyrakis, K.
Olukotun, Testing Implementations of Transactional Memory, in PACT
2006, pp. 134–143.

[24] J. Alglave, L. Maranget, and M. Tautschnig, Herding Cats: Modelling,
Simulation, Testing, and Data Mining for Weak Memory, in ACM
TOPLAS, volume 36, number 2, 2014.

