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ABSTRACT

Managing the memory wall is critical for massively par-
allel FPGA applications where data-sets are large and exter-
nal memory must be used. We demonstrate that a soft vector
processor can efficiently stream data from external memory
whilst running computation in parallel. A non-trivial neu-
ral computation case study illustrates that multi-core vec-
tor processing coupled with careful layout of data structures
performs similarly to an elaborate full-custom memory con-
troller and execution pipeline. The vector processing version
was far simpler to code so we encourage others to consider
vector machines before contemplating a full-custom archi-
tecture on FPGA.

1. INTRODUCTION

A great deal of research on efficiently mapping algorithms
onto FPGAs produces custom computation pipelines, which
aim to exploit the massively parallel computation resources
available on today’s FPGAs. Constructing complex custom
pipelines is time consuming. Suitable abstractions such as
C-to-gates improve productivity, but often at the expense of
performance. Vector processing can be an attractive alterna-
tive to C-to-gates [1], yielding good performance with the
convenience of software programming and debugging.

Applications demanding massive compute often require
large data-sets. The need to stream data from memory ex-
ternal to an FPGA becomes a bottleneck for a broad class
of applications whose pinnacle of performance is reached
when external memory bandwidth is saturated with useful
data transfer, not when the FPGA compute resources are
maximally used. This is known as the “memory wall”, and
is an increasing problem for both ASICs and FPGAs [2],
where compute resources are more plentiful than external
memory bandwidth. In this paper, we focus on this class of
application with an in-depth case study of neural computa-
tion which has demanding data interdependencies and large
data-sets that need to be held in external memory.

Our previous work on custom neural computation pipe-
lines for FPGAs resulted in a high performance design de-
scribed using Bluespec HDL [3], capable of efficiently str-
eaming neuron and synapse parameters from DDR2 mem-
ory to achieve real-time performance with 64k neurons and
64M synapses per Altera Stratix IV 230 FPGA [4].

This custom pipeline implementation took around three
man-years to complete, and resulted in us having a deep un-
derstanding of the Izhikevich spiking neuron model. While
highly parameterised, this implementation is still rather in-
flexible (e.g. if the neuron model has to be changed) and
is therefore of less utility to neuroscientists (our prospective
customers) than existing software-based neural computation
systems. However, this work did identify that given some
modest parallel compute, external memory bandwidth be-
comes a performance bottleneck for this application. As a
consequence, we explore vector processing for neural com-
putation, with a particular focus on making efficient use of
external memory bandwidth using burst transfers.

Section 2 presents BlueVec, a vector co-processor for
an Altera NIOS II. Section 3 uses neural computation as a
case study to compare and contrast custom computing, vec-
tor processing, and multi-core implementations, and the re-
sults of this case study are given in Section 4. Section 5
provides conclusions and considers their implications on fu-
ture research directions.

2. BLUEVEC ARCHITECTURE

Recent work at the University of British Colombia has led
to a series of soft vector processors [2, 5, 6, 7] allowing the
rapid development of high-performance program accelera-
tors on FPGAs. Of these, VIPERS [2] is perhaps the most
interesting for neural computation applications: it supports
lane-local memories that can be addressed independently
and in parallel using a vector of addresses and, as we dis-
cover, this feature is ideal for parallel distribution of synap-
tic updates to neurons scattered throughout memory. Un-
fortunately VIPERS lacks an important feature for these ap-



plications: burst memory access for high-performance str-
eaming of data from external memory. While the successors
to VIPERS [5, 6, 7] have made great progress towards opti-
mising external memory bandwidth efficiency, they all omit
lane-local memories. Therefore we develop our own soft
vector processor – BlueVec – to meet both requirements.

Rather than design a whole new processor from scratch,
we implement BlueVec as a custom instruction set extension
to the NIOS II, an existing 32 bit scalar processor developed
by Altera which comes with a rich software development
toolchain including a C/C++ compiler.

2.1. Vector width

BlueVec is a minimalist vector co-processor – written in
around 1k lines of Bluespec HDL in around 2 man-months –
with two external interfaces: (1) a custom instruction slave
interface for connection to a NIOS II, and (2) a memory
mapped master interface for connection to external mem-
ory. Assuming a NIOS II clock frequency of 200 MHz, and
a DDR2 external memory transferring 64 bits of data on
both edges of a 400 MHz clock, the maximum data transfer
rate between processor and memory is 256 bits per NIOS II
clock cycle. This motivates processing vectors of 256 bits
per clock cycle, which can be treated as either:

• 8 lanes of 32 bit words (W instructions) or

• 16 lanes of 16 bit half-words (H instructions) or

• 32 lanes of 8 bit bytes (B instructions).

2.2. Register file and instruction set

Given that a NIOS II custom instruction is defined as con-
taining three 5 bit register operands, the obvious design cho-
ice for BlueVec is a three-operand vector instruction set with
a 32-element register file. We take this option, but there are
alternatives, e.g. a large scratchpad in place of a register file
with support for long vectors, which would allow a greater
number of vector lanes [6].

An illustrative portion of the BlueVec instruction set is
shown in Figure 1. Note the use of v and s prefixes to dis-
tinguish BlueVec vector registers and NIOS II scalar regis-
ters respectively. All BlueVec instructions are implemented
as C macros which expand to inline assembly code. Hence
any valid C expression or variable can be used in place of a
scalar register, but vector registers must be constants in the
range v0 . . .v31. The following sections discuss parts of the
BlueVec instruction set in more detail.

2.3. External memory

Vectors can be loaded from external memory using the in-
struction

Load(vDest,sAddr,burstLength)

When executed, a burstLength-element sequence of 256 bit
vectors beginning at address sAddr is read into registers

vDest,(vDest +1), . . . ,(vDest +burstLength−1).

However, the register file is not modified until a Commit in-
struction is issued. This makes the latent Load instruction
non-blocking so it can be issued well before its result is actu-
ally needed, where need is signified by a blocking Commit.
For example, data for the next iteration of a loop can be
fetched while data for the current iteration is processed. In
principle, Commit instructions can be inferred in hardware
using register scoreboarding, but we have opted for an ex-
plicit design to keep the hardware simple.

The corresponding store instruction is non-blocking and,
at the time of writing, does not support bursts:

Store(vSrc,sAddr).

2.4. Lane-local memories

Each half-word vector lane has its own local Block RAM
giving a a vector form of scratch pad memory that is acces-
sible by a vector of 16 addresses. The instruction

LoadLocalH(vDest,vAddr)

loads LOCALi[vAddr[i]] into vDest[i] for each of the lane lo-
cal memories LOCALi where i ∈ {0..15}. The size of each
LOCALi is a BlueVec design parameter that can be altered
on a per-application basis. The corresponding store instruc-
tion is:

StoreLocalH(vSrc,vAddr)

Only half-word versions of these instructions are supported
since 16 bit addresses are more appropriate for medium-
sized Block RAMs than 8 or 32 bits.

2.5. Pipelining

In order to achieve a clock frequency above 200 MHz, i.e.
not inhibit the NIOS II clock frequency, BlueVec uses a 3
stage pipeline:

• F: operand fetch (from register file)

• E: execute instruction

• W: writeback result (to register file)

Most instructions execute in a single cycle and provide a re-
sult that can be used immediately. This is made possible
by register forwarding: the result and destination register of
stages E and W are inspected by stage F and used to over-
ride, if necessary, the values fetched from the register file.

There are three instructions which do not fully complete
in a single cycle:



Mul[B|H|W](vDest,vSrcA,vSrcB) = vDest[i]← vSrcA[i]× vSrcB[i]

Cmp[B|H|W](vDest,vSrcA,vSrcB) = vDest[i]← if vSrcA[i]≤ vSrcB[i] then 1 else 0
Cond[B|H|W](vDest,vElse,vCond) = vDest[i]← if vCond[i] then vDest[i] else vElse[i]

Index[B|H|W](sDest,vSrc,sIndex) = sDest← vSrc[sIndex]

Set[B|H|W](vDest,sMask,sSrc) = vDest[i]← if sMask & 2i then sSrc else vDest[i]

LoadLocalH(vDest,vAddr) = vDest[i]← LOCALi[vAddr[i]]

Load(vDest,sAddr,burstLength) = vDest, . . . ,(vDest +burstLength−1)←
MEM[sAddr], . . . ,MEM[sAddr+burstLength−1]

HtoW(vDest,vSrc,upper) = vDest[i]← if upper then vSrc[2× i] else vSrc[i]

Fig. 1. An illustrative portion of the BlueVec instruction set. Register names prefixed with v denote 256 bit vectors and those
prefixed with s denote 32 bit scalars. Terms of the form v[i] denote the ith value in vector v. Index i ranges from 0 to 31, 15,
and 7 for byte (B), half-word (H), and full-word (W) instructions respectively. LOCALi denotes lane local memory i, and MEM
denotes external memory with a 256 bit data bus. The HtoW instruction converts half-word vectors to word vectors. Other
BlueVec instructions include vector addition, subtraction, shifting, and word to half-word conversion.

• LoadLocalH completes in one cycle but the caller must
wait one further cycle before reading the result: reg-
ister forwarding is not possible at stage E since the
output of Block RAM is not yet available. Waiting
can be achieved using NoOp or any other instruction
that does not read the destination register.

• Mul completes in two cycles but the caller must wait
two further cycles before reading the result. This is
due to a 3 cycle latency on FPGA multiplier blocks
clocked at over 200 MHz.

• Index takes 3 cycles to complete since it must pass
through the whole pipeline before a result can be re-
turned to the NIOS II.

2.6. Record/Playback

We observed that the NIOS II is unable to issue custom vec-
tor instructions at the maximum possible rate of one per cy-
cle. As a workaround, we introduced a record/playback fa-
cility which allows sequences of instructions to be written to
a local instruction memory inside BlueVec, and played back
at the maximum rate by issuing a single NIOS II instruction.
To illustrate,

Record(begin);

// Sequence of vector instructions

Record(end);

records the given instruction sequence which can be issued
by calling Playback(begin,end). A recorded instruction
sequence can be viewed as a parameterless sub-routine. Sup-
port for parameters would be an obvious improvement for
future work (but so far not essential for our applications).

3. NEUROCOMPUTING CASE STUDY

As a case study we compare our custom neural computa-
tion pipeline [4] for the Izhikevich spiking neuron model [8]
to an implementation of the same algorithm using BlueVec.
Here, we focus on the critical inner loop: I-value accumula-
tion. Details of the full algorithm can be found in [9].

3.1. I-value accumulation

A spiking neural network consists of neurons connected by
synaptic connections. In a typical biologically-plausible net-
work, each neuron has synaptic connections to around 103

other neurons. Each synaptic connection has an associated
delay and a weight, which signifies the strength of the con-
nection. Collectively the combination of target neuron, de-
lay and weight are known as a synaptic update. When a
neuron spikes each synaptic update needs to be delayed and
then summed with other synaptic updates targeted at the
same neuron to produce a total input current (termed as an I-
value) for each neuron. We refer to this process of summing
synaptic updates as I-value accumulation.

If the I-value of neuron n is denoted ivalues[n], and
its target connections and associated weights are stored in
arrays targets and weights respectively, then the I-value
accumulation process required if neuron n spikes is:

for (i = 0; i < numTargets; i++)

ivalues[targets[i]] += weights[i];

In both the custom pipeline and BlueVec implementations,
each array has elements which are 16 bits in size. Since the
number of I-values is equal to the number of neurons, there
is ample capacity for ivalues to be stored in on-FPGA
Block RAM, which has a total size of 2MB on a Stratix IV
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Fig. 2. Custom pipeline implementation of the I-value ac-
cumulation phase. Four banks are shown for clarity – there
are actually eight banks.

230. However, as the number of synaptic connections is
typically 103× the number of neurons, the targets and
weights arrays for each neuron must be stored in external
memory if we are to simulate many thousands of neurons.

3.2. Implementation A: custom pipeline

Assuming the targets and weights arrays are interleaved
in memory to give an array of (target, weight) pairs called
update tuples, our custom pipeline implementation of the I-
value accumulation loop (known as the accumulator block in
previous work) is shown in Figure 2. The on-FPGA Block
RAM used to store the I-values is partitioned into 8 banks,
since 8 update tuples can be obtained (in a single 256 bit
DDR2 memory transfer) per clock cycle when efficient burst
reads are used. Each bank is surrounded by a pipeline which
processes update tuples. Each update tuple in an incoming
word is then allocated to the bank that holds the I-value for
the target neuron, with FIFO queues and arbiters used to
allow multiple update tuples in the same 256 bit word to
target the same bank.

While the FIFO queues do provide some tolerance of
uneven load between banks, in practice it was found that
highest performance was achieved when update tuples were
arranged in 256 bit words such that they are effectively stat-
ically scheduled, with the update tuple in position x of a 256
bit word always targeting a neuron whose identifier modulo
8 is equal to x (or else being empty, denoted by zero weight).

// Read 16 targets and weights into

// vector registers v8 and v16

Load(v8, targets, 1);

Load(v16, weights, 1);

for (i = 0; i < numTargets; i+=16) {

Commit;

// Pre-fetch values for next

// iteration in background

Load(v8, targets+i+16, 1);

Load(v16, weights+i+16, 1);

// Update 16 I-values

LoadLocalH(v0, v8);

NoOp;

AddH(v0, v0, v16);

StoreLocalH(v0, v8);

}

Fig. 3. BlueVec implementation of the I-value accumulation
phase (without bursts and record/playback).

As a result of this static scheduling, the complex accu-
mulator block effectively becomes a vector of independent
blocks, and hence the function it performs is amenable to
implementation using the BlueVec vector processor.

3.3. Implementation B: vector processing

Figure 3 shows a BlueVec implementation of I-value ac-
cumulation. While this vectorised loop gives good speed-
up over the simple scalar loop, it is markedly improved by
changing the burstLength argument of each Load instruc-
tion from 1 to 8. Consequently, the loop increment changes
from 16 to 128 and each of the four instructions at the end
of the loop is performed eight times as follows.

LoadLocalH(v0, v8); NoOp;

AddH(v0, v0, v16); StoreLocalH(v0, v8);

...

LoadLocalH(v0, v15); NoOp;

AddH(v0, v0, v23); StoreLocalH(v0, v15);

This results in a very long sequence of vector instructions
that can be efficiently issued at a rate of one per clock cycle
using the record/playback feature.

4. RESULTS

We now discuss the performance and productivity of our
custom computing and vector processing approaches to neu-
ral computation. Each approach was implemented on a Tera-
sic DE4 evaluation board with a Stratix IV 230 FPGA, using
a single DDR2 external memory bank.



Table 1. Run time and % of total for phases of Izhikevich
neuron model with and without a BlueVec co-processor.

NIOS II + BlueVec
Time / s % Time / s %

I-values 57.2 72 1.4 36
Neuron updates 17.2 22 1.7 44
Spike delay buffer 1.6 2 0.5 13

Total 79.0 3.9

4.1. Single-core performance

Table 1 shows the times taken by our scalar (without Blue-
Vec) and vector (with BlueVec) Izhikevich neural computa-
tion systems to compute 1 s of neural activity in a benchmark
network consisting of 64k neurons with 64M synaptic con-
nections [9]. Note that the scalar version has been optimised
for performance: I-values are stored in a large Block RAM,
and the NIOS II has a 4kB data cache with 256 bit cache
lines that can be filled by single DDR2 memory transfers.
Our custom pipeline implementation operates in real-time,
around 80× faster than the scalar version, but only 4× faster
than the vector version.

The performance profiles in Table 1 are split into three
phases. The time for the I-value accumulation stage (dis-
cussed in Section 3) is reduced by 40× using vector pro-
cessing. The neuron update and spike delay phases have not
been discussed here, but details can be found in [9].

We observed that DDR2 bandwidth utilisation for the
vector version is 16%. The fact that a single BlueVec is not
able to saturate memory bandwidth is a consequence of an
imbalance between memory access and compute. For exam-
ple, while the states of 16 neurons can be fetched in 6 mem-
ory transfers, 44 instructions are required to process them.
This motivates increasing vector sizes and hence the num-
ber of vector lanes in future work. But in the meantime, we
explore the use of multiple cores to saturate memory band-
width. Given that a single BlueVec core consumes 7k Altera
ALMs (7% of total) and 96 multiplier blocks (7% of total),
there is plenty of scope for multiple BlueVec cores.

4.2. Multi-core performance

Neural computation is a highly-parallel task, and our bench-
mark neural network is easily split into smaller networks
that can be processed in parallel with negligible communica-
tion. Table 2 shows the performance improvement obtained
with multiple NIOS II and BlueVec cores accessing shared
DDR2 memory and distributed Block RAMs for stack and
instruction memory. The cores are connected in a star net-
work, with a master core connected bidirectionally to all
slave cores. Notably, the quad-core BlueVec configuration

Table 2. Run time, logic and bandwidth utilisation for
a multi-threaded Izhikevich neuron simulator with varying
number of cores and vector co-processors.

NIOS II BlueVec Time Logic Bandwidth
cores cores (s) (%) DDR2 (%)

2 0 40.2 14 1.9
4 0 20.9 19 3.8
8 0 10.8 30 7.5

16 0 6.1 53 13.1
32 0 5.0 100 17.6
2 2 2.2 26 30.5
4 4 1.3 49 51.0

Table 3. Lines of code for Izhikevich and leaky integrate-
and-fire neuron models.

Model Implementation Lines

Izhikevich Single-threaded 193
Single-threaded and Vectorised 417
Multi-threaded 265
Multi-threaded and Vectorised 511
Custom pipeline 2700

LIF Single-threaded 324
Single-threaded and Vectorised 496

gives performance that is well within a factor of 2 of our cus-
tom pipeline. Interestingly, the two have very similar logic
utilisation. While it would also be possible to have multiple
custom pipeline instances sharing a single DDR2 memory
bank, it would not be worthwhile since a single instance al-
ready exhibits very high DDR2 bandwidth utilisation.

Both the scalar and vector software versions benefit sig-
nificantly from multiple cores. However Table 2 shows poor
performance scaling from 16 to 32 scalar cores: as the num-
ber of cores increases, the spatial locality of memory ac-
cesses decreases, and the performance of DDR2 memory
drops. Even if performance scaled perfectly, the number of
scalar cores required to match the quad-core BlueVec imple-
mentation would consume 4× more FPGA logic.

4.3. Productivity

Table 3 shows the numbers of lines of code in our neural
computation systems. The almost 3k lines needed for the
custom pipeline is striking, indicating the extra detail a hard-
ware designer must express. In fact, this line count would
be even higher if it included general-purpose libraries devel-
oped in-house. Hardware development cycles can be slow
for other reasons too, such as long synthesis times, trial-and-
error refinements needed to meet tight timing constraints,
and a lack of convenient I/O mechanisms for debugging.



Fig. 4. An implementation of the Nengo digit-recognition
model on a DE4 FPGA board with touch-screen.

The convenience of a software-based approach has al-
lowed us to develop other efficient neural computation sys-
tems in a very short time. Figure 4 shows a screenshot of
our leaky integrate-and-fire (LIF) system running the Nengo
[10] model for digit recognition on a DE4 FPGA with touch-
screen. Using a single vector processor, we were able to
achieve a 20× speed-up over a scalar implementation with
just two days work. We do not believe that implementing a
custom pipeline LIF system in this time-frame is possible,
even with re-use of components from the Izhikevich system.

5. CONCLUSION

Managing the memory wall is critical for many data inten-
sive applications on FPGA. Achieving good performance
with modern DDR2/DDR3 memories requires careful use
of burst accesses, which is well suited to vector memory op-
erations. While custom compute pipelines and their associ-
ated memory controllers can achieve high performance, it is
still critical to perform vector/burst accesses. When memory
becomes the bottleneck, there is scope to use more general
purpose vector compute and still yield similar performance,
possibly at the expense of area. Of course reconfigurable
vector arithmetic units can cater for application specific de-
mands, which helps to maintain the benefits of FPGA over
other non-reconfigurable compute.

We have demonstrated that a quad-core BlueVec (NIOS
II + vector) machine has performance that falls within a fac-
tor of 2 of the custom pipeline for our neural computation
application, and has similar logic usage. The Bluespec code
for BlueVec together with vectorised C code proved to be
much more compact and easy to develop than the custom
pipeline despite using a high-level language (Bluespec).

Based on our experiences presented in this paper, we en-
courage others mapping algorithms onto FPGA to consider

external bandwidth requirements first. If the memory wall
is near, then consider vector-style computation since it is
relatively easy to design and can yield high performance.
Moreover, the process of analysing the memory footprint of
data structures and thinking about vectorisation will not only
be useful for a vector implementation but also for a custom
pipeline implementation should greater compute be needed.
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